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LINTRODUCTION

In a mountainous region of Sichuan Province, China, snails
live along the edges of ditches in crop fields. People are infected
through contact with the contaminated waters of natural rivers
and irrigation systems. Infected human and animal stools are
used as fertilizers in the crop fields, from which the disease
can also be transmitted. Snail population is crucial for more
refined analysis of schistosomiasis transmission and for the
development of a control model. We focus on five land-use
and land-cover categories to which the snail habitat and the
water exposure activities of humans may be closely related.
These are lowland crop, upland crop, terraced crop field,
riverbed and residential area.

Surrounding Qionghai Lake at the southern edge of Xichang
City, Sichuan Province, our study site resides in the valley of
a mountainous area of western China with an elevation range
of 1500-2500 m. A multispectral IKONOS image of the study
site was acquired in December 2000, covering an area of 137
km? (Figure 1). The spatial resolution of the image is 4 m (Space
Imaging, 1999). The study site consists of approximately 200
residential groups organized into 4 townships. The climate
there is subtropical with an annual average temperature of 17
°C and an annual rainfall of about 1000 mm, over 90% of which
falls between the beginning of June and the end of October.
The main agricultural products are rice, corn, wheat, bean,
garlic, rape, eggplant and tomatoes (Spear, et al., 1998). Most
people are farmers, and secondarily, raisers of livestock and
fish. People get infected when they come into contact with
infected water. They might be growing crops and vegetables
in the lowland, the upland fields or terraced areas, washing
their feet and working utensils along the ditches where the
irrigation system runs or playing in the riparian zones along
riverbeds.

II. DATA PREPROCESSING
The IKONOS image is georeferenced to UTM projection based

on the 1984 World Geodetic System. We then treat the
geometrically corrected IKONOS scene as the master image,

and four other satellite images are geo-matched accordingly.
The four registered images include Landsat TM data taken in
March 1998 and November 1998, EO-1 ALI and Hyperion data
taken in January 2002.

We apply regression analysis to the reference data for the five
land-use categories. On the one hand, we want to assess the
capability of the Landsat Thematic Mapper (TM), EO-1
Advanced Land Imager (ALI) and Hyperion to extend local-
scale knowledge to large-scale monitoring of the disease
transmission. However, land parcel size in this study area is
often smaller than the 30m by 30m pixel of the Landsat or EO-
1 data. Extracting land surface cover information at sub pixel
levels thus becomes important. We use classification results
from the multispectral IKONOS imagery as “ground truth”
data. Landsat and EO-1 data are used as regressors after
geometric registration of these satellite images. The
proportions of those land surface covers are subsequently
estimated.

L. LAND COVER CLASSIFICATION WITHIKONOS AND
ELEVATION DATA DERIVED FROM ASTER DATA

Elevation in this mountainous schistosomiasis endemic area
is important, as prevalence in the upland regions is higher
than in the lower floodplains. People may grow very different
agricultural products in the lower and upper lands. Therefore,
upland and lowland crop and terraced area are distinct land
surface categories. The land-cover classification map is made
by extracting the lake separately and including elevation data
in the classification of IKONOS multispectral imagery. The
lake delineation was achieved by processing the near-infrared
(NIR) channel (band 4) of the IKONOS imagery. The first step
of the processing procedure is applying a Sobel filter to the
NIR image to enhance the contrast between water and land. A
Sobel filter is an edge-enhancement technique that calculates
from a 3 X 3 neighborhood the vertical and horizontal gradients
and takes the square root of their sum of squares (Jensen,
1996). A5 X5 average filter was applied to the edge-enhanced
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Figure 1. Study site in Xichang, Sichuan, China in a false
color composite of the IKONOS CARTERRA imagery taken in
December 2000. Yellow color represents snail survey sites in
19 residential groups.

image to produce an edge-density image. This effectively
removed a large number of shaded land areas in the NIR image
from being subsequently labeled as water bodies. It also
prevented a large number of fishponds from being processed
as lake. For the next step, a threshold is empirically determined
from the histogram of the enhanced image to threshold out
those low gradient areas as a mask of water bodies. Because
of the edge-effect of the Sobel and averaging filtering
techniques, the detected mask of water bodies is smaller than
it ought to be by 2 pixels around the borders. A region growing
morphological filtering procedure was then applied to the mask
twice to ensure proper restoration of the water bodies. Some
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Figure 2. Resultant lake mask in red with the digital elevation
model (DEM) displayed in the background. The lake mask is
generated by thresholding a Sobel filtered near-infrared
IKONOS image followed by region growing and editing. The
DEM is generated from a stereopair of ASTER images in an
original resolution of 15 m. It has been resmapled to 4 m for
the purpose of image classification.

editing is performed on the water-body mask to remove non-
water body or fishpond portions in the image. This edited
mask is then used as a mask to be excluded during subsequent
land-cover and land-use classification (Figure 2). The precise
extraction of the lake category from the NIR image makes it
unnecessary to keep the original lake edge whose spectral
properties are different from the central part of the lake.

