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Abstract

Although national data sets are becoming readily available at low cost, scale usually limits their utility for planning
and managing small municipalities. As a result, most communities are faced with the construction of their own
municipal Geographic Information Systems (GIS), information systems that are critical in handling land-related
activities where high accuracy is essential. Most small municipalities cannot afford to begin by commissioning a
large scale cadastral map and thus must opt for spatially questionable facsimiles where surveys showing adminis-
trative boundaries, property lines and street centerlines are suspect. The accuracy in these data can be enhanced
and the results of great value to most city operations. We introduce a new method that applies theoretically based
spatial decompositions to automate the generation of street centerlines from spatially corrected block and parcel
data. This new centerline data base is a vast improvement over existing data bases for most municipalities.

L. INTRODUCTION

The relatively young field of Geographic Information
Science has had significant impact on the develop-
ment of techniques to capture, measure, store, man-
age and analyze geographic information within an
urban environment. The amount of data that is cap-
tured and catalogued in a municipality is now quite
voluminous and increasing each day as government
departments go completely digital. The invention of
technologies such as Remote Sensing, Global Position-
ing Systems (GPS) and hand held computers or data
loggers, produces more data ready for immediate
online access than ever before. Much of the data gath-
ered within the municipality can be geographically
related rendering location as a unique data field for
relating data that might otherwise go unlinked. How-
ever, methods of managing these data are often anti-
quated and land related data held by one agency or
department is frequently inaccessible by another.
(Zhou, 1995). For example, some departments use
one set of base maps for spatial encoding data while
others use a different source, often of different scale
and accuracy. Some departments catalogue data by
tax map, block and parcel, while others rely on street
address. To continue these efforts results in no value
added through the integration of data and no synthe-
sis can emerge to better plan and manage the mu-
nicipality.

A Cadastral map or survey showing administrative
. boundaries and property lines is usually the most
detailed and accurate land information available for
a municipality and can provide a large-scale base to
which other layers of data can be registered or added.

(Zhou, 1995) Although the Cadastral map may pro-
vide the ultimate registration base, it is generated
from an accurate land survey and is usually the most
tedious and expensive to produce. For most small to
medium size municipalities, starting with a digital
Cadastre is not a viable option. It is likely the major-
ity of municipal Spatial Decision Support Systems
(SDSS) (Malezewski, 1997) that build upon a base of
street centerline, block and parcel information, do not
require the accuracy of a Cadastral base and can be
effective employing a close facsimile. How then might
these municipalities produce a relatively accurate yet
cost effective georeferenced data base to facilitate the
integration of data and service the majority of their
information management needs?

II. OBJECTIVES

The central objective of this study is to develop a new
low cost method which integrates and rectifies non-
georeferenced parcel map tiles to an accurate surveyed
set of benchmarks and employs theoretically based
geometric structures to extract the form of a set of
points to automatically define and generate street
centerlines. This new centerline generator can be
considered an alternative to the existing generators
which often rely heavily on human operator interven-
tion, leading to long delays during the construction of
municipal SDSS and often postponement. Although
there have been several attempts to automate the
construction of street centerlines (Ladak and
Martinez, 1996; Christensen, 1996; East, 1997), prob-
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lems still remain correcting for intersections and cul-
de-sacs with most solutions still needing software
enhancements. The new method proposed here char-
acterizes the endoskeleton (Radke, 1988) of a set of
points by exploiting notions of relative proximity and
neighborliness. These notions are present in two op-
erations in the method, the construction of the
Delaunay Triangulation (DT) and the more rigorous
and quantifiable B-skeleton which delineates a wide
spectrum of possible skeletal structures to construct
the street centerline.

Before we propose a method which has foundations
in computational morphology (Toussaint, 1980), we
summarize descriptors of shape that decompose point
sets into summary bounding shapes, shape hulls
(Toussaint, 1980) or exoskeletons, and internal line
structures referred to as skeletons by Toussaint (1980),
but better described here as endoskeletons. Next the
theoretical models that define neighborliness and con-
struct endoskeletons as part of the process to delin-
eate street centerlines are developed and explained.
Finally, the method developed here is described and
applied to a municipal data set in the City of Berke-
ley, California to demonstrate its sensitivity and ro-
bustness. We argue the resultant data base provides
an inexpensive but accurate skeleton upon which a
robust municipal SDSS can be constructed to serve
most of the City’s application needs.

