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Abstract

This paper aims to investigate the propagation of horizontal errors, which are included in a digital contour file of a topographic map
by applying the affine transformation of coordinates to this file. The application of the process increases existing horizontal errors,
and therefore, these errors may have a direct proportionate impact on the elevation errors, which due to geometry, they co-exist
within the digital file. This paper investigates the increase of these horizontal errors, as well as their effect on the respective elevation
errors. The investigation applies to various usage cases of affine transformation of coordinates.
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I. INTRODUCTION

A basic process in cartographic information management is
the Geometric Transformation of Coordinates (GTC) or
Georeference, as it is otherwise known (Govil et al., 2005;
Habbib et al., 2004; Nakos, 1990; Robinson et al., 1984;
Sprinsky; Willneff et al., 2006; Yakamura et al., 2004).

During this process, a set of cartographic information is subject
to change of reference system, which means that this set is
“distorted” so as to adapt to the new reference system of interest.

This transformation is effected by means of a resultant
application process of a model (Maling 1991), which is analysed
in three influence components in the x and y axes (Doytsher et
al., 1984, Nakos, 1990; Paraschakis et al., 1988; Tournas, 1994):
e Translation (in Xin Y)

e Rotation (in.Xin Y)

e Scale (inX)in Y)

The models used are either analytical or linear (or grid-to-grid models,
as also called), or polynomial (Chiu et al., 2003; Maling, 1991). In this
paper, we examine a largely used linear model, i.e. the affine
transformation, and we investigate the error propagation, which is
produced by the affine transformation in the process output
(Achilleos, 2002; Crain et al., 1993;Dorozhyiskiy et al., 1997; Gong,
1992; Gonget al., 1995; Gong et al., 2000).

II. AFFINE TRANSFORMATION OF COORDINATES

The Affine Transformation of Coordinates (A.T.C.) is a two-
dimensional linear function (linear model) of the type (Nakos, 1990):

x=a +a, X+ayY )
y=a,+as X +agY

where:
X, Y:plane coordinates prior to the transformation

X, y : plane coordinates after the transformation
a, :transformation coefficients (i = 1, 2, ..., 6)

The main advantage of GTC linear models is that there is no
need to know the type and the parameters of the map projection
used (Kraus et al., 2007; Leyk et al., 2005; Zheng et al., 1997).
This flexibility is very useful in photographic data cases or in
the use of multiple map sheets for covering the area under
examination (Chen et al., 2006; Liang et al., 1995; Noguchi et
al., 2004). However, we should know the coordinates of
common points in both map projections, with a relative high
accuracy. Another advantage is the simplicity of the functions
used, the simplicity of operations and the speed of the
transformation performance.

The a, coefficients may be combined and give the distortions
and translations that are included in the transformation as
follows (Table 1) (Nakos, 1990; Nakos et al., 1994):

Table 1. Distortions and translations produced by the Transformation
in connection with the a, coefficients

in X inY

Translation a, a,
Rotation arc[an(—aslal) arctan(u}/aﬁ)
. 2 2 2
Scaling SQR(a3 +a3) SQR(a3 +ag)

Before applying the affine transformation, it is suggested to
follow certain steps for the data preparation. Firstly, a parallel
translation of each of the two reference systems is effected
relative to the center of gravity of the coordinates of the area
under examination (Figure 1). Then one reference system is
rotated towards the other (Figure 2) and, in the end a scale
change is effected so that both reference systems are identified
as much as possible (Figure 3). The rotation and the scale
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Figure 1. Parallel translation of the reference systems relative
to their centers of gravity
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Figure 2. Rotation of the reference system in the affine
transformation
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Figure 3. Scale change of the reference system in the affine
transformation

change are uniform in the two reference axes of the system.

The reason for applying these steps prior to the affine
transformation is due to the model’s mathematical structure,
which maximizes errors o, and o, when the coordinates of the

points transformed are maximized, or when the a, coefficients
are maximized. The phenomenon of error maximization is
fictitious, and if the center of gravity, rotation and scale are
not previously changed, then errors o and o, will be very
large in size, which in fact is not valid (Aéhilleos,'2002, Mikhail
et al., 2006; Nakos, 1990; Paraschakis et al., 1988).

