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Abstract

In spatial data mining, we have to deal with uncertainties in data and mining process. The nature of the uncertainties can be, for
example, fuzziness and randomness. This paper proposed a cloud model-based data mining method that may simultaneously deal
with randomness and fuzziness. First, cloud model is presented, which is described by using three numerical characteristics, Ex, En
and He. Furthermore, three visualization methods on cloud model are further proposed, which can be produced by the cloud
generators. Second, cloud model-based knowledge discovery is further developed. In cloud model context, spatial data preprocessing
pays more attention to data cleaning, transform between qualitative concepts and quantitative data, data reduction, and data
discretization. Spatial uncertain reasoning is in the form of linguistic antecedents and linguistic consequences, both of which are
implemented by X-conditional and Y-conditional cloud generators. Spatial knowledge is represented with qualitative concepts from
large amounts of data, and also the cloud model. Finally, as an example, these methods are applied to mine Baota landslide monitoring
database. The experimental results show that the cloud model can not only reduce the task complexity, and improve the operational
efficiency, but also enhance the comprehension of the discovered knowledge.

LINTRODUCTION

With the rapid development of Geo-spatial science and tech-
nology, tremendous volume of spatial data has been accumu-
lated (Ester et al., 2000; Li et al., 2001). These accumulated
data are in the nature of multivariable, nonlinear, uncertain,
and even chaos, which has far exceeded human ability of us-
ing the data by conventional techniques, such as data analyz-
ing functions in database management system, learning tech-
niques of machine learning, or three mainstream approaches
of symbol-based symbolicism, neurons-based connectionism
and sense-feedback-act based behaviorism in artificial intelli-
gence (Miller and Han, 2001; Wang, 2002). Compared with the
conventional affair data, spatial data are more complex and
with larger data volume. Spatial database stores not only
positional data and attribute data, but also topological rela-
tionships, thematic layers, spatiotemporal scale, images and
graphics. At the same time, the storage structure, query method,
data analysis, database manipulation, etc. are all different con-
ventional database. Furthermore, spatial data are accumulat-
ing continuously. In order to interpret and make full use of
spatial data, the nontrivial knowledge will have to be extracted
from them. But people are still short of the knowledge. There-
fore, spatial data mining, a branch of data mining in Geo-spa-
tial science, emerges.

Spatial data mining is to extract previously unknown, poten-
tially useful, and ultimately understood rules from spatial data,
and it is also named knowledge discovery from spatial data-
bases, or spatial data mining and knowledge discovery
(Piatetsky-Shapiro, 1994; Ester et al., 2000; Li et al., 2001). The
discovered rules are associations with spatial objects at the

cognitive hierarchy, and they may be description and predic-
tion, for example, association rule, clustering rule, classifica-
tion rule, characteristics rule, serial rule, predictive rule, and
outlier. As a computerized simulation of human intelligence,
spatial data mining discovers the patterns not only in a granu-
larity world, but also among various granularity worlds. When
dealing with different granularity worlds, the discovering ma-
nipulations of generalization and summarization are often soft
computing with discrete linguistic terms instead of continu-
ous data (Han and Kamber, 2001). Being an interdisciplinary
discipline, spatial data mining is linked with cognitive science,
data mining, artificial intelligence, machine learning, spatial
analysis, mathematics, and so on. So many theories and meth-
ods can be employed in spatial data mining, e.g., probability
theory, evidence theory, spatial statistics, fuzzy sets, rough
sets, neural network, genetic algorithms, decision tree, visual-
ization, online analytical process and data warehousing, rules
induction, generalization and characterization of spatial ob-
jects, summarization and contrast data characteristics, classi-
fication and prediction, clustering and outlier analysis, simi-
larity analysis in spatial databases (Wang, 2002). The discov-
ered knowledge is supposed to be applied in many spatial
aspects, e.g., judgment and decision-making support, intelli-
gent GIS (geographical information science), knowledge driven
interpretation and analysis of remote sensing images, knowl-
edge based pattern recognition, knowledge engineering, inte-
gration of spatial techniques, etc. Now, a growing attention
has been paid to spatial data mining (Miller and Han, 2002; Li
etal.,2002).
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However, there exist uncertainties in the objective data sets to
be mined, transform between quantitative data and qualitative
concept, knowledge discovery, and knowledge reasoning of
spatial data mining. First, the uncertainties in spatial data
indicate the difference between observed values and true val-
ues in spatiotemporal space, in the aspects of position, at-
tribute, temporary, logical relationship and completeness (Shi
and Wang, 2002). Second, spatial data mining has to perceive
the variation and kinds of combinations, with different
granularities to represent attributes of spatial objects’ collec-
tive distribution in the attribute space when it generalizes and
inducts a given set of quantitative data with the same feature
category, the process of which is also uncertain. Third, the
discovered knowledge is more generalized than the original
data. And always the former are qualitative concepts, e.g.,
natural language, while the latter are quantitative practical data.
It is further uncertain for data mining to mutual transform be-
tween quantitative data and qualitative concept. Fourth, spa-
tial reasoning in data mining is under the umbrella of uncer-
tainty. The essential issue of knowledge representation
bridges the gap between the data and concept. But it is uncer-
tain to represent the discovered knowledge according to hu-
man thinking. The uncertainties may directly or indirectly
affect the quality of spatial data mining. If the uncertainties
are carefully considered, it may be possible to avoid mistaken
decision-making based on wrong information (Shi and Wang,
2002). Therefore, it is necessary to consider the uncertainties
in spatial data mining, and apply the theories and techniques
that deal with the uncertainties well.