III. SPATIAL DECOMPOSITIONS

The spatial decomposition of data is becoming more
common (Li, 1984; Radke, 1988, Okabe et al, 1992)
with many tools now packaged in popular software.
The locational characteristics of observations are ab-
stracted and encoded as spatial data models with
points, lines and polygons (cells) characterizing the
spatial extent of data (Goodchild,1992). Further de-
marcation within these data models is valuable and
can take the form of vertical or horizontal spatial data
analysis (Gong, 1994), common practice in the pro-
cessing of data in geographic information science.

Decomposing a point set into simple line or polygon
sets can result in perceptually meaningful shapes or
structures that better describe the original point set’s
morphology. These new structures can provide bet-
ter descriptors of form, or anthromorphic decomposi-
tions as they are referred to by Pavlidis (1977), be-
tween neighboring points. Essential or extreme points
in the pattern can be used to decompose and detect
the geometrical properties of the points set under-
study.

This paper is about understanding the neighborliness

and characteristics of points, lines and polygons to
aid in the automatic generation of street centerlines.
We undertake a number of spatial processes decom-
posing polygons to lines and then into points, regen-
erating simple polygons based on notions of neigh-
borly, decomposing those simple polygons into lines
and then essential points, and finally decomposing
these essential points into lines which form, for the
most part, the street centerlines. Streets can vary in
complexity from straight to those with extreme curves.
Points demarcating street centers possess the same
characteristics which make it difficult for a single
shape descriptor to be considered the best for all pos-
sible applications. We generate a number of solutions
that describe the internal set of essential points and
form descriptors of the street centerline. The method
is robust and can consider a variety of street curves
while generating street centerline best fits. The
method draws from both internal (Endoskeleton-
graphs) and external (exoskeleton-hulls) theoretically
based shape descriptors.

Exoskeleton-hulls

The simplest exoskeleton decompositions of a set of
points describe very general geometric constructs.
The minimum bounding box, minimum bounding
circle (Freeman and Shapira, 1975; Toussaint and
Bhattacharya, 1981) or its generalized minimum
bounding ellipse (Kirkpatrick and Radke, 1985) all
provide a crude first approximation of the global shape
of a point set. A more sensitive descriptor of global
shape is the convex hull or the minimum convex poly-
gon that contains the entire point set (Toussaint,
1980). A generalization of the convex hull introduced
by Edelsbrunner et al (1983) introduces a parameter-
ized notion of a family of o-Aulls where shapes, es-
sentially cruder and finer than the convex hull, can
be defined.

Endoskeleton-graphs

The simplest endoskeleton decompositions of a set of
points that could be considered a shape descriptor is
the nearest neighbor graph (NNG) which most often
results in an unconnected graph with many spatial
subsets. If we connect all the subsets in the NNG
with the minimal total edge length, the minimum
spanning tree (MST) results which can be considered
the minimal skeleton of the point set. Increasing the
complexity of the link structure and allowing circuit
graphs to form, gives the skeleton a more expansive
shape by connecting more essential neighbors. One
such endoskeleton, the relative neighborhood graph
(RNG) (Lankford, 1969), produces edges linking rela-
tive neighbors Vj and Vj if their lune, the region of
influence formed by the intersection of two circles of
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radius d(Vj ,Vj) and centered at Vj and Vj, is empty.
A conceptually similar graph, the Gabriel graph (GG)
(Matula and Sokal, 1980), links Gabriel neighbors Vi
and Vj if their disc, the circle of influence with radius
d(Vj ,V;j)/2 which passes through both Vj and Vj, is
empty. All of these internal shape descriptors are
subsets of the Delaunay Triangulation, as
NNGcMSTcRNGcGGeDT (Figure 1).

The Delaunay Triangulation, the maximal planar
description of internal structure in a point set, is a
popular decomposition that along with its combina-
torial dual, the Voronoi diagram, has had one of the
greatest unifying effects of all graphs studied in com-
putational geometry and has many interesting prop-
erties and applications (Shamos and Hoey, 1975; Getis
and Boots, 1978; Okabe et al, 1992). The DT can be
efficiently computed in O(n log n) time as it is made
up of edges that join all Voronoi neighbors embedded
in a plane (Toussaint, 1980). Two points Vj and Vj,
from a point set s, are Voronoi neighbors and define
an edge of the DT if there exists a point x in a plane
for which d(x,V;) = d(x,Vj) = min{d(x,V) | Ve s}.

