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a b s t r a c t

Instead of using free energy, we directly balanced confinement and hydrodynamic forces (fc ¼ kBT/x and
fh ¼ 3phule) on individual “blobs” to obtain a unified description of how polymer chains with different
topologies (linear, star and branched) pass through a cylindrical pore with a diameter of D, much smaller
than its size, under a flow rate (q), where kB, T, h, x, u (¼q/D2), and le are the Boltzmann constant, absolute
temperature, viscosity, “blob” diameter, flow velocity, and the blob’s effective length along the flow
direction, respectively; and each “blob” is defined as a maximum portion of the confined chain whose
confinement free energy becomes of order thermal energy (kBT). Namely, using fc ¼ fh, we easily locate at
which minimum (critical) flow rate (qc) polymer chains with different topologies are able to pass through
the pore without priori consideration of chain topology, i.e., a general description, qc/qc,linear ¼ (D/x)2,
where qc,linear equals [kBT/(3ph)](x/le). The only thing left here is to find x for each topology. Obviously, for
a confined linear chain, xlinear ¼ D. For a confined star chain, xstar ¼ [2/(f þ jf�2finj)]1/2D, where f is arm
number and fin is the number of arms first inserted into the pore; and for a branched chain, xbranch ¼ (D/
a)a’Nt,Kuhn

b’ Nb,Kuhn
g’ , where a is the size of one Kuhn segment, Nt,Kuhn and Nb,Kuhn are respectively the

numbers of Kuhn segments of the entire branched chain and the subchain between two neighboring
branching points; and the three constant exponents (a0 , b0 and g0) are directly related to the well-known
Flory’s scaling exponents between the chain size and both Nt,Kuhn and Nt,Kuhn.

� 2013 Elsevier Ltd. All rights reserved.
Statistical physics tells us that the possibility of a polymer chain
passes through a cylindrical pore with a diameter of D much
smaller than its size is extremely low because there is a confine-
ment penalty. To overcome the confining energy barrier, one has to
“pull” the chain with a kind of interaction, such as the hydrody-
namic or electric (if it is charged) force. It was shown by de Gennes
[1e3], Pincus [4], Casassa [5], and Edwards and Freed [6] that the
minimum force (the critical flow rate, qc, when the Poiseuille flow is
used) depends on the chain’s topology and deformability as well as
the pore size, but unexpectedly not on the chain size in some cases,
including linear and star chains [7e9]. In particular, de Gennes [1]
and Pincus [4] showed that for a linear chain, qc,linear w kBT/h, in-
dependent on sizes of both the chain and pore, where kB, Tand h are
the Boltzmann constant, absolute temperature and solution vis-
cosity, respectively. However, our previous experimental results
revealed that for linear chains, qc,linear decreases as D increases
, The Chinese University of

All rights reserved.
because the chain segment inside each “blob” should not be treated
as a hard sphere with a dimension of D but with an effective length
(le) along the flow direction [7,8], i.e.,

qc;linear ¼ kBT
3ph

D
le

(1)

Note that here individual “blobs” with a size of x is defined as
a maximum portion of the confined chain whose center of gravity
undergoes the Brownian motion under the agitation of the thermal
energy; namely, within which the total energy of interest becomes of
order kBT; and le, depending on the chain topology, is generally
longer than x because the confined chain segments are partially
draining. Such a dependence for linear chains (Eq. (1)) was sup-
ported by the recent first principle calculation [10,11].

Physically, each polymer chain confined inside a small cylin-
drical pore can be viewed as a number of packed blobs. Instead of
considering free energy of the entire confined chain as previously
done by others, we only consider the confinement and hydrody-
namic forces on individual blobs (fc ¼ kBT/x and fh ¼ 3phleu, where
u ¼ q/D2, the flow velocity), i.e., from fc ¼ fh, and drive the critical
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flow rate (qc). Using such an approach, we have established a uni-
fied description of normalized qc without any priori consideration
of the chain topology as follows.

qc
qc;linear

¼
�
D
x

�2
(2)