In many cases of spatial data mining, the fuzziness and ran-
domness often appear at the same time. Mathematical models
and quantitative computation are always indispensable in
current methods on the transformation between qualitative
concept and quantitative data, e.g. hierarchy analysis, quanti-
tative weighting, experts group marking, and qualitative analy-
sis (Li, 1997). Based on them, a number of methods have been
further developed, e.g., probability theory, evidence theory,
spatial statistics, and error band are on random uncertainties,
while fuzzy set and rough set are on imprecise uncertainties
(Shi and Wang, 2002). But all of them are unable to deal with
both the fuzziness and randomness. Then, people may have
the following questions. How to represent the qualitative
concept? How to indicate the fuzziness and randomness?
How to realize the mutual transformation between qualitative
concept and quantitative data, and indicate the ability of soft
reasoning? The cloud model is an alternative to solve these
problems in spatial data mining, because it can integrate the
fuzziness and randomness in a unified way, and can transform
between spatial concepts, i.e. qualitative basic linguistic terms,
and data, i.e. quantitative values (Li et al., 1995).

II. CLOUDMODEL

Cloud model (Li et al., 1995) is a model of the uncertainty
transition between a linguistic term of a qualitative concept

and its quantitative numerical representation. In short, it is a
model fro handling uncertainty transition between qualitative
concept and quantitative representation. Let X be the set
X={x}, as the discourse universe, and 7 a term associated
with X. The membership degree of x in X to the term 7,
C (x)e[0,1], is a random number with a stable tendency. The
cloud of T is a mapping from the discourse universe U to the
unit interval [0,1], i.e.,

C (x):X—>[0,1] xeX x—C (xv)

With the cloud model, the 7l'napping from the discourse uni-
verse to the interval is a one-point to multi-point transition,
i.e. a piece of cloud while not a membership curve. As well, the
degree that any cloud drop represents the qualitative concept
can be specified. A piece of cloud is made up of many cloud
drops, visible shape in a whole, but fuzzy in detail, which is
similar to the natural cloud in the sky. Any one of the cloud
drops is a mapping in the discourse universe from qualitative
concept, i.e. a specified realization with uncertain factors.

Several kinds of cloud models have been developed to match
different demands, such as basic clouds, floating clouds, syn-
thesized clouds, resolved clouds, geometric clouds, etc. (Li,
1997; Di, 1999; Wang, 2002). Basic clouds are the element
clouds, e.g., normal cloud based on normal distribution. They
may be directly generated by a set of data. Excluding the
basic clouds, the other clouds, which are constructed by given
clouds, are called virtual clouds. Floating cloud mechanism is
used to generate default clouds in the blank areas of the uni-
verse by other given clouds. If we consider a universe as a
linguistic variable and we want to represent linguistic terms
by clouds, the only indispensable work is to specify key clouds
at the key positions. Other clouds can be automatically gen-
erated by the floating cloud construction method. A synthe-
sized cloud is used to synthesize linguistic terms into a gener-
alized one. If we use the mechanism of synthesized cloud
construction recursively from low concept levels to high con-
cept levels, we can get concept hierarchies for linguistic vari-
ables, which are very important in data mining and knowledge
discovery. The algorithms of floating and synthesized cloud
generation were presented in. Resolved cloud method is used
to decompose large concept to several small ones.

Numerical characteristics

The cloud model has three numerical characteristics, Expected
value (Ex), Entropy (En) and Hyper-Entropy (He), which inte-
grates the fuzziness and randomness of spatial concepts in a
unified way. In the discourse universe, Ex is the position
corresponding to the center of the cloud gravity, whose ele-
ments are fully compatible with the spatial linguistic concept;
En is a measure of the concept coverage, i.e. a measure of the
spatial fuzziness, which indicates how many elements could
be accepted to the spatial linguistic concept; and He is a mea-
sure of the dispersion on the cloud drops, which can also be
considered as the entropy of En. Figure 1 shows the linguistic
term “displacement is 9 millimeters (mm) around” with three
numerical characteristics, i.e., Ex=9, En=0.5, and He=0.02.



62

Wang et al.: Cloud Model-Based Spatial Data Mining

L R

5]
S

v

9 m
0 Y mm x

Figure 1. Three numerical characteristics of “displacement is
9 millimeters around.”

Given three numerical characteristics Ex, En and He, the cloud
generator can produce as many drops of the cloud as you
would like. In the extreme case, {Ex, 0, 0}, where both the
entropy and hyper entropy equal to zero, denotes the concept
of a deterministic datum, and the greater the number of cloud
drops, the more deterministic the concept.