The parallel translation relative to the center of gravity is
effected by the following operations:

X;=X;—% @
Yi =¥ - Ye
n n
X, 3y,
where: x, = = Ve = i=l

n n

The application of the rotation is carried out by calculating
the mean rotation presented by the points, which are used as
the control points in the transformation:
¢ = El4] 3)
A similar logic is followed in scale change, which is carried out
by calculating the mean scale, as follows:
m=E[l; /1] (@)
Following this, after the transformation is performed, the
coordinates return in their absolute position, by adding again
the center of gravity of the second reference system:
X=X+ x,
Yi=YitYe )
The relative distribution of points, the coordinates of which
are transformed, is not affected by the translation, rotation
and enlargement (or diminution) and, therefore, the figure
created by these points is not affected.

III. THE EFFECT OF THE GTC ON DATA ACCURACY

Each analysis processing and form that a data group can receive
produces errors in the data and reduces the reliability of the
results. In the GTC this is due to various factors, such as the
degree of adaptation of the model used, the rounding-up in
mathematical operations, the accuracy of data which is included
in the processing and analysis, etc.

This is not the case in GTC analytical models, because they
rely on analytic functions, which are pre-defined and
independent from any applications of coordinate geometric
transformation.

Selecting the most appropriate GTC model and ensuring good
data accuracy give the optimum result with regard to the
model’s adaptation and the reliability-accuracy of the results.

There are two basic elements, which describe the accuracy and

reliability of a model to be used in GTC. These are (Nakos, 1990):

e Variance—Covariance table of the model’s solving—adaptation
to the transformation data.

e  Aposteriori standard deviation of the model’s solving-
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adaptation to the transformation data.

The aposteriori standard deviation is the size which marks the entire
quality of the model’s solving-adaptation to the transformation data,
while the variance—covariance table gives the uncertainties of the
coefficients/parameters of the transformation model and describes
the partial quality of the solving-adaptation.

A great number of aposteriori standard deviation in
combination with a small number of data refers to the increase
of the data size and the improvement of their quality, in order
to utilize the transformation model, which is solved.

The variance-covariance table may provide elements for the
three components of the transformation (translation, rotation,
scale) and indicate the ones that suffer in the particular
transformation.

A.The effect of linear and polynomial GTC models on the
accuracy of the data horizontal position

The application of a linear or polynomial GTC model to the
coordinates (X, Y) of a sum of points gives new coordinates
(x, ). The accuracy of the transformed coordinates (x, y) is
described with the following components:

O-.\' % O—V ’ O-.\'_\' (6)
These components are defined by applying the error
propagation law (7, 8):

VARIANCE:
Fd= Flrya oy k)

azfm:i[a—f] o123 3 [af af} o

i=1 a\‘i i=1 j=i+l Ox; Ox rJ

COVARIANCE:
[ = fi(xsxg,00,x,)
L) =00 x5,000,x,)
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[&\‘i O, Oy T

TR —
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11]1+18\a\
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Ox; Ox; | iy ®)

Relations (7, 8) show that the accuracy of the transformed

coordinates (x,y) depends on the following factors:

e  Coordinates prior to the application of the transformation
and their variances-covariances X, Y, Oys Oy Oy,

e  Parameters/coefficients of the transformation model and
their variances-covariances a,, o, s O

B. Propagation of the position error due to the affine

transformation

The function of the Affine Transformation of Coordinates
(ATC) (1) and the application of the error propagation law (7,
8) give the following results (9, 10):

2

2
o"—a7 0'X+a3 ay+a 2 LX*s oy ¥ o-l,‘+

2:a4-az-Oxy+2-a, “Oxa, +2-az X Oy, +
2-ay-Y-0x, +2-a3 -0y, +2-a3-X -0y, +

2-a3-Y 0y, +2:X -0, +2-Y-0,, +2-X-Y O

a,as

_ 2.2 2 2 2 2, 2 2, 2
O, =as 0y +ag 0y +0, +X" -0, +Y" -0, +

—

2-a5-aq-0gy+2-a5 -0y, +2-as5-X -0y, +
2:a5-Y -0y, +2-a6-0y, +2-a6-X -0y, +

+2-Y-o

a,as

+2-X-Y-o

aag asag

&)

2:agY 0y, +2:X 0

2 2
O =0y A5 0y +a3-ag-0y +(a,-ag +ay-as) oy, +
a5 Oy, +as X -0y, +as-Y-oy, +a, -0y, +
ay-X -0y, +ay- Yoy, +ag-oy, +ag-X -0y, +

ag -Y~0’YH] + a; Oy, +az- X “Oya, +a;- Y-(f,,”b +o +

ajay

X Ull(l +Y 0—"" +X.0’07H4+X2 (IH +X Y o- +
Y- Gu}u_, +X-Y- 0’(1111; + Yz 'G-thu(, (10)
where
a;: transformation coefficients i=1,2, ..., 6.