It shows that the only thing left here is to find x for each to-
pology. Obviously, for a confined linear chain, xlinear ¼ D. For
a confined star chain with f arms, we have to consider whether the
number of forwarded and stretched arms (fin) that are inserted into
the pore is larger or smaller than that of backwarded and coiled
arms (fout) outside, where f¼ finþ fout. When fin� fout, we only need
to consider those forwarded fin arms that occupied the pore. Each
stretched arm acts as a tube with a diameter of xstar; namely,
D2¼ xstar

2 fin so that qc/qc,linear¼ fin. Similarly, when fin� fout, we have
to consider those backwarded fout arms outside. In this case, the
forwarded and stretched arms must be further stretched (i.e., with
a higher flow rate) to generate a sufficient force to pull those out-
side arms into the pore.When they come into the pore, D2¼ x2starfout
so that qc/qc,linear ¼ fout. These two different cases can be summa-
rized into one equation as

qc;star
qc;linear

¼ f þ jf � 2finj
2

(3)

Recent experimental results confirmed that for a given arm
length (LA), qstar increases with f but is nearly independent on LA [9],
contradictory to the de Gennes’ prediction, [2] in which the full
extension of each pulled-in arm was assumed. Our derivation and
experimental results reveal that such an assumption is not
necessary and incorrect. It should be noted that we previously
made one unfortunate mistake in Polym Chem 2011, 2, 1071 [9];
namely, the denominator in Eqs. (5b) and (6b) should be f 2out instead
of f 2in, which also affects fig. 6 there.

Transportation of a hyperbranched chain made of subchains
with a uniform length (lb) through a small pore is much more
complicated, depending on whether lb is much larger or smaller
than xbranch. In other words, when lb >> xbranch, each blob contains
a linear chain segment that is easily deformable (strong confine-
ment); while lb << xbranch, each blob itself contains a number of
subchains, i.e., a hyperbranched and less-deformable chain seg-
ment (weak confinement). Previously, using the Flory scaling, de
Gennes [2,3] deduced qc,branch for a hyperbranched chain in a good
solvent and found that qc,branch w Ng

t;KuhnN
4
b;Kuhn, where Nt,Kuhn and

Nb,Kuhn are numbers of Kuhn segments of the entire chain and the
subchain; and g¼ 1/2 and 2/3; and 4¼�1/2 and 2/15, respectively,
for strongly and weakly confined hyperbranched chains inside
a cylindrical pore. Unfortunately, the prediction is partially incor-
rect because the barrier energy (Eb) of one layer (cross-section) of
blobs was mistaken as wkBT. Actually, kBT is the barrier energy for
one blob. The barrier energy for one layer of blobs should be kBT
multiplied by the number of blobs in one layer, i.e., Eb ¼ kBT(D2/
xbranch
2 ). This explains why the correct exponent should be 2, as
shown in Eq. (2), instead of 4 (Eq 30 of Ref 2).

As discussed above, each blob in the strong or weak confine-
ment limits contains a linear or a hyperbranched chain segment
with a maximum size of D. Assuming that each blob contains n
Kuhn segments and each Kuhn segment has a size of a, the volume
fractions of the Kuhn segments inside each blob and inside the
volume occupied by the entire confined and stretched chain should
be identical, i.e., a3n/x3 ¼ a3Nt,Kuhn/(D2Lo), for a uniform chain
density, where Lo is the optimal length of the entire chain stretched
along the flow direction, i.e.,
x ¼
 
nD2Lo

!1
3

(4)

Nt;Kuhn

Let us first find Lo. After a chain is confined inside the pore and
stretched to a length of L, its free energy (F) has an enthalpy term:
kBT[Nt,Kuhn

2 a3/(D2L)] and an entropy term: kBT(L/R0)2, where R0 is the
unperturbed chain size. Lo can be found from dF/dL ¼ 0, i.e.,

Loya

 
Nt;KuhnR0

D

!2
3

(5)

Note thatR0¼aNt,Kuhn
1/4 Nb,Kuhn

1/4 andaNt,Kuhn
1/2 forbranchedand linear

chains, respectively. Actually, a linear chain can also be viewed as
a special branched chain with one “branching” point, i.e.,
Nt,Kuhn ¼ Nb,Kuhn; namely, we can also using R0 ¼ aNt,Kuhn

