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Abstract

Using hyperspectral reflectance data collected from six types of surface covers, we synthesized linear mixtures and
used them to test the sensitivity of two linear unmixing algorithms to simulated additive noise. We found both
algorithms were highly sensitive to noise. This may considerably limit their use in remote sensing.

I. INTRODUCTION

Pure materials can be measured under controlled con-
ditions in laboratory. For remotely sensed data, how-
ever, different components may be included in one
measurement causing spectral mixing. In order to
identify various components and to determine their
spatial proportions from remotely sensed data, one
must properly model the spectral mixing process.

A popular method is the linear spectral mixing model
[1]. With this model, some surface materials, called
endmembers, components, or cover types, are consid-
ered to be spectrally mixed together with their areal
proportions as weighting factors in one measurement.
The physical assumption is that the amount of mul-
tiple scattering is not significant among the compo-
nents in the measurement implying that most pho-
tons reaching the sensor interact with just one com-
ponent. Under this assumption the energy received
by a sensor can be approximated by the sum of the
energy received from each component in an observa-
tion unit such as an image pixel. The inversion of
this problem is usually done linearly (see [19][21] for
nonlinear solutions), called linear spectral unmixing.
A major purpose of unmixing remotely sensed data is
to derive subpixel proportions of endmembers.

Linear unmixing was originally applied in geology
(e.g., [2,4,8,23]) involving non-vegetative materials
whose spectral mixing is at least intuitively close to a
linear one. Recently, it was used in ecology, climatol-
ogy, and urban land cover mapping involving data
from sensors on board aircrafts and satellites such as
the Landsat, SPOT and NOAA [7,11,12,22,25]. In-
clusion of vegetation and human structure as scene
components may violate the linear mixing assump-
tion to some extent. Although non-linear models may
be more appropriate in ecological and urban studies,

they are hard to build, difficult to invert (e.g., [18])
and more dependent on scene components (e.g., mod-
els of forest canopies are different from those of build-
ings).

The simplicity of linear spectral mixing is attractive,
but to what extent the linear assumption holds re-
quires the knowledge of the exact form of radiative
transfer of scene components. Related to this ques-
tion is how scene components in neighboring pixels
affect the pixel being unmixed. In addition, the at-
mosphere affects remotely sensed data, particularly
in shorter wavelengths. How does the atmospheric
interference affect linear unmixing results? Answers
to these questions will be helpful for us to understand
the reliability of linear unmixing results. In this pa-
per, we present some tests that reveal the sensitivity
of two unmixing methods to noise.

II. LINEAR SPECTRAL MIXING MODELING
AND ITS INVERSION - LINEAR SPECTRAL
UNMIXING

Suppose there are p endmembers in m bands of a re-
motely sensed image, and rjk represents the spectral
reflectance of kth endmember at jth band, all the re-
flectance can be arranged in an m x p matrix R. The
linear spectral mixing model can be expressed as:
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or di=R e fj
with the following constraints:

p
fik=20 and >.f; =1 fori=1,2,.,n, (2)
k=1

where n is the total number of image pixels, dj is the
spectral responses measured from the ith pixel which
is recorded by sensors in m bands, each column vec-
tor in R corresponds to an endmember, and f; de-
notes the fractional area of the £th endmember in the
ith pixel. All the fractions of endmembers in pixel i
compose a p x I vector fj and they should sum to one.

For the unmixing of a mixture pixel, three types of
parameters in Equation (1) are of interest: (a) the to-
tal number of endmembers in the pixel, p; (b) the spec-
tral identity of endmember % in m bands, i.e., all the
elements in the kth column of R (vjk,j =1, 2, ..., m)
that can be used to plot a spectral curve of endmember
k; (c) the proportion of endmember % in the pixel, fik.

