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Abstract

Although social programs intend to provide equal access for all, in the final evaluation, fairness of the distribution
of services is usually dictated by location. Measuring and predicting access to social services can help these
programs adjust and better accommodate under-served regions. A method is proposed which delineates the service
area of providers delivering social services and produces a probability metric that maps the equity of the program
of services for each household. We begin with a computationally trivial method for delineating service areas, map
the probability of households being served, and propose an adjustment process, an allocation, to level access to
services. We argue such methods can serve to better locate service providers and insure equity when implementing

social programs.

L. INTRODUCTION

The relatively young field of Geographic Information
Science is making it possible to build solutions to
problems that until now were considered
insurmountable due to their spatial complexity.
Although the amount of data captured and catalogued
might be considered extremely voluminous, it is the
spatial interaction of that data that is the real
impediment. Governments have always faced
problems such as these but with their recent large
investments in geographic data and information
technologies, they are coming under more pressure
to produce solutions.

Generally governments serve their people by enacting
legislation and championing programs that level the
playing field of its citizens. Many of these programs
surface as social services and rebate schemes which
provide incentives for citizens to improve their quality
of life, often effecting the rest of the populace in a
positive way. For example, an energy rebate scheme
offered through government regulated utilities to help
the disadvantaged insulate their homes, reduces their
annual heating costs and contributes to a general
reduction in energy needs and pollution. Although it
is easy to propose such a scheme, it can be extremely
difficult to implement, regulate and insure equal
opportunity for all citizens where their spatial
distribution is highly variable. It is likely impossible
to provide equal access to services in a heterogeneous
landscape and although many private service entities
may not even wish to, a government providing social
services to it citizens must attempt to. Geographic
information and related technologies can be employed

to reduce and possibly eliminate spatial uncertainties
faced by governments and others in delivering social
services in a spatially variable environment.

II. OBJECTIVES

The central objective of this study is to develop a
method which measures access to social services for
each household and makes adjustments among service
providers to better accommodate under-served
regions. The method encodes the defined service area
of providers delivering social services and produces a
probability metric that maps the equity of the program
of services for each household. After successfully
measuring the state of the current distribution of
providers to households, we move to level the playing
field by altering the probability of a household’s access
to social service providers by moving providers to
areas that are currently under-served from areas over-
served when considering the region as a whole.

Although the approach developed here might serve to
enlighten the spatial adjustment of social service
providers in general, we focus our attention on the
distribution of government authorized contractors who
provide service for rebate schemes. Adjusting the
spatial distribution of suppliers to more evenly service
the needs of households can be classified as a locational
or facility search problem (Church 1999). An extensive
literature on location-allocation problems exists
(Beaumont 1981; Church 1999; Eiselt 1992) yet the
problem of generating equity for all demand points
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where there exists extensive overlapping of supply
regions remains. The method proposed here
addresses this problem under applied conditions that
could not be immediately challenged: i) suppliers filed
that they were not impeded by friction of distance while
providing service, ii) it is assumed that all suppliers
were equally capable, had the same capacity to deliver
and offer a similar service, iii) the contractors already
form a spatial pattern of supply and it is assumed that
their numbers are fixed, and iv) regions not serviced
by the original supply set are assumed to be
unimportant and are not consciously targeted for
supply. Although these constraints are imposed by
the input data, the method developed here is adaptable
and can be altered as assumptions are eliminated.

ITI. LOCATION-ALLOCATION

Location models and those that attempt to improve
or optimize conditions by including allocation, are now
common in the literature (Bailey and Gatrell 1995;
Beaumont 1981; Eiselt 1992) and are making inroads
into GIS (Church 1999). These models all share a
common objective, to locate supply so that demand is
met in the most efficient manner. The simplest models
encode supply, often representing some production,
distribution or service facilities, as a set of points in
space. Demand is also often represented by point
locations which are then allocated to the closest supply
point for an optimal solution, as illustrated in Figure
1 (a). When a single supply point p is involved, the
simple Weber problem in industrial location (Wheeler
and Muller 1986) is solved, while adding one or more
supply centers increases complexity and the p-median
problem is presented. These location-allocation
models range from spatially unconstrained, where
demand and supply interact in straight lines and the
friction or ease of travel remains constant (no distance-
decay exists), to more discrete or constrained models
that are embedded within a line network (such as a

(a)

transportation network), where each segment and
intersection contributes individual constraint
parameters to the model.