Visualization methods

In the discourse space, there are three kinds of visualization
methods to illustrate the cloud graph including all the cloud
drops.

(a) Dot with gray degree. One dot specifies the position of
one cloud drop, and its gray degree indicates how certain
the cloud drop represents the concept;

(b) Circle (or ball) with scale. One cloud drop is depicted by
one circle, which represents the position of cloud drop,
and the scale of the circle indicates how certain the cloud
drop represents the concept; and

(c) N+1 dimensions. N dimensions specify the positions of
the cloud drop, while another dimension axis to denote
the significance of the certain degree of the cloud drop
representing the concept.

Here is an example on an elementary concept ““ the neighbor-
hood of the coordinate origin in two-dimension plane”, which
is used to explain the transition between the deterministic data
drops, i.e. cloud drops, and the spatial concept. Let the ex-
pected value of the concept be Ex={0,0}, entropy be

(a) Dot with gray degree

(b) Circle with scale
Figure 2. Three kinds of visualization methods to illustrate the cloud graph

En={0.1,0.1}, and hyper entropy be He ={0.01,0.01} respec-
tively. With the above methods, three kinds of cloud graphs
(Figure 2(a), Figure 2(b) and Figure 2(c)), each of which has
1000 cloud drops to represent this concept, can be produced
by a forward cloud generator. Seen from these three Figures,
the bigger the distance between the cloud drop and the coor-
dinate origin, the smaller the degree of certainty. Hence, the
cloud model well integrates the fuzziness and randomness of
linguistic concepts in a unified way.

Cloud generators

The above three visualization methods are all implemented
with the forward cloud generator in the context of the given
{Ex, En, He}. Despite of the uncertainty in the algorithm, the
positions of cloud drops produced each time are determinis-
tic. Each cloud drop produced by the cloud generator is plot-
ted deterministically according to the position. On the other
hand, it is an elementary issue in spatial data mining that spa-
tial concept is always constructed from the given spatial data,
and spatial data mining aims to discover spatial knowledge
represented by a cloud from the database. That is, the back-
ward cloud generator is also necessary. It can be used to
perform the transition from data to linguistic terms, and may
mine the integrity {Ex, En, He} of cloud drops specified by
many precise data points. Because it is common and useful to
represent spatial linguistic atoms (Li et al., 2001), the normal
compatibility cloud will be taken as an example to study the
forward and backward cloud generators in the following..

The input of the forward normal cloud generator is three nu-
merical characteristics of a linguistic term, (Ex, En, He), and the
number of cloud-drops to be generated, N, while the output is
the quantitative positions of N cloud drops in the data space
and the certain degree that each cloud-drop can represent the
linguistic term. The algorithm in details is:
[1] Produce a normally distributed random number En’
with mean En and standard deviation He;
[2] Produce a normally distributed random number x with
mean Ex and standard deviation En’;

_(x—Ex)?
2(En’)?

[3] Calculate y=e

(c) N+1 dimensions
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[4] Drop (x;, y;) is a cloud-drop in the universe of dis-
course; and
[5] Repeat step 1-4 until N cloud-drops are generated.

Simultaneously, the input of the backward normal cloud gen-
erator is the quantitative positions of N cloud-drops, x; (i=1,
..., ), and the certainty degree that each cloud-drop can rep-
resent a linguistic term, y,(i=1, ..., N), while the output is the
three numerical characteristics, Ex, En, He, of the linguistic
term represented by the N cloud-drops. The algorithm in de-
tails is:
[1] Calculate the mean value of x; (i=1, ..., N),

L1 .
Ex —WZJ\’-

i=1
[2] For each pair of (x;y;), calculate

[3] Calculate the mean value of En; (i=1,...,N),

N
_ 1 g
En= o 2 En,

i=1
[4] Calculaté the standard deviation of En;,

N
He = iz(Eni —En)* -
N i=l

With the given algorithms of forward and backward cloud
generators, it is easy to build the mapping relationship in-
separably and interdependently between qualitative concept
and quantitative data. The cloud model improves the weak-
ness of rigid specification and too much certainty, which comes
into conflict with the human recognition process, appeared in
commonly used transition models. Moreover, it performs the
interchangeable transition between qualitative concept and
quantitative data through the use of strict mathematic func-
tions, the preservation of the uncertainty in transition makes
cloud model well meet the need of real life situation. Obvi-
ously, the cloud model is not a simple combination of prob-
ability methods and fuzzy methods.

L KNOWLEDGE DISCOVERY

Cloud model may be used in data preprocessing, transform
between quality and quantity, uncertainty reasoning, knowl-
edge representation, etc.

Spatial data preprocessing

Spatial data are polluted by incompleteness, inaccuracy, error,
repetition, inconsistence, fuzziness, randomness, heteroge-
neous data and so on. It has more chance to discover useful
and interesting knowledge from preprocessed data than from

dirty data. And the knowledge from trusted data is also trusted.
Therefore the objective data to be mined have to be prepro-
cessed in order to improve the discovery performance, e.g.,
data cleaning, data transformation, data reduction, and data
discretization (Wang and Shi, 2002).