The solution to Equation (1) is limited by the knowl-
edge of these parameters. If parameters (a) and (b)
are known, it is possible to determine (c) pixel by pixel.
This is a typical situation used to derive spatial pro-
portions of various endmembers from remotely sensed
data. It is easy to get the proportional solution by
inverting matrix R. If (a) and (c) are known, (b) can
be obtained from dj and fj [14]. This method is appli-
cable to situations where available ground measure-
ments of fj are used to derive R. When only (a) is
known, or none of the three types of parameters is
known, it is still possible to estimate these mixture
parameters from a simultaneous analysis of many
pixels though the mixing proportions in these pixels
must vary from pixel(s) to pixel(s). Some methods
have been proposed to achieve the solution including
the use of principal component analysis [24], factor
analysis [16], and mathematical programming [19].

When the number and the spectral identities of
endmembers are known, there exist three possible
cases to extract proportions of each endmember: (a)
m+1<p; (b) m+1=p; (¢) m+1>p. For case (b), it is a
simple case to solve Equation (1) with the constraint
Equation (2). In case (a), an image acquired from sen-
sors may have a smaller number of spectral bands
than the number of endmembers. Under such cir-
cumstances, Equation (1) becomes underdetermined.
In order to obtain the spatial proportions for each
image pixel, an optimal solution has to be explored.
Some researchers recover proportions f using the geo-
metrical scattering structure of data in multispectral
space in combination with evidence such as the tas-
seled cap behavior of vegetation in a red-infrared scat-
ter plot [15]. For data acquired with imaging spec-
trometers, dozens to hundreds of bands for each im-

age pixel are available. Under this condition, equa-
tion (1) is mostly overdetermined as in case (c¢). In
this study, we focus on case (¢). To solve (1), the di-
rect inversion is

f= (R"R)'R" ed (3)

To avoid singular results, a Singular Value Decom-
position (SVD) algorithm may be used [56][20]. Since
these inversion methods do not guarantee that f in
(2) are between 0 and 1, they are called unconstrained
methods.

In a constrained approach, proportions fj can be solved
through a nonnegative least squares strategy. The
nonnegative least squares method is a special case of
least squares problem with linear inequality con-
straints on the solution. This problem is defined as
Minimize | | Rf-d | | subject to 0<f<1. (4)

Details on solving (4) are found in [17].

In this study, we used both the unconstrained SVD
and the nonnegative least squares methods. Since
simulated data were used, the true fraction for
f jendmember j was known. We used the root mean
squared error, RMS, as a measure to evaluate
unmixing results,

RMS = /%i(fj—fjf (5)

where fj corresponds to the unmixing result for
endmember j.

IIT. ENDMEMBERS, SIMULATED ADDITIVE
NOISE AND UNMIXING EXPERIMENTS

Spectral reflectance of six endmembers was extracted
from a hyperspectral image acquired with a compact
airborne spectrographic imager (casi) in Oregon [13].
Raw casi data were calibrated [3] and converted from
radiance to reflectance [10]. The spectral interval be-
tween successive bands is approximately 1.8 nm.
After smoothing the data with a 1 X 7 average filter,
spectral curves of the six endmembers are shown in
Figure 1 with a total of 210 spectral bands. The six
endmembers include three types of gravel at differ-
ent locations, two types of grass and ponderosa pines.
Gravel_1 is relatively pure while Gravel_2 and
Gravel_3 are slightly different from Gravel-1 and con-
taminated by different coverages of tuft grass. The
two types of grass, Grass_1 and Grass_2, are snow
grass and tuft grass, respectively. In this study, the
six endmembers serve only as an example data set
for the purpose of testing the sensitivity of linear
unmixing methods to noise.
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Figure 1. Smoothed CASI reflectance curves of six
endmembers

Using these endmembers, we constructed R in equa-
tion (1) and tested the reliability of the two algorithms.
Replacing dj with each endmember and then solving
equation (1) using either method, we can obtain a 1
corresponding to the endmember used in place of dj
and 0 proportions for other endmembers. Simulat-
ing an observation vector d by linearly mixing the six
endmembers in R using proportions of 0.05, 0.27, 0.11,
0.07, 0.35, and0.15, respectively, the two methods can
unmix d to recover these proportions correctly. d is
presented using a bold solid line in Figure 2. Using a
smaller number of spectral bands and repeating the
above tests, we can still get the correct results as long
as the number of bands is greater than the number of
endmembers. These tests indicate that if no noise
exists in the observation vector d, both algorithms
are accurate. The question is how reliable these meth-
ods are when noise exists in d.

