PHYS1003 General Physics for Engineers

Course Code and Name: PHYS1003 General Physics for Engineers
Course Objectives:

This non-calculus-based course covers some essential concepts in mechanics, heat, electricity and magnetism. It is designed for engineering students to get an overview on what physics is about. Selected topics include: Newton’s laws of motion, Archimedes’ principle, fluid flow, temperature and heat, laws of thermodynamics, electric field and potential, current and circuits, and electromagnetic waves. The course is suitable for Engineering students without HKDSE physics or Combined Science with a physics component, or with permission of instructor.
Course Outcomes:


By the end of the course, students will be able to:
1. state and describe the principles in Newton's Laws of motion, Fluids, Heat and Laws of Thermodynamics, Electricity, Circuits, EM waves, within a formalism using vectors and elementary mathematics (non-calculus)
2. apply these principles and some mathematical methods (non-calculus) to physics or/and engineering problems
3. employ essential physics skills for solving engineering problems
4. recognize the importance of classical physics, especially its fundamental role in different fields in science and engineering
Programme Outcomes:
(P1) The ability to apply knowledge of mathematics, science, and engineering appropriate to the degree discipline (K/S)
(P2) The ability to design and conduct experiments, as well as to analyze and interpret data (K/S)
(P3) The ability to design a system, component, or process to meet desired needs within realistic constraints, such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability (K/S)
(P4) The ability to function in multi-disciplinary teams (S/V)
(P5) The ability to identify, formulate, and solve engineering problems (K/S)
(P6) The understanding of professional and ethical responsibility (V)
(P7) The ability to communicate effectively (S)
(P8) The ability to understand the impact of engineering solutions in a global and societal context, especially the importance of health, safety and environmental considerations to both workers and the general public (V)
(P9) The ability to recognize the need for, and to engage in life-long learning (V)
(P10) The ability to stay abreast of contemporary issues (S/V)
(P11) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice appropriate to the degree discipline (K/S)
(P12) The ability to use the computer/IT tools relevant to the discipline along with an understanding of their processes and limitations (K/S/V)
(P13) The ability to apply the skills relevant to the discipline of operations research and information technology and their applications in engineering and managerial decision making, especially in financial services, logistics and supply chain management, business information systems, and service engineering and management (K/S)

K = Knowledge outcomes
S = Skills outcomes
V = Values and attitude outcomes