Spatial data cleaning is to make dirty data cleaner. When
there are tuples with incomplete attribute values (null or un-
known), people have tried to ignore the incomplete tuples, or
fill in the missing value with a global constant or a mean of all
the existing attribute values. Considering both fuzziness and
randomness, cloud model may fill in the missing values of an
attribute with the most probable value, i.e., one of its numeri-
cal characteristics, Expected value (Ex), and further show its
confidential level with its other two numerical characteristics,
En and He at the same time. Spatial data transform is to change
an inappropriate data form into an appropriate form for spe-
cific mining algorithms, i.e., normalization, smoothing, aggre-
gation and conceptualization. Thereinto, the transform be-
tween qualitative concepts and their quantitative expressions
play an important role. As described in section 2, cloud model
is good at the mutual transform between qualitative concepts
and their corresponding quantitative data. It bridges the gap
between qualitative concept space and quantitative data space,
and the conceptual space represents different concepts in the
same characteristic category. Although the representations
of the data set are changed, the final generated knowledge
should be the same as the data without any transform.

Spatial data reduction is to reduce the amounts of spatial data
in the context that the knowledge from the reduced data is as
the same as the original data without reduction, e.g., dimen-
sion reduction, data compression, volume reduction of para-
metric regression and non-parametric histograms, clustering
and sampling (Miller and Han, 2001). Dimension reduction,
also named attribute reduction, is to search for the minimum
set of attributes in the attribute space of tuples with the same
feature. Necessary attributes are selected while redundant
attributes are eliminated. Dimension reduction has to ensure
that the rules of the same feature category are kept unchanged,
or the rules from dimension-reduced data are as close as pos-
sible to the rules from all original attributes without reduction,
e.g., probability distribution of data classes. Data compres-
sion reduces the size of spatial data in order to save storage
space and mining time. Contextually, whatever the compres-
sion is lossless or lossy, mining algorithms can directly ma-
nipulate the compressed data without uncompressing it. Oth-
erwise, it is not beneficial for spatial data mining. Cloud model
extracts three numerical characteristics from the given data.
These numerical characteristics are the rules of probability
distribution on the given data. With forward cloud generator,
they can produce data as many as you would like. Although
the produced data may not exact the given data, both of their
rules of probability distribution are consistent to each other.
Furthermore, data on low level may be replaced with data-
concept hierarchy of high level under the umbrella of the con-
ceptual space generated via cloud model. From the concep-
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tual space, the feature space will be produced to depict com-
plicated spatial objects with multi-properties. The rules are
easily uncovered in the context of the feature space. That is,
huge amounts of spatial data are replaced by only three pa-
rameters with the compression of cloud model, which is an
appropriate ratio of spatial data reduction.

Spatial data discretization is to reduce the number of values
for a given continuous attribute, via dividing the range of the
attribute into intervals. Interval labels are then used to re-
place actual data values. Some data mining algorithms only
accept categorical attributes and cannot handle a range of
continuous attribute value, e.g., rough sets. At the same time,
the data reduction process to abstract spatial objects may
simplify the problem and lessen the data amount greatly when
the interest of spatial data mining is changed from the fine
granularity world to the coarse one. However, the traditional
discretization algorithms are hard partition without consider-
ing the human thinking characteristics of spatial data mining.
Cloud model-based spatial data discretization is soft parti-
tioning. It reduces the data set, and also generates pan-con-
cept hierarchies automatically. Figure 3 and Figure 4 gives
such a pan-concept hierarchical tree on displacement attribute
landslide. In the pan-tree structure, a given node may have
more than one father nodes, i.e., the nodes*9 millimeters
around” has two father nodes “very small” and “smaller”,
while in a proper tree structure, the given son node has only
one father node.

The data reduction process to abstract spatial objects may
simplify the problem and lessen the data amount greatly when
the mining interest is changed from the fine granularity world
to the coarse one. At coarse granularity, i.e. observe problem
at long displacement, the fine difference is overlooked and the
commonness, which is more profound than the individuality
and help understand problem comprehensively, is gained.
Otherwise at fine granularity, i.e. analyze problem closely, more
attention is paid on the individuality, which is more vivid than

commonness. The higher the abstraction level, the greater
the generalization extent, and the smaller the physical knowl-
edge size is, which can be made different combination and
condensation according to relevant tasks.

Uncertain spatial reasoning

Logic reasoning is principal spatial data mining. Deduction
and induction are two main methods. Deduction is based on
a set of most generic, succinct, and universally applicable
theory or axiom system, just as classical physics. And the
reasoning process of deduction is from generic theory to spe-
cial cases. However, it is impossible to build “Newton Law™ in
such computerized science as data mining, cognitive science
and artificial intelligence. Induction reasoning is executed
from special cases to generic theory, which is the common
approach to obtain new knowledge. In spatial data mining,
deduction is the process of knowledge application while in-
duction is the process of data mining. Taking advantage of
human intelligence, the reasoning of spatial data mining
should be the generic theory assembling evidences, similarly
to the molecular biology (Wang, 2002), which is uncertain.