Before the inclusion of elevation in the land-cover and land-

Figure 3. Color infrared composite of the IKONOS draped over the DEM as viewed from the west side of the study area to the
east from an elevation of 10,000 m.
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use classification, there was some confusion among various
classes, particularly between the lowland crop and upland
crop, and between shadowed areas and the residential areas.
These errors are substantially reduced with the inclusion of a
digital elevation model (DEM) layer in the classification. The
DEM was produced using PCI’s Orthoengine software applied
to a stereopair of ASTER images acquired in August, 2002.
ASTER stands for Advanced Space-borne Thermal Emission
and Reflection Radiometer. It is a Japanese instrument on
board of the Terra satellite launched in December 1999. ASTER
has visible, NIR and thermal channels with various ground
resolutions. Its stereopair is taken from nadir and backward
looking directions along the same track using the 0.7-0.9 mm
wavelength band with a ground resolution of 15 m. At our
study area, we did accuracy assessment using 29 GCPs
measured with differential GPS. The average root-mean
squared error is only 6.1 m. This does not affect the results of
this study because we use DEM to distinguish the upland
and lowland crops whose elevation difference exceeds 100 m.
Figure 3 shows a perspective view of the study site by draping
the color-infrared composite of the IKONOS image over the
DEM. The lake water level was not measured through digital
photogrammetry. It was set to an estimated value. From the
perspective view it can be seen that the pre-set value was not
correct. The actual lake level should be greater than the
estimated value. Because the lake area was excluded in this
study, we did not further adjust the lake surface elevation.

Land-cover and land-use classification is performed over the
land area with modified training samples applied in a maximum
likelihood classification algorithm. As a result, a total of 15
classes is mapped (not including the Lake and the abolished
lake edge class). Some preliminary studies in this area done
by Robert Spear’s group in the School of Public Health and
Xueguang Gu’s group in Sichuan, China suggest that type of
crop field plays an important role in schistosomiasis
transmission. Therefore, attention is paid to these classes as
well as to residential and sandy river beds. Although forest,
lake, shrub and barren mountain top occupy a large proportion
of the mapped area, they are not considered important
schistosomiasis transmission sites. The overall accuracy of
15 land surface categories is 0.865 measured by Kappa
coefficient. For example, the accuracies for the residential,
river beds, lowland crop, lowland terrace, upland crop and
upland terrace are 87% (out of 2125 samples), 91% (out of 4469
samples), 98% (out of 751 samples), 89% (out of 3134 samples),
97% (out of 1193 samples), and 98% (out of 2101 samples),
respectively.

IV.LAND COVER FRACTION ESTIMATION

The EO-1 Hyperion is the only hyperspectral sensor operating
in space (NASA, 1996). A hyperspectral sensor has contiguous
narrow wavelength bands (about 10 nm each) that are
supposed to capture more subtle spectral details of the objects
on the ground than can the bands (about 100 nm each) of a

multispectral sensor. However, the quality of some of the bands,
particularly water vapor absorption bands, may be degraded
due either to insufficient energy within the narrow wavelength
band captured by the sensor or to the disturbance of water
absorption. Striping appears in some of the bands. Problems
are encountered with direct use of either a hyperspectral image
or feature reduced images. Statistical estimation from noisy
bands can be unreliable. During the process of feature
reduction the high variability of the noise, especially the
striping behavior, is mistakenly treated as variability of the
signals and, under the assumption that the noise has typically
equal and low variability, preserved within the principal
components. We proposed a way of recovering the original
Hyperion spectral space by properly estimating the noise
structure, inverting a transformation matrix of the noise adjusted
PCA and the first ten principal component images (Xu, 2003)

It is often difficult to process such high-dimensional data
typically more than 200 bands. It causes a heavy computational
burden. The limited number of training samples, compared to
the high dimension of the data, and the high correlation among
adjacent bands leads to inaccurate estimation of the covariance
structures and to degenerate ranks of spectral matrices, thus
limiting the accuracy of classification and regression in our
case. Due to complexities caused by the high dimensional
space, feature extraction schemes such as the Efroymson
stepwise procedure (ESP), PCA and nested selection
regression (NSR) have been applied to minimize regression
errors, reducing high-dimensionality either by implementing
stepwise selection and deletion of bands or by maximizing the
ordered variance of the whole data set. Land-use fraction
estimation results using the resultant reduced features are
compared with those using all the original spectral bands.