We only experimented with observation vectors con-
taining small additive noise approximating upward
atmospheric path radiance (Figure 2). When reflec-
tance of endmembers is measured in field or in labo-
ratory, the atmospheric effect on such measurements
may be ignored. Remotely sensed data, however, are
affected by atmospheric scattering particularly at
shorter wavelengths if the sky condition is clear. We
simulated five upward atmospheric path radiance
curves in quantities of reflectance based on Rayleigh
scattering [6,9,26]. At 420 nm, the simulated addi-
tive noise is at the level of 0.5%, 1%, 1.5%, 2%, and
2.5%, respectively. While noise patterns in radiance
may be different from those in reflectance, it is not a
concern in this study because the simulated noise lev-
els are lower than what might be in reality. The
curves in Figure 2 presented in thin or dashed lines
represent the simulated noise added to the observa-
tion vector along the bold solid spectral curve.
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Figure 2. Simulated Rayleigh scattering added to
an artificially created linear mixture spectra

Table 1 shows the noise effect on the linear unmixing
results. Indices 1 - 5 correspond to the above five
levels of additive noise in an increasing order. As one
would expect, when the magnitude of additive noise
increases, the derived proportions of most
endmembers become less accurate. From the RMS
errors, we can see that the unconstrained and the
constrained unmixing methods resulted in similar
levels of errors. Surprisingly, a less than 2.5% reflec-
tance of additive noise has led to a greater than 20%
of RMS error in proportion (or an error greater than
15% in arithmetic average of proportions) with either
method. For individual endmembers, it can be seen
that with noise at the level of index 5 contaminating
the original mixture the proportion for endmember
Grass_1 is almost 4 times overestimated. Examin-
ing the change of curve shapes in Figure 2, we can
see that the shape at shorter wavelengths becomes
more and more similar to Grass_1 (snow grass in Fig-
ure 1) as the noise level increases. This indicates
that noise causing the shape changes of spectral
curves can dramatically influence the unmixing re-
sults. The implication of this experiment is that ac-
curate radiometric calibration and atmospheric cor-
rection must be done in order to obtain reliable re-
sults using these methods. Unfortunately, atmo-
spheric correction errors smaller than 2.5% in reflec-
tance are difficult to achieve in practice. This places
a strong restriction on the use of endmembers mea-
sured in laboratory or in field for linearly unmixing
remotely sensed data acquired from aircraft or satel-
lite platforms.

Thus far, we used all 210 spectral bands in the ex-
periment. They are highly redundant for estimating
the proportions of six endmembers. Five band selec-
tion methods have been developed and tested [26].
In this study, we used some of band selection results
from two of those methods, method A and method B,
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Table 1. Linear unmixing results from data contaminated by additive noise

Endmember| Gravell P. Pine Grassl Gravel2 Grass2 Gravel3 RMS
Real Prop. 0.05 0.27 0.11 0.07 0.35 0.15 0.000
Index Unconstrained Unmixing Method

1 0.06 0.23 0.19 0.04 0.34 0.17 0.040
2 0.08 0.18 0.28 0.02 0.33 0.19 0.084
3 0.09 0.14 0.36 -0.01 0.32 0.21 0.124
4 0.11 0.10 0.45 -0.04 0.31 0.23 0.167
5 0.12 0.06 0.53 -0.07 0.30 0.24 0.206
Index Constrained Unmixing Method

1 0.06 0.23 0.19 0.04 0.34 0.17 0.040
2 0.08 0.18 0.28 0.02 0.33 0.19 0.084
3 0.10 0.14 0.37 0.00 0.32 0.19 0.125
4 0.12 0.09 0.46 0.00 0.31 0.17 0.167
5 0.15 0.04 0.55 0.00 0.31 0.15 0.209

