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Abstract

Civil infrastructure objects are important elements in GIS applications. Due to the wide variety of object types, automatic recognition
of infrastructure objects from imagery has been a challenging issue for the last two decades. Different approaches have been developed
for recognition of buildings, one kind of infrastructure object most frequently dealt with in GIS, by defining and employing individual
criteria. A Hopfield neural network can effectively combine different criteria in an overall network structure for a global optimization
in finding object. In this paper we develop a holistic feature extraction approach including edge extraction, noise edge elimination by
Gabor filters, contour extraction based on morphological operations, polygon simplification by local Hough transform, and building
roof candidate selection using central contour sequence moment. In addition, shadows associated with buildings are extracted. This
improved feature extraction approach greatly enhances the quality of recognition of objects, such as peaked-roofed and flat-roofed
buildings, by a Hopfield neural network that accommodates similarity measures using the extracted features in a structured way. The
achieved results demonstrate a promising approach for building recognition and can be extended to other infrastructure objects.

LINTRODUCTION

Civil infrastructure objects, such as buildings, roads, traffic
lights, and light poles, are important elements in GIS
(Geographic Information System) applications. For some
objects with less complex shapes, such as light poles (Figure
la), a three-dimensional (3-D) model can easily be built. The
light poles can then be extracted and recognized by using a
Hopfield neural network [8] that compares similarities between
the back-projected linear features of the 3-D model of the light
poles and those of images [12]. More complicated objects, for
example trucks on roads or parking lots (Figure 1b), can be
recognized from aerial images by incorporating additional
information such as the truck-shadow relationship in a 3-D
truck model. A two-layer Hopfield neural network is capable of
integrating linear or area features to recognize the trucks by
comparing the aerial images with the 3-D truck model and the
shadow information [19]. A framework of spatial feature
recognition using a Markov random field model is
demonstrated by an example of traffic light extraction and
recognition [20].

Among civil infrastructure objects, buildings are the most
frequently encountered objects, and they are difficult to model
and recognize due to their complex variations in building shape,
size, and other factors. Various methods have been developed
for building extraction from remotely sensed data including
monocular images, stereo images, and LIDAR data. Efforts
based on monocular images for building extraction include
Venkateswar and Chellappa [21] in which they constructed
polygons by analyzing edges and right-angled corners and
used shadows to verify roofs. Huertas and Nevatia [10] used
shadow corners to initialize a process of rectangle construction.

Lin [14] extended Huertas’ work by considering scenes from a
nonvertical pointing angle where parallelograms must be
handled instead of rectangles. To compensate for this shape
deviation, they added a wall verification in addition to a shadow
verification. Irvin and McKeown [11] started by using shadows
to detect the existence of buildings and then applied criteria
such as shadow width and shadow consistency for verification.
McGlone [17] used vanishing points to find vertical lines (walls),
applied a voting space to find the two major horizontal line
directions of building roofs, and then combined corners and
vertical lines to detect buildings with flat and peaked roofs.
Liow and Pavlidis [16] used morphological operations and
quad-tree segmentation to extract shadows and identify
building candidates.

Weidner and Forstner [22] calculated a high-resolution DEM
from stereo images and then detected building candidates from
the DEM using morphological filters. Eckstein and Munkelt
[6] used texture filters to differentiate trees and buildings from
DEM. Berthod et al. [2] used hierarchical parallaxes from high-
resolution image serials to segment buildings from the ground.
Collins [5] extracted features from single images, used feature-
based matching to generate a hierarchical DEM, and then
extracted buildings. Brunn and Weidner [3] used a Bayesian
network to detect regions of interest (building candidates) in
a hierarchical way and then extracted corners, edges, and faces
from original images to reconstruct buildings. Haala [7] used
stereo images to generate a DEM that is then used to match
line segments for forming 3-D lines that are subsequently
compared to building models. Baillard et al. [1] used feature-
based matching to generate digital surface models (DSM) and

1082-4006/03/0901~2-78 $5.00
©2003 The International Association of Chinese Professionals
in Geographic Information Science (CPGIS)



Geographic Information Sciences

Vol. 9, No. 1-2, December 2003 79

(a)

I!-u ‘4(‘74'3&4!"31‘32‘

Figure 1. Examples of civil infrastructure objects that can be recognized by Hopfield neural networks: (a) light poles extracted
from a mobile mapping image and (b) trucks from an aerial image.

segmented and grouped 3D points in the DSM into an elevation
connection graph. They then used a Markov random network
to decrease the overall energy for extraction of the
aboveground elements. Afterwards these elements were
classified according to entropy differences into buildings and
natural features such as trees and others. Xu and Li [23]
proposed a fast building extraction method by merging image
data and laser ranging data from an airborne scanner.