X, Y:coordinates in the previous reference system

The horizontal position errors with the o, (a—posteriori) of the
transformation and the table of variance—covariance of the
adjustment may be the quality index of the ACT.

Following the examination in variance—covariance V_tables
of the model’s adjustment results, it was observed that the

0,; (covariances), are in fact zeros (-0-). More precisely, they
present values from 1077 to 10~ or even smaller, which may be
considered null. However, the terms are preserved and used
in the equations in order to avoid simplifications, which may
not be valid in certain cases.

Given the perpendicularity principle of the components of the
error vector, the correlation between o, and oy, is a unit (-1-)
because the orientation of o is given (vertlcal to the contour)
(Achilleos, 2002; Keefer et al,,1988 ).

Therefore:
Pxy =1= i
Oy Oy
The size of the covariance o, , (prior to the transformation) and
its participation in the equations 9 (9) are negligible, because
this size is multiplied by a quantity of 10-° and smaller; these
terms are also preserved in the equations. The terms oy,, oy,
do not exist, because the coordinates X, Y of the points in the
previous reference system for transformation did not take part
in the adjustment of a, in the transformation model. Finally,
equations 9 (9), under these assumptions and conditions, may
be simplified in the type (11):

= Oxy =0y 'Oy
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(1)
Usually we cannot know the initial errors in the X and Y axes
that were made in field or office measurements, on map sheets
design, the errors in printing, digitization and adaptation to
the HATT projection system (Thapa et al., 1992). Given this
problem, it is usually acknowledged that the initial error of the
process is constant and related to the distinctive quality of
the map scale that is used, to the map digitization procedure
and its adaptation to the reference system of the HATT map
projection.

If we take into account that o, and o, are constant, the
following terms of equations 11 (11) may be considered
constant, i.e. that they do not depend on the point’s position
(12):

const(x) = ag -cri +a32 -0')?; -1-0'3l +2-ay-a;-0Oyy -

consr(y):asz-a}z(+a§-0',%+0'34+2-a5-c76-oxy &)
It would be interesting to note that the bigger the initial errors
o, and o, are, the more the resultant horizontal error after the
transformation application (o) tends to be stabilised at a high
value, but with small relative deviations and range. Table 2
presents the results of the related investigation on this matter.

Table 2. Value range o, for various values of o, and o,

0,0, Value range o, Difference
1 15.0-19.0 4.0
10 26.0-29.0 3.0
20 47.0-48.5 1.5
50 112.0-112.5 0.5

This indicates that the effect of the transformation on data
quality is relatively much higher on data that initially presents
very good accuracy, than on data presenting a low initial
accuracy. Therefore, attention should be drawn when using
the model in cases where data is of good accuracy and quality;
these properties must be preserved (Figure 4).

The resultant horizontal position error o, which is calculated
by equations 14 (14), is the total error, which was propagated
to the data up to that point of the process.

5,‘7 e — R EEEEE———————.
4 y=-12x+525
@ R*=0.9931
(3]
s 3
2
&2
: Y
0 - — :

1 10 20 50
constant terms
Figure 4. Investigation of the effect of the constant
terms (12) on equations (11)

IV. INVESTIGATION DESIGN

In the following investigation we use a map sheet of the island
of Crete (VATOLAKKOS) in a 1:50.000 scale and at HATT
projection (Figure 5). On this map sheet the 20m contours
were digitized and the Affine Transformation was applied in
order to transform the digital contours from the HATT system
to the Greek Geodetic Reference System 1987 (EGSA’87), where
the errors caused by the transformation are investigated. For
this reason, we used trigonometric control points from the
national trigonometric network with their respective
coordinates in the HATT and EGSA’87 projection systems.
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Figure 5. 1:50.000 map sheet VATOLAKKOS (source: Hellenic
Military Geographical Service, HMGS)

As it is already mentioned, because it is not possible to know
the initial errors in the X and Y axes that were made in field or
office measurements, on the map sheets design, the errors in
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printing, digitization and adaptation to the HATT projection
system (Thapa et al., 1992), it is accepted that the initial error
of the analogical map is constant and equal to the distinctive
quality in the given scale, i.e. o, = 12.5m. This error may be
analysed in two components in the X' (o,.,) and Yaxes (o),
also by accepting that these two components are equal.