In many instances demand data is not or cannot be
reported at an actual point location. Here supply is
known to serve a region and by sampling the region
we can predict demand. The US Census Bureau,
among others, follows this procedure to protect the
identity of individuals, and to reduce costs in data
gathering through sampling. This serves to complicate
the location-allocation model by presenting a point-
polygon location problem. Voronoi or Thiessen
polygons (Okabe et al. 1992), now common in many
commercially available software, are the best
unconstrained allocation models to encode examples
of supply points with demand regions, illustrated in
Figure 1 (b). Here there are no line networks to alter
travel direction or add friction. This model can be
altered to solve variation in capacity of the supply
points by adding weights (Aurenhammer and
Edelsbrunner 1984) which impact the regions served,
illustrated in Figure 1 (c).

Although most location-allocation models address
supply and demand as discrete points (or at least supply
as discrete), as more ancillary data is accessible
through technological advances in GIS, a new
geometric representation, polygon-polygon class of
location problems, are emerging (Openshaw and
Alvanides 1998; Miller 1996). Here supply is delivered
in a region defined by some polygon (such as a cellular
transmitting tower), and demand is dispersed
throughout polygons (such as demographic
classification units or census tracts).

Whatever the class of location problems presented,
planners have been involved in developing the criteria
and process to evaluate these models (Arentze 1996).
In planning services, maximal distance or time is
commonly used to determine if a demand is covered.

Figure 1. Unconstrained allocation models: (a) point-point class, (b) the Voronoi, a point-polygon class, and (c)

the weighted Voronoi, a point-polygon class.
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Even though planners intend to serve all demand, the
focus is to provide a level of service which meets some
minimal standard. Two types of location models share
this coverage concept: location set covering models
which minimize the required facilities to serve
demand, and maximal covering models which
maximize coverage with a fixed number of facilities
(Church 1999).

IV. DECOMPOSING SERVICE REGIONS,
PREDICTING ACCESS AND GENERATING
EQUITY

The State of California is experiencing unprecedented
population and economic growth. By the year 2020 it
is predicted the population will increase by 2.4 million
and there will be an increase of 5.1 million jobs
requiring 4.3 million housing units, transportation,
telecommunications, gas and electric utility
connections, fire and police protection, health care,
education, and parks and recreation facilities among
others (PG& E, 1999). During this massive expansion

a major challenge for planners is how to allocate public -

facilities and services in order to optimally serve this
growing population. Since the deregulation of the
electric industry in the state, competition among the
contractors is changing the utility business paradigm
where government decision makers are now facing
the problem of how to insure equal access to services.
Complex problems demand robust approaches. We
introduce one here that joins the family of maximal
covering models and solves a polygon-polygon
geometric representation location problem. Although
the model introduced is applied here under several
data constraints, we argue it is robust and will hold
its validity as constraints are removed.

To develop and apply our functional model we could
have used any data where social services or a rebate
scheme identified contractors supplying services. With
a Residential Contractor Program being implemented
statewide in California, we choose a local utility
company, Pacific Gas & Electric, to illustrate our
model. Our study region, Figure 2, covers a large
portion of Northern California and includes a
household population exceeding 5.5 million.

We fuel our demand for services (or clients) side of
our model with the number of households reported in
the 1990 US Census, and following Miller (1996),
geometrically represented them as polygons or Census
Tracts in this instance. We built our supplier of services
data base from a list of 53 contractors who are in the
Residential Contractor Program and geocode them by
applying an address matching algorithm using the 1996
US Census Bureau’s TIGER data. Based on a survey
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Figure 2.The study region within the State of
California.

of contractors, their business range is assessed at 60
miles for rural/suburban areas and 35 miles for San
Francisco and Alameda counties. Although the survey
forced assumptions such as: contractors being equally
capable, and not being impeded by friction of distance;
our model as constructed is robust, could ingest varied
contractor service regions, and be altered to deal with
friction of distance.