This paper presents the improved results of our continuous
research efforts in civil object recognition using Hopfield neural
networks [8]. Particular contributions were made in more robust
feature extraction and in house recognition by comparing a
number of feature similarities between building models and
building candidates. The advantage of this method is that it
applies individual feature similarities in an interconnected way
in the neural network and does not depend on just one specific
feature, which is especially effective when dealing with complex
objects like buildings. The network structure is now flexible
by allowing insertion of additional feature similarities, including
topological ones.

I AHOLISTIC APPROACH TOFEATURE EXTRACTION

The quality of feature extraction directly affects the results of
object recognition. Robust recognition methods may be able
to handle more noisy input. However, it is recommended that
great efforts be made to extract high quality features so that a
higher success rate can be achieved by the object recognition
method. We propose a holistic approach to feature extraction
that prepares feature candidates for building recognition based
on Hopfield neural networks. This approach employs a set of
progressive processing tools to obtain the feature candidates,

including polygons from building roofs and polygons from
building shadows. We use an aerial image throughout the
paper to explain the progressive results of feature extraction
and object recognition.

Histogram adjustment and edge extraction

Eleven images were taken using an aerial camera with a focal
length of 152.7mm at an elevation of around 1,570 meters (see
one of them in Figure 2a). Each of these images may have
different illumination and contrast levels. To achieve a
consistent result from the images, a histogram adjustment is
applied for an overall brightness equalization (Figures 2b and
2d). The dark features in the original image (Figure 2a) become
darker in the brightness equalized image (Figure 2b) and details
in the dark areas are less identifiable. Therefore, another
histogram adjustment is used to expand the lower part of the
histogram and to improve the dark features (Figures 2¢ and
2e).

In implementation, a histogram curve is first smoothed.
Significant peaks and valleys along the histogram curve are
then extracted. To equalize the brightness, the extracted curve
peaks are placed evenly within the entire brightness range.
This is especially helpful for enhancing the contrast and making
the roofs more distinguishable. Similarly, to enhance dark
features, the lower part of the histogram is shifted toward the
higher end. Edges are then extracted from the histogram-
adjusted images (Figures 2b and 2c¢) using a Canny filter [4]. In
Figure 3a edges are consistent in the entire image. In Figure 3b
there are more details in the dark areas, which are helpful for
distinguishing different dark features.



80

Xu et al.: An Improved Approach to Automatic Recognition of Civil Infrastructure Objects

1500

1000

=

—— Oniginal Sroothed histagram J
4

- New histogram after contrast enhancin

L
50

2500 T T T T
— Original Smaoothed histogram
---- Mew histogram after contrast enhancing

s Lo

(d)

Figure 2. Two histogram enhancement processes: (a) Original
image; (b) Result of a brightness equalization on (a); (c) Re-
sult of enhancement of dark features; (d) Histogram curves
before (solid line) and after (dotted line) the brightness equal-
ization; and (e) Histogram curves before (solid line) and after
(dotted line) the dark feature enhancement.

Noise edge elimination

The long linear edges may contain the candidates for man-
made civil objects. On the other hand, short and nonlinear
edges may mainly represent noise. The linear edges of civil
objects are mostly anisotropic, while the nonlinear noise edges
are basically isotropic. Gabor filters, which are directional
texture filters, can be used for elimination of such noise edges
[24]. A Gabor filter emphasizes the fluctuation of 2-D signals in

one direction and smoothes changes in the opposite direction (Figure 4a). It is expressed by the following equation:

Gabor 4(x,y,v,;0 ,0,)=

2

exp( — a ==

a y X

Y ) cos( 27y, (—sin 6, + cos 0,)) )
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where ¢ is the filter direction with ¢, and ¢, as its components in x and y directions; v, is the spatial frequency for fluctuation
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Figure 3. Edges extracted by a Canny filter: (a) from the brightness equalized image (Figure 2b) and (b) from the dark feature

enhanced image (Figure 2c)
usage; and (s,,s,) are parameters of the Gaussian kernel.

We perform Gabor filtering systematically in different directions
to extract directional features. For example, horizontal edges
receive strongest responses in a horizontal filtering output
(Figure 4b) and weakest responses in a vertical filtering output
(Figure 4c). For most noise edges, filtering in different directions
produces similar results. Therefore, differences of Gabor
filtering outputs in different directions can be used to evaluate
the degree of isotropy, and the noise edges with high isotropy
values are eliminated. The remaining edges are either long
anisotropic edges or directional short edges (Figure 4d).