Therefore:
o2
Oyg =O0gp = 7" =18.84m

Following this, the contours digitization error depends on: a)
the error made by the user during the digitization (0,); and b)
the error made due to the digitizer’s resolution (o,) (Nakos,
1990). These errors are defined in this particular investigation
tobe 0, =%12.5m and o, =1 5.0m. That is, the final error (o‘v)
only due to digitization, is:

0, =/0; +0, =+13.46m

Therefore, by the error propagation law it is derived that the
final errors o, and o, which are considered to be initial for the
1nvest1gat10n of the ATC are:

O, =02, +0 =+16.10m
0, =\/0py 05 =+16.10m

The resultant horizontal position error ¢, may be calculated
by relations (14):

o, =max(o,,0,) or 0, =SQR(07},0;) (14)
We preferred to use the second relation, because it gives a
mean horizontal error cycle. The first relation overestimates
the error at each point, by generalizing it to the maximum.
Therefore, from relations (13), (14) it is assumed that:

o, =122.7Tm

Moreover, one can use (0,, 0,) directly without the need to
calculate the . Because errors (o, , 0,) are by acceptance
equal between them, they can be generalized to o. This is,
however, something that is not in fact valid. This acceptance
is important because it gives a value of a constant horizontal
position error prior to the transformation, which provides the
opportunity to understand the effect of the application of the
transformation model on the data accuracy.

(13)

The process followed for investigating the effect of the ATC

on data accuracy is:

e  Based on the given coordinates of the trigonometric control
points in both reference systems, the system of equations
of ATC 1 (1) is solved by adjustment to determine the six
coefficients ¢ (i=1,2,-,6), their variances-covariances o,
(=1,2,,6), g, - (i=1,2,--,6/j=i+1,-,6) and a-posteriori 0.

e Any other pomt with given coordinates (X,Y) in the HATT
projection system is transformed with the equations sys-
tem of ATC 1 (1) in order to calculate its position on the
new EGSA’87 projection system (x,y), considering as ini-
tial errors the (o, o,) of relations 13 (13).

e By the error propagation law we estimated the compo-
nents of the horizontal position error in the X and Y axes,
after the ATC (o, 0,).

e  Using equation 14 (14) we estimated the resultant horizon-
tal position error o after the ATC.

With regard to the transformation control points, we investi-
gated three cases, which are presented in detail:

INVESTIGATIONS:

1% Investigation

e Use of the four corners on the map sheet as transformation
control points (usual case)

2u Tnvestigation

e Use of trigonometric control points with given coordinates
(X, Y)and (x, y).

a) Using a limited number of trigonometric control points (4-6)

b) Using a big number of trigonometric control points (14-20)

34 Investigation

e Use of trigonometric control points with given coordinates
(X, Y) and (x, y) distributed in individual sections of the
area transformed (partial solution)

A. 1* Investigation: use of the four corners on the map sheet

The four corners of the given map sheet are used as the
transformation control points. This is a usual case in routine
cartographic tasks.

The results are presented on Tables 3 and Table 4. Table 4
indicates that although very high maximum values of the
horizontal position error are presented, its mean value is mean
0,=+28.52m. This mean value is higher than initial error o, which
was considered to exist prior to the ATC (g;=+22.77m); however,
this can be verified also by statistical control.

For 95% confidence level, the mean value of ¢; is within range
(Hammond R, et al., 1974):

Xmenn—ZO 95% aj\ll“ean\ ‘\,meang ‘Ymean + ZO 95%" J""mrun
70.95%=1.96
\’ =mean g,=28.52 m

mean

X pean = 8d 0,/sqr(NV) = 0.1070 m
— 28.41< meano, <28.63

Therefore, for 95% confidence level, the mean value o after
the ATC application is higher than its initial value (+22.77m).

A horizontal position error smaller than 25.00m, which could
be observed in this scale is not present in the areas
transformed.

The following map (Figure 6) shows, with regard to the map
sheet VATOLAKKOS, the map of Horizontal Position Error o.
The error’s values are in the form of equivalent curves (equi-
error curves), while areas with a big error appear in bright
colours.