Cloud model-based spatial uncertain reasoning is in the form
of “IfFA,,A,,...,A,,thenB,,B,,...,B,”, where A, A,..., A, are
linguistic antecedents, and B, B,,..., B, are linguistic conse-
quences. According to the values of m, n, we have the de-
tailed reasoning forms of one-factor and one-rule, multi-factor
and one-rule, one-factor and multi-rule, and multi-factor and
multi-rule. One X-conditional cloud followed by the other Y-
conditional cloud represents a spatial rule, e.g., “If elevation
is low, then the road density is high”. Figure 5 is a reasoning
generator of one-factor and one-rule that is “If A, then B”, and
its output cloud with one input.

In Figure 5(a), CG, is the X-conditional cloud generator for
linguistic term A, and CGy is the Y conditional cloud generator
for linguistic term B. Given a certain input x,, CG, generates a
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Figure 3. A pan-concept hierarchical tree from displacement data
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Figure 4. Cloud model-based representation of the pan-concept hierarchical tree

series of random values C{(x,). These values are considered
as the activation degree Cy(x)of the rule and input to CGg, i.e.,
CHx,) = Cxp). The final outputs are cloud drops, which
forms a new cloud. So the reasoning algorithm is the combi-
nation of the algorithm of X and Y conditional cloud genera-
tors (Di, 1999; Wang, 2002). Figure 5(b) is the output cloud of
a one-factor and one-rule generator with one input. It shows
that cloud model-based reasoning generates an uncertain re-
sult, a piece of cloud composed of many cloud drops. The
uncertainty of the linguistic terms in the rule is propagated
during the reasoning process. The closer to the expected
values, the more focusing the cloud band, while the farther to
the expected value, the more dispersed the cloud band, which
matches the intuition of human being. Because the rule out-
put is a piece of cloud instead of a datum, the final result may
be given in several forms. That is, (a) one random value; (b)
several random values as sample results; (c) expected value
that is the mean of many sample results; and (d) linguistic term
represented by a cloud model whose three parameters are

obtained by backward cloud generator (Li, 1997). The above
mentioned further indicates that the cloud model-based un-
certain reasoning is more flexible and powerful than the con-
ventional reasoning methods, i.e., fuzzy reasoning.

In the contexts of the one-factor and one-rule reasoning and
cloud generator algorithms, it is able to contextually give the
algorithms of other uncertain reasoning forms. Usually, there
are many rules in a real knowledge base. Multi-rule reasoning
is frequently used in an intelligent GIS or a spatial decision
support system. The main idea of the multi-rule reasoning
algorithm is that when several rules are activated simulta-
neously, a virtual cloud is constructed by the geometric cloud
method. Because the property of least square fitting, the final
output is more likely to close to the rule of high activated
degree. The one-factor and one-rule reasoning method can
be easily extended to multi-factor multi-rule reasoning on the
basis of multi-dimensional cloud models. For example, the
two-factor and two-rule generator may combine a two-dimen-
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(a) Rule generator

(b) Output cloud with one input

Figure 5. Rule generator and output cloud of one-factor and one-rule reasoning
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sional X-conditional cloud generator and a two-dimensional
Y-conditional cloud generator.

Representation of spatial knowledge

Natural language of human is one of the best ways to repre-
sent spatial knowledge (Li, 1997). The discovered knowledge
is associated with spatial objects at the cognitive hierarchy,
and it is essentially important to properly represent them in
spatial data mining. Itis acknowledged that spatial qualitative
concept is more understandable, direct and precise than spa-
tial data. Among various opinions on how concept is formed,
both feature opinion and prototype opinion agree that all the
samples are figured by a set of datum (Li et al., 2000). Describ-
ing the quantitative concept with linguistic terms obviously
weights more than that with precise math equations. The
more abstract the knowledge to be discovered, the greater the
advantage. Being the carrier of thinking, natural language
takes linguistic term as the basic unit, and the linguistic atom
of minimum linguistic term is the basic cell of human thinking.
The linguistic atom is corresponding to the most elementary
concept. With the most elementary concepts and their vari-
ous combinations, natural language is able to describe a com-
plicated concept. Moreover, natural language can well deal
with the spatial uncertainties, especially the randomness and
fuzziness, between qualitative concept and quantitative data.
The advantage of cloud model is much similar with natural
language.