To preserve the long directional edges, the remaining short
edges are then filtered out. The resulting long directional edges
are subsequently used as seeds to trace long edges in the
Canny filtering outputs, which represent civil objects more
naturally (Figure 5a).

Region segmentation and contour generation

Regions are generated from the long edges in Figure 5a using
morphological operations [18]. First, the edges are treated as
background and blank areas as regions. There may be small
gaps along the edges resulting in regions being connected
through these gaps. Second, an erosion operation is applied
using a 5x5 structuring element to separate different regions
by sealing any gaps in the edges. The result is regions that are
completely segmented from each other (Figure 5b). Third, a
dilation operation is employed to restore the region shapes in
Figure 5c with inner boundaries differentiating adjacent
boundaries, and outer boundaries are overlaid on the original
image (Figure 5d).

The next step is to select contours with regular shapes
representing man-made civil objects. We measure the degree

of regularity of a contour by a Normalized Central Contour
Sequence Moment (NCCSM) defined in [18]. An r"-order
NCCSM is calculated as follows:

‘LT — :u‘r _ %Zil[z(i)—lnl]"
r— 2 " . N
(u,) (;}Zizl[z(,‘) —’”1]2)'/

where i is the index of a point along a contour and N is the
number of points of the contour; z(7) is the Euclidean distance
between the centroid of the contour and point i; and m, is the
mean value of z(i), called first-order contour sequence mo-
ment. A contour with an irregular shape usually has a smooth
curve representing the 1* to 10" order NCCSM (Figure 6a). On
the other hand, a contour with a regular shape should have a
zigzag curve (Figure 6b). Therefore, roof candidates are now
selected by discarding contours with smooth NCCSM curves
or of small sizes (Figure 6¢).

Contour generalization

The contours extracted thus far are still complicated and do
not consist of simple components such as straight lines and
sharp corners that express characteristics of buildings. We
generalize the contours by two methods, namely, a polygon
approximation and a local Hough transform.

In the polygon approximation method, a curve is recursively
divided until each curve segment can be approximated by a
straight line segment and the segment lengths are within a
threshold. The connected line segments form a polygon (Figure
7a). This method is computationally efficient. However, it does
not preserve corner information very well and may have
multiple edge directions on one polygon side. The local Hough
transform retains only edges in the major directions and is
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Figure 4. Noise edge elimination using a Gabor filter: (a) Shape of a Gabor filter, (b) Result of Gabor filtering in horizontal
direction, (c) Result of Gabor filtering in vertical direction, and (d) Edges after noise edge elimination

more robust in preserving corners.

Hough transform [9] is well known and has a two-parameter (77
- range and é- azimuth in a polar coordinate system) voting
space derived from a 2-D binary edge image. A hotspot (high
count) in the voting space indicates the possible existence of
a straight line. For a complicated scene with many curves, the
voting space may have too many local hotspots and noises,
making it too complicated and time-consuming to analyze.
However, in our case, we have only one contour to analyze at
a time. We simplify the general Hough transform into a local
Hough transform by reducing the 2-D voting space (Figure
8a) into two 1-D voting spaces to speed up the processing.
The two 1-D voting spaces are the projections of the 2-D
voting space in the direction of 77 (Figure 8c) and é (Figure 8d),
respectively. Thus, the order of computational intensity is
reduced from O(n?) to O(n) with n denoting the dimension of
the voting space.

If a contour represents a part of a building, we assume that
most line segments of the contour are in two dominant
directions, which can be extracted based on the peaks of voting
curves and verified in the edge images. In Figure 8b the contour
describes one of the building roofs that is more complicated in
shape. The straight lines show the dominant directions
computed from the contour using the-local Hough transform.
If necessary, line segments in minor directions can be obtained
by removing the contour pixels in the dominant directions and
repeating the above voting process. The line segments are
intersected to produce corners and to form a polygon. Figure
7b shows the resulting polygons using the local Hough
transform.