Linear spectral unmixing is a technique commonly applied,
particularly with hyperspectral data, to derive end member
proportions from within each pixel of remotely sensed imagery
(Gongetal., 1994). We compared Ordinary Least Squares (OLS)
with a linear unmixing model in terms of both mathematical
formulation results and experimental estimation results. While
the two methods produced similar unmixing results, the OLS
produced smaller error.

V. SNAIL DENSITY ESTIMATION

Surface cover fractions derived from 30 m resolution satellite
data are then used in a multiple regression to estimate snail
densities of an area covering approximately 200 villages.
Nineteen villages have been under our intensive investigation
for the past three years. A ditch network for each of the 19
groups was constructed by using a differential Global
Positioning System (GPS) in the summer of 2000. At the same
time a snail survey was done every 10 m along the ditches of
all 19 residential groups (Figure 1). Altogether 10,558 sites
were visited for snail survey. For each site, the number of
snails was counted and positive snails were examined and
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counted within a kuang, which is a frame occupying 0.11 m?
area. Among these sites, 3157 sites were found to have snails
and 7401 sites did not. Among the snail sites, 93 sites were
found to have positive snails.

As presented above, to assess the capability of Landsat and
EO-1 sensors for larger scale monitoring, IKONOS
classification result served as ground truth. The land-cover
types were designed in this classification so that the end results
were not sensitive to seasonality and we think they have not
changed in the past several years. Whenever we have a 30 m
by 30 m Landsat or EO-1 pixel, we are able to derive the area
proportion of each land-cover type within this pixel by using
the IKONOS data. We apply the same concept here. For each
snail survey site, we place a transparent 30 m by 30 m mask
over the improved 4 m by 4 m land-cover map produced by a
multispectral IKONOS image and elevation data. This way, we
have snail survey data together with 15 land-cover fractions
for each site under investigation. A prediction model is then
built based on snail surveys from the summer of 2000 at more

than 10,000 sites over 19 land groups and their corresponding
land-cover fractions.

A A A A A 3 -
SA=a, fi+a, fy+a, fio +a, f, k is the number of

land-cover classes selected for prediction. ¢ denotes snail
abundance to be predicted at each site, * and fi=12 ..

k, are estimated model coefficients and calculated land-cover
fractions, respectively.

After significance tests and careful assessment of the
individual categories, thirteen out of fifteen land-cover and
land-use categories were selected for predictions of snail
abundance and seven were selected for prediction of positive
snail abundance. Lake and forest were removed from the
prediction models as the two categories are totally insensitive
to snail abundance. Since our focus is not on the prediction of
snail abundance at each site at the 10-30 m scale but instead at
the village level, it is important for us to assess the prediction
results against the aggregated results within the territory of
each of the surveyed residential groups. Figure 4 shows that
the best snail density prediction results with an R? of 0.86.

Predicted vs. surveyed snail density

Predicted density

Surveyed density

Figure 4. Estimated snail density against field surveyed snail
density. Each of the 19 groups is labeled. Regression line has
a slope of 0.99, close to 1.

ACKNOWLEDGEMENT

This research was supported by Foundamental Basic Science Grant
(2001CB3094) and an NIH grant.

REFERENCES

[1]1 Gong, P., J.R.Miller, and M. Spanner, 1994. Forest canopy
closure from classification and spectral unmixing: a multi-sensor
evaluation of application to an open canopy, IEEE Trans. on
Geos. and Remote Sens. 32(5): 1067-1080.

[2] Jensen, J.R., 1996. Introductory Digital Image Processing: A
Remote Sensing Perspective, Prentice Hall, Englewood Cliffs,
N.J.

[3] Spear, R., P. Gong, E. Seto, B. Xu, Y. Zhou, D. Maszle, S. Liang,
G. Davis, X. Gu, 1998. GIS and remote sensing for
schistosomiasis control in Sichuan, China, Geographic
Information Sciences, 4(1-2): 14-22.

[4] Xu, B., 2003. Spatio-temporal modeling with GIS and remote
sensing for schistosomiasis control in Sichuan, China, Doctoral
Dissertation, Department of Environmental Science, Policy, and
Management, University of California, Berkeley, 117p.