Cloud model depicts the granularity and potential of spatial
concepts naturally. The attribute helps to discover the rela-
tionship between attributes, the feature perceives the consis-
tency and difference between spatial objects, and the knowl-
edge indicates the increase of concept granularity of attributes
value. The intension and extension of various conceptions
should be clearly defined so that we can know whether the
concept granularity is big or small, and know the conceptions’
inner relationship, resembling one or subordinative one. The
granularity of a basic conception can be measured by its rep-
resentative cloud’s three mathematical characteristics. Ex marks
the center of the cloud, En signs the size of the cloud, and He
denotes the agglutinability of the cloud drops and shows the
constrictive level of the whole cloud. For example, the cat-
egory of “displacement” can be looked upon as a language
variable of many language terms with different granularity,
i.e., indicate 9 millimeters around, very small, small, etc. And
the conception of “a small displacement” has larger En than
the conception of “9 millimeters around”, which means the
former has larger granularity than the latter (Li et al., 2001).
Each datum makes its own contribution to forming the con-
ception, which may be measured by the potential of its corre-
sponding cloud drop in the conceptual space. The potential
is determined by both the position and certainty of a cloud
drop. With a higher certainty, the cloud drop may have greater
contribution to the potential in the conceptual space. That
people observe and analyze the spatial databases from differ-
ent perspectives is similar to select different functions to cal-

culate the potential of a point in the conceptual space. The
isopotential of a large number of cloud drops (Wang, 2002)
will naturally take shape a pan-concept hierarchy (Figure 4).
Moreover, different attributes have different pan-concept trees,
and there are lots of combination states of spatial objects,
which are usually decided by spatial data mining task.

Cloud model represent the discovered knowledge with lin-
guistic rules made by linguistic terms of qualitative concepts.
It is known that the attributes of objects in spatial databases,
e.g., location, elevation, distance, direction, are the linguistic
variables. And each linguistic variable is mapping to several
linguistic terms with various granularities and potentials.
These linguistic terms can be characterized via cloud model.
A one-dimensional cloud represents the linguistic terms for
elevation and distance, such as high, low, near, far, etc. Anda
two-dimensional cloud represents the linguistic terms of vari-
able location, e.g., southeast, southwest, northeast, and north-
west. So cloud models represent the fuzziness and random-
ness of the knowledge in a unified way. If we have enough
sample data for a concept, three cloud parameters can be au-
tomatically derived by cloud transform method, which decom-
poses a data distribution to the sum of several clouds. Other-
wise, the user has to manually give the parameters of some
key clouds and the other clouds will be automatically con-
structed by virtual cloud methods when needed (Di, 1999).

Conceptual space represents different concepts in the same
characteristic category, while feature space depicts compli-
cated spatial objects with multi-properties. The same idea can
also be extended to spatial objects with attributes in their fea-
ture space. The granularity world becomes bigger when spa-
tial data mining jumps up from the conceptual space to the
feature space. N properties or characteristics compose an N-
dimension feature space. Each spatial object becomes a point
in the feature space, and thousands of objects become thou-
sands of points in the space. Each point makes its own contri-
bution to forming the spatial category in the feature space. All
the points form the isopotential spontaneously. Intuitively,
these points can be grouped naturally into clusters, and the
isopotential of all objects will automatically take shape clus-
ters and clustering hierarchy at this time. These clusters rep-
resent different kinds of spatial objects recorded in the data-
base, and naturally form the cluster spectrum graph. In the
feature space, potential presents the contributions made by
all samples in the original data set, and the clustering result is
conducted with the whole data set. Ordinary clustering meth-
ods always split the original data set into two parts, the train-
ing data set to generate the clusters and the testing data set to
prove the validity of the methods. However, it is unable to
naturally and convincingly determine the proportion of the
two parts and choose the samples to be the training part.
Furthermore, each sample has its own contribution to the clus-
tering result, but ordinary methods neglect the samples in the
testing data set. Hence, the clustering result from the feature
space with the potential of cloud drops is more reasonable.
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IV.CASESTUDY

In order to verify the feasibility and effectiveness of the cloud
model for spatial data mining, Baota landslide-monitoring data
mining is studied as a case. Baota landslide locates in
Yunyang, Chongqing, China, in the region of Three Gorge on
Yangtze River. The landslide monitoring started from June
1997. Up to now, this database has accumulated to 1G bytes,
and all the attributes are numerical displacements, i.e. dx, dy,
and dh. Respectively, the properties of dx, dy, and dh, are the
measurements of displacements in X direction, Y direction
and H direction of the landslide-monitoring points, and ldx,
ldyl an |dhl are their absolute values. In the following, it is
noted that all spatial knowledge is discovered from the data-
bases with the properties of dx, dy, and dh, while ldxl, ldyl an
Idh! are only used to visualize the results of spatial data min-
ing. And the properties of dx are the major examples.

The linguistic terms of different displacements on dx, dy and
dh are depicted by the pan-concept hierarchy tree in the con-
ceptual space, which are formed by cloud models on the basis
of monitoring data (Figure 3, Figure 4). From the observed
landslide-monitoring values, the backward cloud generator
can mine Ex, En and He of the linguistic term indicating the
level of landslide displacement, i.e. gain the concept with the
backward cloud generator. Then, with the three gained char-
acteristics, the forward cloud generator can reproduce as many
deterministic cloud-drops as you would like, i.e. produce syn-
thetic values with the forward cloud generator. Figure 6 fur-
ther gives such an example on landslide-monitoring point BT11
in X direction with the linguistic concept “the displacements
are big south, high scattered and instable”.