Shadow extraction

Shadow extraction is an integral part of this Hopfield neural
network based building recognition system. To distinguish
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Figure 5. Roof candidates extracted by morphological operations: (a) Extracted long edges, (b) Segmented regions, (c) Regions
with inner and outer boundaries, and (d) Outer boundaries overlaid on the original image

@

Figure 6. (a) NCCSM curve of an irregularly shaped contour, (b) NCCSM curve of a regularly shaped contour, and (c) Selected
regular shaped contours
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Figure 7. Contour generalization: (a) Result of a polygon approximation and (b) Result of a local Hough transform
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Figure 8. Local Hough transform for detection of straight line segments of a contour: (a) 2-D voting space, (b) Line segments
in two dominant directions, (¢) 1-D voting space in ? direction, and (d) 1-D voting space in ? direction
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possible shadows, we first separate the original image into
shadow and nonshadow areas (Figure 9a) using a histogram
segmentation. Edges of the shadow areas are detected by a
Canny filter (Figure 9b). These shadow areas are obviously
overly segmented. For example, some grassland has similar
gray scales as the shadows. Next, given a sun incident
direction, line segments of the above extracted building
polygons are examined. Those line segments that have the
potential to produce shadows in the sun incident direction,
which are not obstructed by other building polygons, are
selected and called shadowing edges. Then, each shadowing
edge sweeps in the sun incident direction to create an artificial
shadow area. The final extracted shadow areas are obtained
where matches between the shadow candidate areas in Figure
9b and the artificial shadow areas exist. Finally, additional
template information such as the gray scale difference on both
sides of a shadow edge (darker inside and brighter outside) is
also used to maximize the success rate of shadow extraction
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(Figure 9c). This method performs well for flat-roofed buildings
where roof edges are projected as parallel edges in the shadow
polygons. For peak-roofed buildings, however, it is sometimes
difficult to extract correct shadows.

III. BUILDING RECOGNITION USING HOPFIELDNEURAL
NETWORKS

The hopfield neural network

A Hopfield neural network [8] has a two-dimensional NxM
grid structure with N elements of candidates and M elements
of the model of the object to be recognized. Each grid node (i,
k) is a neuron and all neurons are interconnected [13,15,12].
The object can be recognized by matches between the model
and candidate elements through a global minimization of the
following energy function:
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Figure 9. Shadow extraction: (a) Segmented shadow and
nonshadow areas, (b) Edges of shadow candidate areas, and
(c) Extracted shadow polygons
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where V. andV, are neuron states for the candidate-model
pairs (i, ks and (]J, ), respectively. C ity denotes the similarity
between the candidate image pair (i, j) and model feature pair
(k, I) and serves as a connection between the neurons. It is
expressed as:

2

= ! 1 .
Cikjl =Cy + le + Cikjl

N,
1 1 1
Cik = z Won fn (xin > ykn )

n=1

N,

Ciijl = Z w 1, ,,2 (“\‘ijn s Yiaw) : @)
where C"':ll,'k and C2,~kj, denote unary and binary similarity
measures between the candidate and model elements. (1, is
calculated by N, unary similarities (e.g. N,=5 in a peak-roofed
case and 4 in a flat-roofed case). ij 1s calculated by N,
binary similarities (e.g. N,=5 in a peak-roofed case and 2 in a
flat-roofed case). W, is the weight of the nth similarity mea-
sure, with the sum of all weights equal to 1. f (x, y) is a sigmoid
function where a difference of the similarity'measure between
the candidate x and the model y is evaluated against a thresh-
old. C' s has a similar equation as (!, . Discussions on a
more detailed implementation of the network for mapping ob-
ject recognition can be found in [12] and a later section of this
paper. By iteratively updating the states of the interconnected
neurons until the neural network is stabilized, the neuron state
V., converges to 1.0if the candidate image element ; matches
the model feature element ;. perfectly; otherwise it is equal or
close to 0.

Implementation for building extraction

In this study, two types of buildings are to be recognized
using Hopfield neural networks: peak-roofed buildings and
flat-roofed buildings. For a typical peak-roofed house, a house
model generally has two slant rectangular faces (Figure 10a).
For a vertical aerial image, the base part of the house does not
appear significantly and may not be included in the model.

To recognize a peak-roofed house using a Hopfield neural
network, we project the 3-D house model onto the image using
known image position and orientation parameters. The

/ /
7 //
/ /

(a)

rectangular roof faces in 3-D space become parallelograms
after the projection and thus are similar to the extracted roof
polygons in the aerial image. Also, the shadow of the house
model can be generated by the projection using the sun
incident angle.

The recognition process is then to measure similarities
between the roof candidates and the projected house model
in the image space through the neural network. Both unary
and binary similarity measures in Equation 4 are implemented
(Figure 11). The unary similarity measures include
. Area and perimeter of each face (Figure 11a),
Fourier descriptor of the face boundary that provides
shape information (Figure 11b),
. Ratio between the long side and short side of the face
(Figure 11c), and
. Angle between the long side and short side (Figure 11c).