In brief, the use of the four corners of the map sheet in the
ATC does not seem to produce satisfactory results, in relation
to the horizontal position error. As it will be shown further
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Table 3. Transformation Table for the Investigations 1, 2a, 2b

Case 1
(Four corners)

Case 2a
(Few points)

- Case2b
(Multiple points)

a, 0.0047+£9.11947 -0.0162+4.66796 0.0095+2.13483

a, 0.9998+0.0008 0.9998+0.00073 1.0013+0.00032

a, 0.0004+0.00066 0.0007+0.00054 —0.0001£0.00026

a, 0.2499+9.11947 0.0002+4.66796 0.6521+2.13483

a 0.0010+0.00080 —-0.0019+0.00073 —-0.0001+0.00032

a, 1.0000£0.00066 1.0002+0.00054 1.0013+0.00026

X, -8505.000 -6625.145 -8860.132

Y 9927.500 5745.982 9689.011

X, 488441.09 490346.15 488096.21

¥s 3910533.75 3906321.75 3910275.00

o +18.23895 +11.43411 +9.05730
rotation —0.01952 grad 0.06681 grad 0.03301 grad

scale 1.00475 1.00408 1.00285
RMS 25.78640 27.91925 49.50208
Table 4. Table of results for the Investigations 1. 2a, 2b /"}2@ _ﬁ}% =3 A o
t0F 7 -.l\ -x31~\ s,,‘ ;
Case 1 Case 2a Case 2b \é 2%». g% -y -..,J\"/:S}\\ A% \ 3
oS '.—\“\‘A'-(,/\\‘ ’%
min g,(m) £26.19 +23.70 £23.00 Mﬁsﬁﬁ \?P’ %ylg;??s 5 ;}\&‘%\)
8
max a,(m) +31.94 +30.46 £24.02 \fb, ) A R ]
mean a,(m) +28.52 +25.34 +23.32 .ng S
oy A
sd g,(m) £1.42 £1.35 £0.21 ‘lf
50% of area <+28.39m <£25.01m <+23.30m i
75% of arca <£29.5Im <£26.0lm <+£23.46m ,}s;gﬁ
A4 ‘/
90% of area =+30.30m <+27.08m <+23.61m ; e’nﬁ \
0,<£25 m 0.00% 48.48% 100.00% A }> R
1, P . S
g, <£30m 84.09% 99.39% 100.00% ., ‘% i
WA N
0, <+35m 100.00% 100.00% 100.00% 52 A SR
AR
G
2y ™ \\ur
down, the results are improved significantly when using the \.\ - \\» %
trigonometric control points as the transformation control A 2

points.

Figure 6. Map of horizontal position error o; for the

Investigation 1
B. 2™ Investigation: use of trigonometric control points

In this investigation we examine two cases: a) the use of a
limited number of trigonometric control points as
transformation control points; and b) the use of a big number

of trigonometric control points. Besides, it is common to have
a “few” trigonometric points in an area in question which is to
be transformed.
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The results of the transformation and the analysis of the
horizontal errors of the map sheet of this case (map sheet
VATOLAKKOS) are presented on Tables 3, Table 4.

It is noted that in case 2a six (-6-) trigonometric control points
were used and in case 2b twenty (-20-) points. In both cases
an effort was made to have a uniform distribution of the
trigonometric control points in the area transformed.

The results of these two cases appear schematically on the
maps of Figure 7 and Figure 8.
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Figure 7. Map of horizontal position error ¢; for Investigation 2a
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Figure 8. Map of horizontal position error o, for Investigation 2b

Based on the results, we observe that in the case of the limited
number of trigonometric control points, the maximum value of
o(max 0,=+30.40) is higher compared to the case of the multiple
trigonometric control points (max o,=+24.02). However, these
values are high in both cases with regard to the accuracy of
the scale 1:50.000 (in particular the value in investigation 2a).

If these values are compared to the horizontal position error
prior to the application of the ATC (o,=+22.77m), it is observed
that the value of o in the first case is relatively high, while in
the second case it is good enough.

‘When observing the mean horizontal errors (mean ¢,) and their
standard deviations(sd o) it appears that these results are
much better in comparison to the first investigation. In the
first case, the mean o, is +25.34, and in the second case +23.32,
which is much better.