Decomposing service regions and predicting
Access

Our polygon-polygon location problem involves a set
of contractor buffers or polygons to serve, and a set of
polygons containing a density of households to be
served. Unlike the classic p-median location model
(Church 1999) where the objective is to locate supply
facilities to minimize the distance to serve all demand,
we begin with 53 supply contractors already in place,
and employ a heuristic to relocate some supply
regions. This model, conceptually similar to a
substitute model (Teitz and Bart 1968), balances
service to demand over the entire study region. In
order to assess the equality of those being served we
generate the probability of all households being served
by each supplier of services or contractor in this
instance. During this process we generate a density
surface of households per area, altering the reported
census tract household data so it can be disaggregated
when intersected with each contractor service area
buffer. This process estimates the number of
households that can be potentially serviced by each
contractor.

Hd = nH/Area (1)
where: Hd = the density of households per area within
each census tract, nH = number of households in the
census tract, Area = area of the census tract.

We generate service area buffers with a radius of 60
miles (35 for those contractors in San Francisco and
Alameda counties), individually intersect them with
the census tract polygons illustrated in Figure 3, and
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estimate the number of households serviced by each
contractor buffer nf{b by multiplying the area of each
new intersected polyéon by its density of household
values and summing them for the entire buffer.

nH = Hd * Area @)

where: L[ = estimate of number of households in
each intersected polygon, Area = the area of each new
intersected polygon.

it =3 nf] ®
i=1

where: nﬁb_ = the estimate of the number of
i

households within the contractor buffer j, nI:Ii =
estimate of number of households in each intersected
polygon i, n = the number of intersected polygons
within the contractor buffer j.

With the number of households known for each
contractor service area buffer, estimating the
probability of each household being served by the
contractor is trivial:

- 1
By =— @

nH,,

where: f)b. = estimate of the probability of each
j

A

household being served by the contractor j, nH,, =
]
estimate of the number of households within the

contractor buffer j.

The complexity in our location model increases when
we calculate the probability of each household being
potentially served by more than one contractor, or
where there are overlapping service area buffers.
Here we spatially decompose the polygons further by
overlaying them and producing many intersections of
contractor service areas. Consider a set S of n buffers.
Their intersections produce common polygons, each
polygon i formed by intersecting a subset s of S buffers.

Figure 3. A contractor service area buffer intersected
with Census tracts

When buffers intersect, contractors compete to service
households, increasing the probability of households
in the overlapping areas being served. If the
probability estimate P, = 1/nH,, for households
within contractor buffer 1, and the probability
estimate P, =1/nH,, for households within
contractor buffer 2 intersect, the probability estimate
of households being served in a new polygon formed
by their intersection is b ,illustrated in Figure
4 P, +Py,

For each polygon i (formed by intersecting a set of
buffers s;) the estimate of the probability of households
being served is calculated as:

A A 1
P, :zpbj :z,T ®
oS

Esi ngj

Where: nﬁb. = estimate of the number of households
within buffer J, P. = estimate of the probability of each
household being served in polygon i, P = estimate of
the probability of each household beingjserved by the

contractor j.

The estimate of the probability of households being
served in polygon i can be mapped for all polygons
formed by overlaying all the buffers in a study and
the standard deviation mapped (Figure 5). The result
delineates a spatial pattern of households under-served
by contractors and those that enjoy an advantage.

Generating equity

The substitution model (Teitz and Bart 1968) has
received wide recognition as a simple supply point
substitution process. Here, an existing supply site is
replaced with a candidate site to determine if an
improvement in the objective results. If the candidate
site yields improvement, a switch is made. This
method is thought to be a robust heuristic (Rosing et
al. 1979) for solving covering models, yet it can be
impacted by local optima (Church and Sorensen 1994)

/ \ Pb2'= 1 /nHb2’ \
Pb1' + Pb2"

/ - =
| i3 {
[ Pb1'=1/nHbI" = J
| \ -

\ \ —

Figure 4. Estimate of the probability of households
being served in polygons formed by intersecting two
contractor buffers.
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-3to -2 std. dev.
2to-1 std. dev.
-1to 0 std. dev.
mean
Oto1 std. dev.
1to2 std. dev.
2to3 std. dev.