Seen from Figure 6, the consistence of the collective distribu-
tion between them is still obvious although there are differ-
ences between the synthetic landslide-monitoring values and
the observed ones. Therefore, the synthetic landslide-moni-

19497 =01

1905 =07

(a) 17 observed values of dx

toring values can also be taken as the landslide-monitoring
values in the context of the three characteristics from the ob-
served ones. According to the landslide-monitoring charac-
teristics and demands, let the linguistic concepts of
“smaller(0~9mm), small(9~18mm), big(18~27mm),
bigger(27~36mm), very big(36~50mm), extremely big(>50mm)”
with Ex, “lower (0~9), low(9~18), high(18~27), higher(27~36),
very high(36~50), extremely big(>50)"with En, “more stable
(0~9), stable (9~18), instable(18~27), more instable (27~36),
very instable (36~50), extremely instable (>50)” with He re-
spectively depict the movements, scattering levels and sta-
bilities of the displacements, then the rules on Baota land-
slide-monitoring in X direction can be discovered from the
databases in the conceptual space. Figure 7 is the cloud based
knowledge on Baota landslide monitoring in X direction, which
is the focus vertical direction of Yangtze River. In Figure 7, the
symbol of “+” is the original position of monitoring point with-
out movement, different rules are represented via different
pieces of cloud, and the level of color in each piece of cloud
denotes the discovered rules of a monitoring point. “BT11,
..., BT34” are the serial numbers of Baota landslide monitor-
ing point.

Figure 7 indicates that all landslide monitoring points move to
the direction of Yangtze River, i.e., south, or the negative di-
rection of X axle. However, the displacements are different
from each other. The displacements of monitoring point BT21
are extremely big south, extremely high scattered and extremely
instable, and BT31is behind BT21. The displacements are
smaller south, lower scattered and more stable, which is the
movements of monitoring point BT14. Generally speaking,
the displacements of the back part of Baota landslide are big-
ger than those of the front part in respect of Yangtze River,
and the biggest exceptions are the displacements of monitor-
ing point BT21. These cloud model-based rules in Figure 7
may also be described as the following qualitative concepts.

1997 + 01

BT11
2000 =09 1997 » 0§
St
2000 ~07 1947 - 06
2000 < 0§ (0 1997 - 07

1900 ~ Da 111} 1097 - 08

1990 ~ 07\, 1997 - 04

190849 - 0§ 1997 + 11

1995 - 09 1993 ~ 0§

1943 » 07

(b) 100 synthetic values of dx

Figure 6. Gain the concept and produce synthetic values
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Figure 7. Spatial rules on monitoring points of Baota land-
slide

BT11: the displacements are big south, high scattered and
instable;

BT12: the displacements are big south, high scattered and
very instable;

BT13: the displacements are small south, lower scattered
and more stable;

BT14: the displacements are smaller south, lower scattered
and more stable;

BT21: the displacements are extremely big south, extremely
high scattered and extremely instable;

BT22: the displacements are bigger south, high scattered
and instable;

BT23: the displacements are big south, high scattered and
extremely instable;

BT24: the displacements are big south, high scattered and
more instable;

BT31: the displacements are very big south, higher scat-
tered and very instable;

BT32: the displacements are big south, low scattered and
more instable;

BT33: the displacements are big south, high scattered and
very instable; and

BT34: the displacements are big south, high scattered and
more instable;

Figure 8 is the generalized result at a higher hierarchy than
that of Figure 7 in the feature space, i.e. the displacement rule
of the whole landslide. Itis “the whole displacement of Baota
landslide are bigger south (to Yangtze River), higher scattered
and extremely instable”. Based on Figure 7 and Figure 8,
spatial data mining is particular views for a viewer to look at
the spatial database on the displacements of Baota landslide-
monitoring by different distances only, and a longer distance
leads a piece of more meta-knowledge to be discovered. Be-
cause large amounts of consecutive data are replaced by dis-
crete linguistic terms, the efficiency of spatial data mining is
improved. Meanwhile, the final result mined is also stable due

Landslide rule .

wf%%ﬁ
{
S

™ Vangize River

Figure 8. Spatial rules on Baota landslide

to the randomness and fuzziness of concept indicated by the
cloud model.

Further, let the ldxl-axis, ldyl-axis respectively depict the abso-
lute displacement values of the landslide- -monitoring points.
The certainty of the cloud drop (dx;, Ci{(dx;)), Ci{(dx;) is also
defined as,

Cy(d, ) = — L —min(@)

max(dx) —min(dx) ey

where, max(dx) and min(dx) are the maximum and minimum of
dx={dx,,dx,,...,dx, ...,dx, }. The potential p of a cloud drop
in the number universe is the sum of all data potentials.

N 72

i

p=ke =T @)

where, k is a constant of radiation gene, r; is the distance from
the point to the position of the ith observed data, C;(dx;)is the
certainty of the ith data, and N is the amount of the data.