The area percentage that presents horizontal position errors
smaller than 25.00m, is 48.48% in the first case and 100.00% in
the second case 2b.

Moreover, 90% of the transformed area has a horizontal
position error smaller than £27.08m, and in the second case
smaller than +23.61m.

There is a clear improvement of the results in the conditions of
the second investigation (&, f) in comparison to the first
investigation. The possibility to use even a “few” trigonometric
control points improves very much the quality of the results
from the ATC application.

C. 3" Investigation: partial solution

The ATC is the attempt to adapt a linear model to a group of
data. If the extent of the area examined is large, then this
adaptation may not be satisfactory. In these cases it is usually
required either to change the model, or to apply partially the
linear model in sub-areas on the map.

In this investigation, the map sheet (VATOLAKKOS) is divided
into four equal sections, with the number of the trigonometric
control points, while an effort was made to use equal number
of trigonometric control points in each section. The parameters
of the transformation as well as the brief results of the horizontal
error o, of each section are presented on Table 5, Table 6.

The maps (Figure 9) present horizontal position errors for the
four individual areas of the of the study area. The horizontal
error o, is depicted in the form of equivalent curves (equi-error
curves), and the areas with small horizontal position error
appear in bright colours.

Figure 9 shows the elliptical form of the horizontal position
error o,. The error appears to increase in the areas, which are
the most distant from the center of the ellipses. It is therefore
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Table 5. Transformation table for investigations 3a, 3b, 3c, 3d

Case 3a
(Section 1)

Case 3b
(Section 2)

Case 3c
(Section 3)

Case 3d
(Section 4)

0.0227+3.61948
1.0099+0.00094
-0.0021+0.00119
0.0635+3.61948

-0.0182+2.27864
0.9991+0.00080

—-0.0001£0.00074
0.0501+2.27864

0.0076%5.90253

1.0006x0.00182
-0.0025+0.00184
—0.2498+5.90253

—-0.0071+4.81799
1.0040+0.00112
—-0.0003£0.00141
0.1001+4.81799

as 0.0026+0.00094 0.0017£0.00080 0.0025+0.00182 -0.0003£0.00112
ag 0.9998+0.00119 1.0005£0.00074 0.9997+0.00184 1.0004+0.00141
X, —13858.364 —3788.349 -2971.006 -3689.42
Y, 18212.746 16011.052 2342.162 2425.463
X5 483072.656 493184.06 494011.78 482294.81
Y, 3918830.500 3916629.25 3902894.00 3902983.50
Ot +7.23897 +5.09520 +11.80507 +10.77334
rotation —0.04376 grad —0.03739 grad —0.10937 grad 0.03591 grad
scale 1.00496 1.00411 1.00306 1.00163
RMS 10.31188 10.21292 16.71139 21.54988
Table 6. Table of results for investigations 3a, 3b, 3c, 3d, 3entire
“VATOLAKKOS”

Case 3a Case 3b Case 3¢ Case 3d Case 3(entire)
min g,(m) +23.01 +23.35 +24.28 +23.81 £23.00
max o,(m) +25.04 +25.97 +33.45 +26.36 +33.45
mean ¢,(m) +23.48 +24.07 +26.71 +24.68 £24.76

sd g,(m) +0.43 +0.51 +1.82 +0.56 +1.61
50% of area <+£23.35m <+24.00m <+£26.39m <+24.60m <%23.51m
75% of area <423.67m <+24.33m <+27.49m <+25.04m <£25.22m
90% of area <+£24.11m <£24.62m <+28.98m <+£25.41m =<£26.88m
g,<£25m 99.39% 94.31% 17.61% 70.00% 69.90%
6,<+30m 100.00% 100.00% 93.75% 100.00% 98.35%
0,<%=35m 100.00% 100.00% 100.00% 100.00% 100.00%

possible to predict in advance where big error will be present
after the creation of a DTM (the areas on the map periphery
may present the biggest errors).

The mean horizontal position error oris £25.91m for the entire
map and the standard deviation of the mean error is +2.08m.
90% of the area in question presents a horizontal position
error o, smaller than +28.72m, while 45.32% a horizontal position
error smaller than +25.00m.

The overall results of the horizontal error o, on the entire map,
are presented on Table 6 (Table 6).