Furthermore, the binary similarity measures specify
relationships between the two faces:
Gray scale difference between two roof faces caused by
different normal vector directions (Figure 11d),
. Distance between them (Figure 11e),
. Ratio between the two long sides (Figure 11f),
Ratio between the two short sides (Figure 11g), and
Angle between the joint sides of the two faces and the
short side, each from one parallelogram (Figure 11h).

The above unary and binary similarity measures between
candidates and the model are evaluated to produce C
coefficients in Equation 4. The threshold values were obtained
based on experimental data. The similarity measure differences
are amplified through the sigmoid function, and then weighted
and summed to serve as the linkage between neurons in the
Hopfield neural network.

For flat-roofed buildings, the 3-D building model is generalized
to a box (Figure 10b). Deviation from this generalization is
usually reflected in the roof shapes and would often be too
complicated to represent by a generic building. In practice the
relationship between the roof and the shadow plays an
important role to compensate for this drawback and to achieve
a high success rate.

(b)

Figure 10. Building models: (a) Peak-roofed model (e.g. base height=4.5m, length = 19.5m, width = 14.1m, roof height = 1.57m,
and ratio of two sides of the parallelogram = 6.2/7.9m), and (b) Flat-roofed model (e.g. height =4.5m, length = 15.1m, and width

=12.5m)
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Figure 11. Unary and binary similarity measures for a peak-roof with two faces (see text)

The roof is represented by a rectangle in the image. The unary
similarity measures for a flat-roofed building include
. Area and perimeter of the roof polygon,
. Mean right angle of the roof polygon (Figure 12a),
. Shadow width consistency (Figure 12b), and
- Ratio between a shadow edge (in the sun direction) and
the support edge (Figure 12c¢).

The only binary similarity measure used for flat-roofed
buildings is the distance between the building polygon and
the shadow polygon (Figure 12d).

IV.DISCUSSION AND CONCLUDING REMARKS

The recognition results for the peak-roofed and flat-roofed
buildings using the Hopfield neural network as well as
parameters employed in the neural network computation are
shown in Figures 13 and 14.

In the feature extraction stage, 79 contours were extracted
after brightness equalization. Among them, only nine contours
were selected by applying the NCCSM criterion. These nine

a\
Y

\
Shadow width'
consistency

(a) (b)

contours were then improved to produce candidate polygons
using a local Hough transform. From the shadow enhanced
image, seven shadow polygons were also extracted.
Consequently, these 16 candidate polygons were the input to
the Hopfield neural network computation.

Two peak-roofed buildings were recognized correctly (Figure
13a). Furthermore, two additional polygons that passed the
feature extraction process were correctly rejected. The complex
flat-roofed building has two levels with shadows. It is
represented by three extracted roof polygons and two shadow
polygons. In the process of flat-roofed building recognition,
the roof polygons were simplified as rectangles and considered
as individual building candidates (Figure 14a). One of the three
roof polygons of the flat-roofed building complex is not
recognized as a flat-roofed building because no shadow is
associated with it, while two other roof polygons are
recognized as individual buildings.

Overall, the improved holistic feature extraction approach
demonstrated significant effectiveness in noise suppression,
roof candidate generation, and shadow extraction. The high
quality feature extraction results greatly enhanced the success

Y
\
\

\
[ses Support ratio

Sumdirection

© (d)

Figure 12. Unary and binary similarity measures for a flat-roofed building (see text)
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Figure 13. Recognition result of peak-roofed buildings: (a) Buildings recognized in yellow, red polygons of candidates deter-
mined as not desired objects, and blue polygons as the back-projected building model; and (b) Parameters used in the network

computation

rate of the building recognition process. Experiment results
also show that the requirements for selection of the parameters,
including thresholds, weights, and model parameters, used in
the Hopfield neural network can be relaxed because of the
high quality of the input data.

The above results demonstrated that the introduced holistic
feature extraction approach performs well on aerial images for
generation of quality high-level civil infrastructure object
candidates. The Hopfield neural network is capable of
accepting supplied object candidates from aerial images and
desired 3-D object models to successfully recognize civil
infrastructure objects such as peak-roofed and flat-roofed
buildings. Currently, complex building structures are extracted
as separate roof polygons and recognized as individual

buildings. More efforts should be made to incorporate 3-D
complex building models and to recognize the complex building
as one object.
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