>3 std. dev.

Figure 5. Maps the standard deviation of households
served by the existing 53 contractors in the study.

yielding limitations such as its inability to always
generate the same final solution. However, it is
suggested that the value in these types of models lies
in their ability to generate bench marks from which
to compare solutions and provide input in the decision
making process (Bailey and Gatrell 1995).

Our equity generation model is conceptually similar
to a substitution model as we strive to balance service
to demand over the entire study region. Our supply
is polygon based with no evidence of distance
impedance, so we substitute a region rather than a
simple site in our heuristic. From the estimate of the
probability of households being served we use standard
deviations to threshold and map service. We observe
from Figure 5 a considerable amount of variation,
spatially mapped on the tails of the distribution. We
seek to reduce this area by moving a supply polygon
from the most over-served region to those areas most
under served. We locate the spatial means (or centers
of gravity) of the most over-served and most under-
served regions. The supply polygon (a circle in this
study) whose spatial mean is most closely aligned with
the most over-served region is then moved to the
spatial mean in the most under-served region as
mapped in Figure 6. A new estimate of probability of
households being served is generated and mapped. We
continue the process through several iterations
comparing the distribution’s dispersion and variance.

V. RESULTS

We expect the polygon-polygon representation of our
substitution model to yield less varied distribution
patterns through iterations of the process. Kurtosis,
a good metric for dispersion, moves from a leptokurtic
(large tail) to a platykurtic (small tail) distribution over
nine iterations of our model, seen in Figure 7. The
large regions of over and under-served households in
Figure 5 eventually give way to a peaked distribution

-3to -2 std. dev.
-2to-1 std. dev.
-1to 0 std. dev.
mean
Oto1 std. dev.
1to2 std. dev.
2to3 std. dev.

>3 std. dev.

Figure 6. Substitution from the most over-served to
the most under-served region.

where service is more evenly distributed and our
expectation is reached. Skewness is symmetrical or
non existent until the tenth iteration of the model.

Mapping the results in Figure 8 we can visually verify
a marked change in the distribution of over and under-
served regions. Here the dark red color represents
the over-served regions at one end of a spectrum while
dark blue polygons represent under-served households.

To determine whether this visible trend is significant
we perform an analysis of variance (at a 95% confidence
level) to test our null hypothesis:

Ho: Mo= 1= Hy= My= = 5= He= Hy= Mg= o= Ky
where [ represents the mean of the distribution in
iteration i.

From Table 1, since F' > Fe,ia , We reject H and the
mean values of the distributions resulting from the
iterations of our model are significantly different. As
the iterative process continues, we expect less
variance among the service of households in different
regions. We design an F-Test comparing the results
of all the iterations with our original distribution, to
determine whether the substitution model at least
generates better results than no substitution at all.
Also pair the current iteration of the model with the

12 4

14
0.8 -
0.6
0.4
0.2

—o— Kurtosis
—m— Skewness

04 -
0.6
0.8

iterations

Figure 7. Graphs Kurtosis and Skewness over 10
iterations
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j‘ I3 o B 3 to -2 std. dev.

B 2 to-1 std. dev.
-1 to 0 std. dev.

mean
Oto1l std. dev.
1to2 std. dev.

L . B 2to3 std. dev.
h o B 3 std. dev.

its of 2 iterations  Results of 5 iterations  Results of § iterations  Results of 10 iterations

Figure 8. Observed change over iterations of the substitution model.

previous one to determine whether the variance  Fyom Table 2 we observe:

continues to decrease. ¢ in most cases (10 out of 19), the variances become
smaller (as expected);

HyoP=0(1=12,..10,and j=0,1,2,...10) * in seven instances no significant change is

H;: 67> 07 or 6/< o7 detected;

Where, g2 l‘epresents the variance of the distribution.  in two out of 19 cases the variance is increasing

in the opposite direction.
Once again, if F' > F,.q, We reject the H, and accept

.Hl' .We expected 67 to always be less than 6 , when Overall, the substitution model appears to be working
1>]. and improving the distribution of service to households.