1/4 Nb,Kuhn
1/4 for

a linear chain. It is also known that for a hyperbranched or a linear
chain in good solvents, its root mean square radius of gyration
<R2g>

1/2 is scaled to Nt,Kuhm and Nb,Kuhm as aNa
t;KuhnN

b
b;Kuhn with

a¼ 1/2 and 3/5, and b¼ 1/10 and 0, respectively [12e15]. Similarly,
we can also generally express the blob size (x) in good solvents as
x ¼ aNa

t;KuhnN
b
b;Kuhn. A combination of Eqs. (2), (4) and (5) as well as

two scaling equations of R0 and x results in

qc;branch
qc;linear

¼
�
a
D

�2ð3�5aÞ=3ð3a�1Þ
Ng
t;KuhnN

4

b;Kuhn (6a)

where

g ¼ a

3ð3a� 1Þ and 4 ¼ 6b� a

3ð3a� 1Þ (6b)

It should be noted that Eq. (6) generally covers different solvent
qualities and confinements. In the weak confinement limit
(n >> Nb,Kuhn), each blob contains a hyperbranched chain segment
with a ¼ 1/2 and b ¼ 1/10 in good solvents so that Eq. (6) becomes

qc;branch
qc;linear

¼
�
a
D

�2=3

N

1
3
t;KuhnN

1
15
b;Kuhn or

�
a
D

�2
3

n

1
3
branchN

6
15
b;Kuhn

� �weak confinement
� ð7Þ

where nbranch is defined as Nt,Kuhn/Nb,Kuhn, the number of branching
points of a hyperbranched chain. While in the strong confinement
limit (n<< Nb,Kuhn), each blob contains a linear chain segment with
a ¼ 3/5 and b ¼ 0 in good solvents so that we have

qc;branch
qc;linear

¼
 
Nt;Kuhn

Nb;Kuhn

!1
4

¼ n

1
4
branch

�
strong confinement

�
(8)

As expected, for linear chains, Nt,Kuhn¼ Nb,Kuhn, i.e., nbranch¼ 1 so
that qc,branch ¼ qc,linear. Note that Eq. (8) is identical to what de
Gennes described after we correct the mistake, i.e., changing the
exponent from 4 to 2 in Eq 30 of ref 2. However, our recent
experimental results showed that the scaling components are dif-
ferent from those predicted in Eqs. (7) and (8). This is becausewhen
a hyperbranched chain is confined and squeezed inside a pore the
scaling of its size and the number of Kuhn segments is not ½ but
much smaller. This is not the point we like to discuss in this com-
munication. The crossover between two different confinement
limits occurs when the pore size reaches a critical value (D*) at
which sizes of the subchain and the pore become similar. Quanti-
tatively, equalizing the right sides of Eqs. (7) and (8) leads to



Fig. 1. Schematic of a polymer chain with different topologies confined inside a cy-
lindrical pore and how blob size (x) varies with chain topology.
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D* ¼ aN

1
8
t;KuhnN

19
40
b;Kuhn (9)

It is clear that D* weakly depends on the overall molar mass but
more on the subchain length.

In summary, by assuming that a polymer chain confined inside
a small cylindrical pore is divided into a number of “blobs” whose
center of gravity is undergoing the Brownian motions under the
thermal agitation, we have shown that it is necessary and sufficient
to consider only confinement and hydrodynamic forces on a single
blob. A direct balance between them leads to the critical (minimum)
flow rate (qc) to pull a chain through the pore without any priori
consideration of chain topology. Using such a simple approach, we
have established a unified description of qc, normalized by qc,linear, as
qc/qc,linear ¼ (D/x)2 for different chain topologies. The only thing left
here is to deduce x for each given chain topology. It should be noted
that experimental results for linear, star and hyperbranched chains
have been previously published and they support what we are dis-
cussing in this unified description [7e11,16]. Fig. 1 schematically
summarizes our results forpolymer chainswithdifferent topologies.
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