In brief, this investigation gives good enough results in relation
to Investigation 1 and 2a, but not better than the ones in
Investigation 2b. This happens because the division of the

area in question into sub-areas distributes the trigonometric
control points in these sub-areas. Therefore, the trigonometric
control points that appear in each sub-area are few (4-0) as in
the case of Investigation 2a (6). Therefore, the partial
adaptation of the linear model is much better than the adaptation
on the entire map (Investigation 2a).

D. Comments on the three investigations

The constant terms that appear in the calculation equations of
oy, 0y(12) participate at 50%—100%. The size of these terms for
the three investigations is presented on the following Table of
Constant Terms (Table 7).

The participation percentage of the constant terms is calculated
on the basis of max o, which appears on the Transformation
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Figure 9. Map of horizontal position error o, for individual area of investigation 3 (sub-areas 3a, 3b, 3¢, 3d)

Table 7. Table of constant terms

Participation percentage in

Investigation const(X) const(Y) max (%) R.M.S.E
1 437.20 436.24 63 34.938
2a 305.26 305.54 63 27.919
2b 288.15 288.15 97 49.502
3a 297.73 297.05 70 10.312
3b 288.25 289.04 53 10.213
3c 318.35 317.84 59 16.711
3d 307.73 305.70 71 21.550
Tables of the previous investigations. calculated; if surpassed, the transformation will not be

accepted for confidence level 95%. RMSEJ, derives from
Given the horizontal position error prior to the ATC (o= relation (Jones J R., 1991):
+22.77m), the maximum permissible RMSE (RMSE ') may be RMSE, = 0,/ 20.95%
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The Z, s, value is 1.96 therefore RMSE; is 11.62m. Based on
this critical RMSE; , only the transformations in investigations
3a and 3b are acceptable at 95% confidence level. Moreover,
relatively good results appear in case 2a, where a few
trigonometric control points were used.

It is however noted that in none of the three cases the US
National Map Accuracy Standard (US Bureau of the Budget)
is observed. According to this standard:

“90% of points tested shall be in error not more than 1/50 inch
for maps on publication scales of 1:20,000 or smaller”(Fisher,
1991)

This standard on the ground means 25.4m and is observed
only in case 2b (90% of horizontal errors o;, are smaller than 23.
61m). The cases of Investigations 2a and 3 approach the
standard, but do not observe it.

Therefore, errors imported in the data due to the application of
the ATC cannot be ignored, but in certain cases are important;
for example when data transformed presents high accuracy
and when it is useful to know them for defining later on the
result’s accuracy.

It is generally believed that with regard to GTC there is no
reason to worry as to accuracy matters in its results. This is
because in case it is observed that the result of the coordinates
transformation is not satisfactory in terms of accuracy, then
there is the possibility of improvement. This does not mean
that knowing the error propagation model, due to the
application of the ATC (and GTC in general) is not of interest.
There are data which is already transformed and for which we
know their transformation parameters. It is useful to have a
model, which provides an estimation of the quality and
accuracy of the results of the transformation application.

V. EFFECT OF A GTC MODEL ON THE ELEVATION
ACCURACY OF A DEM

The effect of a model of GTC on the accuracy of data’s horizontal
position is evident. If this data is used in further processing, this
effect is transferred to the derivatives of this data.

Contours (primary information for creating a DEM) present
horizontal position errors. These errors, together with errors
resulting from the transformation model application determine
the horizontal position error of contours.

The horizontal position error in contours is transferred in DEM
during the interpolation process, in the form of elevation errors.

Koppe (Imhof, 1982) worked empirically in order to define the
error due to the horizontal position of the contours in the
derivative products. The relation he gave (15) connects the
horizontal position error to the elevation error and depends

on the relief’s morphology in the area around the contour
(ground slope):

Oy=0,-tan(0) (15)
where, ¢is the value of the ground slope at the point for which
the elevation error is calculated and o, is the horizontal error.

This dependency is also depicted in Figure 10.

~ uncertainty zone

Figure 10. Elevation error due to horizontal position error

VI. INVESTIGATING CORRELATIONS OF THE
RESULTS OF THE GTC TO THE ELEVATION ERRORS
IN DEM

Given the results of the investigations of the GTC, we may
attempt to investigate whether there are correlations of these
results to elevation errors. Elevation errors are caused, using
the transformed contours in an interpolation process. They
result from the horizontal errors, which are produced when
applying the GTC and to the interpolation process used.