On the basis of equation (1) and equation (2), all the above
landslide-monitoring points form the potential field and the
isopotential lines spontaneously in the feature space. Intu-
itively, these points can be grouped naturally into clusters.
These clusters represent different kinds of spatial objects re-
corded in the database, and naturally form the cluster spec-
trum graph. Figure 9 shows the visualized results of the land-
slide-monitoring points with the property of dx in the feature
space. Figure 9 (a) depicts all points’ potential. They form the
potential field and the isopotential lines spontaneously. Seen
from this figure, when the hierarchy jumps up from Level 1 to
Level 5, i.e. from the fine granularity world to the coarse granu-
larity world, these landslide-monitoring points can be intu-
itively grouped naturally into different clusters at different
hierarchies of variant levels. That is,
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[1] No clusters at the hierarchy of Level 1;

[2] Four clusters at the hierarchy of Level 2 that are
cluster BT14, cluster A (BT13, BT23, BT24, BT32,
BT34), cluster B(BT11,BT12,BT22,BT31,BT33)and
cluster BT21;

[3] Three clusters at the hierarchy of Level 3 that are
cluster BT14, cluster (A, B) and cluster BT21;

[4] Two clusters at the hierarchy of Level 4 that are cluster
(BT14, (A, B)) and cluster BT21; and

[5] One cluster at the hierarchy of Level 5 that is cluster
((BT14,(A,B)),BT21).

Respectively, they denote, [1] the displacements of landslide-
monitoring points are separate at the lowest hierarchy; [2] at
the lower hierarchy, the displacements of landslide-monitor-
ing points (BT13, BT23, BT24, BT32, BT34) have the same
trend of “the displacements are small”, and the same with
(BT11, BT12, BT22, BT31, BT33) of “the displacements are
big”, while BT14, BT21 show the different trend with both of
them, and each other i.e. the exceptions, “the displacement of
BT14 is smaller”, “the displacement of BT21 is extremely big”;

(a) All points’ potential

Level 1 Level 2

BT13
BT23

BT24
BT32
BT34
BTIL
BT12

BT22
BT31
BT33
BTl

(c) All points’ cluster spectrum

Level 3 Level 4 Level 3

[3] when the hierarchy becomes high, the displacements of
landslide-monitoring points (BT13, BT23, BT24, BT32, BT34)
and (BT11,BT12,BT22, BT31; BT33) have the same trend of
“the displacements are small”, however, BT14, BT21 are still
unable to be grouped into this trend; [4] when the hierarchy
gets higher, the displacements of landslide-monitoring point
BT14 can be grouped into the same trend of (BT13, BT23,
BT24,BT32,BT34)and (BT11,BT12,BT22,BT31, BT33) that
is “the displacements are small”, however, BT21 is still an
outliner ; [5] the displacements of landslide-monitoring points
are unified at the highest hierarchy, that is, the landslide is
moving. Simultaneously, these clusters represent different
kinds of landslide-monitoring points recorded in the database.
And they can naturally form the cluster spectrum figures as
Figure 9(c) and Figure 9(d). Seen from these figures, the dis-
placements of landslide-monitoring points (BT 13, BT23, BT24,
BT32,BT34)and (BT13,BT23, BT24, BT32, BT34) firstly com-
pose two new classes, cluster A and cluster B, then the two
new classes compose a larger class with cluster BT14, and
they finally compose the largest class with cluster BT21.

?-: |l)'

(b) Points’ potential without the exceptions

Level 1 Level 2 Level 3

BT13
- BT23

BT24
BT32
BT34
BTIL
BT12

BT22
BT31
BT33

(d) Points’ cluster spectrum without the exceptions

Figure 9. Clusters and cluster spectrum of Baota landslide monitoring points
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When the Committee of Yangtze River (Zeng, 2001) investi-
gated in the region of Yunyang Baota landslide, they found
out that the landslide had moved to Yangtze River. By the
landslide-monitoring point BT21, a small size landslide had
taken place. Now there are still two pieces of big rift. Espe-
cially, the wall rift of the farmer G. Q. Zhang’s house is nearly
15 millimeters. These results from the facts match the discov-
ered spatial knowledge very much, which indicates that the
techniques of cloud model-based spatial data mining are prac-
tical and creditable.

V. CONCLUSIONS

This paper proposed cloud model-based spatial data mining
in the aspects of data preprocessing, uncertain reasoning and
knowledge discovery. It was argued that the conceptual space
represents different concepts in the same characteristic cat-
egory, while the feature space depicts complicated spatial
objects with multi-properties.

The method integrated the fuzziness and randomness in a
unified way via the algorithms of forward and backward cloud
generators in the contexts of three numerical characteristics,
{Ex, En, He}. It took advantage of human natural language,
and might search for the qualitative concept described by
natural language to generalize a given set of quantitative da-
tum with the same feature category. Moreover, the cloud model
could act as an uncertainty transition between a qualitative
concept and its quantitative data. With this method, it was
easy to build the mapping relationship inseparably and inter-
dependently between qualitative concept and quantitative
data, and the final discovered knowledge with hierarchy could
match different demands from different level users. The method
would further improve the implementation efficiency, and en-
hance the comprehension of the discovered spatial knowl-
edge.

The experimental results on Baota landslide monitoring show
the cloud model-based spatial data mining can reduce the task
complexity, improve the implementation efficiency, and en-
hance the comprehension of the discovered spatial knowl-
edge.
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