Note: P. Pine— Ponderosa Pine; Real Prop.—Real Proportion

as presented in Figures 3. Figure 3a shows 20 se-
lected bands clustered at the longer wavelengths
whereas Figure 3b shows 20 selected bands spread
over the entire spectral range. We used the selected
bands to unmix the simulated noisy observation vec-
tors in Figure 2. The results are presented in Tables
2 and 3 for the unconstrained and constrained
unmixing methods, respectively. The five rows next
to each method of band selection in Tables 2 and 3
correspond to the five indices in Table 1. By compar-
ing the RMS errors listed in Tables 2 and 3, it seems
that the two unmixing methods again have similar
performances. When these are compared with the
RMS errors in Table 1, it seems that the reduced data
set produced better unmixing results. This is par-
ticularly true for the results obtained with band se-
lection method A due to the fact that the magnitude
of noise in the bands of longer wavelengths selected
by method A is much smaller than that in many bands
selected by method B.
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IV. SUMMARY AND CONCLUSIONS

As linear spectral unmixing algorithms become widely
used, there are few studies focused on their validity
and sensitivity to noise existing in the data to be un-
mixed. We selected two linear unmixing algorithms,
an unconstrained method based on singular value
decomposition and a constrained method based on
nonnegative least squares, to test their sensitivity to
noise. By linearly mixing spectral curves of six types
of surface covers acquired with a compact airborne
spectrographic imager, we obtained a spectral mix-
ture. We then added simulated noise to the linearly
mixed data set.

By unmixing the noisy data, we found that the two
linear unmixing algorithms are very sensitive to noise.
The effect of additive noise at less than 2.5% reflec-
tance level is strong enough to cause an average er-
ror of greater than 15% in estimated endmember pro-
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Figure 3. Spectral bands selection. a) Selected bands with method A; b) Selected bands with method B.
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Table 2. Linear unmixing results from the unconstrained method with selected bands

Endmember| Gravell P.P. Grassl Gravel2 Grass2 Gravel3 RMS
0.07 0.28 0.11 0.05 0.35 0.15 0.012
0.09 0.28 0.10 0.04 0.35 0.16 0.022
Method A [0.10 0.29 0.10 0.02 0.35 0.16 0.031
0.12 0.29 0.09 0.01 0.35 0.17 0.040
0.14 0.30 0.09 -0.01 0.35 0.17 0.052
0.07 0.23 0.18 0.05 0.34 0.16 0.035
0.09 0.20 0.25 0.02 0.34 0.17 0.070
Method B |0.11 0.16 0.32 0.00 0.33 0.18 0.105
0.13 0.13 0.39 -0.03 0.33 0.19 0.139
0.16 0.09 0.45 -0.05 0.32 0.20 0.172
Note: P. P.--Ponderosa Pine
Table 3. Linear unmixing results from the constrained method with selected bands
Endmembery Gravell P.P. Grassl Gravel2 Grass2 Gravel3 RMS
0.07 0.28 0.11 0.05 0.35 0.15 0.012
0.09 0.28 0.10 0.04 0.35 0.16 0.022
Method A [0.10 0.29 0.10 0.02 0.35 0.16 0.031
0.12 0.29 0.09 0.01 0.35 0.17 0.040
0.14 0.30 0.09 0.00 0.35 0.16 0.049
0.07 0.23 0.18 0.05 0.34 0.16 0.035
0.09 0.20 0.25 0.02 0.34 0.17 0.070
Method B |0.11 0.16 0.32 0.00 0.33 0.18 0.105
0.14 0.11 0.40 0.00 0.33 0.15 0.143
0.17 0.06 0.49 0.00 0.32 0.13 0.187

Note: P. P.--Ponderosa Pine

portions. Unmixing results obtained from the two
methods tested in this study could be rather unreli-
able. We suggest that one must be very careful when
choosing to use either of the two methods in remote
sensing. Our examples illustrate that band selection
may be useful to reducing unmixing errors. Select-
ing bands that are less affected by noise helps to im-
prove the reliability of unmixing results.
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