Table 1. Results of ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 1.79E-09 10 1.78576E-10 5.454753782 3.97E-08 1.831296
Within Groups 5.22E-07 15931 3.27377E-11
Total ' 5.23E-07 15941

Table 2. Results of F-Tests comparing the results of all the iterations of our substitution model

Comparison F' F critical H, Conclusion Results with 95%
one-tail confidence level
1 and 0 1.24  1.09 61°< 64> reject Hy, and accept H,  5,°< ,°
2 and 0 1.18  1.09 62°< Gy reject Hy, and accept H,  6,°< &,°
3 and 0 1.23  1.09 63°< Gy° reject Hy, and accept H,  5:.°< o,°
4and 0 1.02  1.09 64°< 6y° accept Hy 64°= Gy’
5and 0 1.12  1.09 65°< Gy reject Ho, and accept H,  65°< &,°
6 and 0 1.26  1.09 66°< Gy° reject Hy, and accept H,  64°< &,°
7 and 0 1.19  1.09 07°< G reject Hy, and accept H,  6,°< o,°
8 and 0 1.26  1.09 65°< G reject Hy, and accept H,  6¢°< o°
9 and 0 1.07  1.09 Go°< Gy accept Hy Go’= Oy”
10 and 0 1.17  1.09 c10’<oy  reject Hy, and accept H,  o,0’< o,
2 and | 0.96 0.92 6> 61° reject Hy, and accept H, 5, ,°
3 and 2 1.04  1.09 63°< 65° accept Hy 63°= Gy
4 and 3 0.83  0.92 64> 63 accept Hy 64’= 53’
5 and 4 .10 1.09 05°< G4 reject Hy, and accept H;  65°< o
6 and 5 1.12  1.09 66’< 55 reject Hy, and accept H,  64°< o5°
7 and 6 094 092 o7 O reject Hy, and accept Hy 6> o4’
8 and 7 1.06  1.09 05°< 67 accept Hy o5°= 67>
9 and 8 0.85 0.92 co> o> accept Hy Oo’= G1¢°
2

10 and 9 1.09  1.092 c1°’< oy accept Hy G10°= O
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VI. CONCLUSIONS

The central objective of this study, to develop a method
which measures access to social services for each
household and makes adjustments among service
providers to better accommodate under-served
regions, is successfully accomplished. The results
confirm and add further support for the creation of
polygon-polygon representations of the location-
allocation substitution model. The solution, although
reaching an optimization is likely not possible, appears
to improve and stabilize the allocation of supply to
demand by the seventh iteration for this data set. For
governments attempting to provide social services and
insure equal opportunity for all citizens, especially
where their spatial distribution is highly variable,
allocation models such as this, embedded in a GIS,
present a promising option.

VIIL. LIMITATIONS

A discussion of the uncertainty in the application of
this model best begins with the constraints imposed
by the data set. Although we generalize the process
of generating the probability of households being
served and adjusting contractor locations to level
access to services, the application is heavily dependent
on the delineation of service areas defined by the
contractors. It is likely that the original disclosures
regarding friction of distance, contractor capability and
capacity to deliver services are over simplified and
further investigation might produce evidence that
would modify the service areas and weight the
probability function for households. Although adding
additional contractors would not alter the method, it
would serve to alter the empirical outcome. Finally,
regions not serviced by the original supply set were
not consciously targeted for supply. More information
on these regions would determine whether they
should be targeted in the government rebate scheme.
Although these constraints serve to increase
uncertainty in the empirical study and globally optimal
results may not be possible, the model as constructed
" here solves a problem that previously could not be
solved, with results that are valuable to planner and
decision makers.
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