With regard to the correlation effort in question, the calculation
of the elevation error is based on the relation of Imhof (15)
(Imhof, 1982):

The results from the application of the GTC and the
interpolation on the data, for seven (7) cases investigated, are
presented on Table 8.

This Table shows that case 1 presents the biggest horizontal
and elevation errors. This makes sense, since this case applies
the GTC only on four points, which are not trigonometric
control points with given coordinates, but the four corners of
the map sheet which is transformed.

Further on, the correlation indices are calculated among the
parameters of Table 8, and are presented on Table 9 .

Table 9 shows a high positive correlation among the
parameters:

maxo, maxo,, 0.94
g, maxay, 0.75
meanao, maxo, 0.91
o, maxo, 0.84
sd g, maxo, 0.93
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Table 8. Overall results of the GTC application and interpolation

Case 1 2 3 4 5 6 7
e 24.691 11.458 9.054 7.258 5.104 11.838 10.802
RMS 34919 28.067 49.589 10.264 10.209 16.741 21.605
maxo, 37.220 31.070 23.960 29.110 26.410 32.840 29.370
ming,, 0.000 0.000 0.000 0.000 0.000 0.000 0.000
maxo,, 34.730 28.410 14.280 22.140 23.090 26.410 24.180
meano,, 9.680 8.410 6.900 6.880 6.610 8.370 7.020
sday, 7.660 6.480 4.610 4.920 5.040 6.350 5.120
cp 4 6 20 5 5 6 4
Table 9. Parameters correlation indices of Table 8
maxao,, maxo, meano, mino,, RMS a, sd g, cp
maxo,, 1.0000
maxo, 0.9403 1.0000
meano,, 0.8427 0.9071 1.0000
mino,, - - - 1.00
RMS -0.1787 -0.0776 0.2766 - 1.0000
g 0.7573 0.8436 0.9048 - 0.4191 1.0000
sda,, 0.9177 0.9310 0.9825 - 0.1365 0.8690 1.0000
cp —-0.7487 -0.6282 -0.3019 - 0.7426 -0.2222 —0.4419 1.0000
0.84 e
g, meanc;, . 751 »=04496x+3.9414 »
sd o, meano;, 0.93 701 _K=07619 7
. o~
op RMS 0.74 7
= 6.5 =
sd o, (o 0.87 5 6.0 r
o //
@ -~
5.5 = /
A high negative correlation is observed between the 50 -;7\"/
parameters: 45 =
cp maxa, -0.75 4.0 - - - " T "
_0.63 5.104 7.258 9.054 10.802 11.458 11.838 24.691
cp maxo, * o-aposteriori

while even smaller correlations are observed among the
parameters, which are not strong, but indicate a clear tendency
(Table 9).

The following diagrams present these correlations, which exist
and apply in the parameters of Table 8 (Figure 11-Figure 17).

An important remark can be concluded from Table 8 and Figure
13-Figure 17 when examining case 3 in comparison to cases 4
and 5; it is observed that both groups of cases present similar
results of mean elevation error and standard deviation of
elevation error, while they differ greatly with regard to the
random root-mean-square error (RMS) of the GTC (R.M.S.)
and the maximum horizontal and elevation error.

From the combination of this data we may conclude that the
use of many control points during the application of GTC and,
mainly, the use of trigonometric control points to this regard,
improves the GTC model’s adaptation to the application data

Figure 11. Linear correlation between the aposteriori error of
the GTC application and the mean elevation error

10.0
9.51
9.0
8.5
8.0
7.5
7.0
6.5
6.0

| y=0.4893x+5.7386 y.J
R*=0.8554

mean oy,

_=7
—

-~

5104 7.258 9.054 10.802 11.458 11.838 24.691
o-aposteriori

Figure 12. Linear correlation of aposteriori error of the GTC
application and the standard deviation of elevation error

(max o), but does not produce any remarkable improvement in
essential results, in our case in elevation errors.
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Figure 13. Linear correlation of maximum horizontal error of the
GTC application and the maximum elevation error
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Figure 14. Linear correlation between the number of control
points of the GTC application and the random
R.M.S. of the GTC
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Figure 15. Linear correlation between the maximum horizontal
error of the GTC application and the mean elevation error
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Figure 16. Linear correlation between the control points of the
GTC application and the maximum horizontal error
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Figure 17. Linear correlation between the number of control

points of the GTC application and the maximum
elevation error
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