The DT can also be computed, although not as effi-
ciently, using as a generative property the notion of
empty neighborhoods similar to those used by the
RNG and the GG. Conceptually this method helps

N \
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RNG GG
DT
Figure 1. NNGcMSTCRNGCGGCDT

explain our cross street sampling strategy employed
in this paper. Like the GG disc or circle of influence,
each Delaunay triangle is defined by an empty cir-
cumcircle (Okabe et al, 1992), an empty circle whose
circumference intersects all three points of the
Delaunay triangle (Figure 2).

If we generalize the process of using discs or empty
circles in a plane, these discs having neighborly prop-
erties similar but not equal to those that construct
the DT, we can construct a spectrum of endoskel-
etons, the family of B-skeletons (Radke, 1983;
Kirkpatrick and Radke, 1985; Radke, 1988). The
neighborly properties which generate these endosk-
eletons, produce a spectrum of skeletons which include
the completely connected graph at one extreme, pass-
ing through subgraphs like the RNG and GG, to even-
tually a graph which equals the point set itself. Since
our objective is to construct a better descriptor of street
centerline which integrates the essential points in a
street center sample point pattern, it is likely that
the acceptable skeleton structure will emanate from
a fairly narrow range within the overall spectrum.

B-skeletons provide a hierarchy of descriptors of in-
ternal shape based on measures of neighborliness. We
use both a lune and disc (or circle based method) to
search a neighborhood for intervening opportunities
in the form of other points from a point set Vg under-
study.

Circle Based Neighborhoods: For a given pair of points
Vi and Vj we can construct a continuous family of
neighborhoods N(Vj ,Vj ,) based on a pair of circles
which pass through both Vj and Vj, and are indexed

The circumcircle method for generating

Y

Figure 2.
the DT



18 Radke and Flodmark: The Use of Spatial Decompositions for Constructing Street Centerlines

by a single real value parameter B, where B € [0,c].
When (=1, the neighborhood searched between V; and
Vj is composed of the union of two discs, with radius
B(Vi ,Vj)/2, which pass through both Vj and Vj. When
B € [0,1] the neighborhood searched for V; and Vj is
the intersection of two discs of radius d(Vj ViI(2B)
which pass through V; and Vj. This B-skeleton algo-
rithm generates the Gabriel graph when B = 1 and
the neighborhood searched is N(V; ,Vj,1) (Figure 3).

Lune Based Neighborhoods: In the lune based ap-
proach we can also construct a continuous family of
neighborhoods N(V; ,Vj ,B), indexed by a parameter
B, where B € [0,.c]. However, when B>1, the neigh-
borhood searched is the intersection of the two circles
of radius Bd(Vj,Vj)/2, centered at the points (1- B/2)
Vi + (B/2) Vj and (B/2) Vi 4+ (1- p/2) Vj |, respectively.
When B e [0,1] the neighborhood searched is the in-
tersection of two discs of radius d(V; ,Vj)/(2[3) which
pass through Vj and Vj. Like the circle based ap-
proach, this -skeleton algorithm generates the GG
when BB = 1 but also generates the RNG when B = 2.

No matter what B method is chosen, as § — o, the B-
skeleton generated, except for degenerate point sets,
is devoid of edges and as B — 0, the B-skeleton gener-
ated becomes the completely connected graph (CCG)
where edges occur between all pairs of points.

IV. DECOMPOSITION METHOD APPLIED

The City of Berkeley is located within the fully ur-
banized Eastern Shore of the San Francisco Bay in
Northern California. With a population of 100,000
the City extends from the Bay east to the Berkeley
Hills and is bounded by the City of Oakland to its
south and the cities of Albany and Richmond to the
north (Figure 4).

N(Vi 9Vj B | pe[0,1]

Marin

. San Francisco

Figure 4. City of Berkeley in San Francisco Bay Re-
gion.

In an effort to develop a functional parcel map which
would become the base for a SDSS for the City, we
translated a series of Computer Aided Design (CAD)
drawings from a local utility company, East Bay Mu-
nicipal Utility District (EBMUD), into a GIS data
structure (Arc/Info). These CAD drawings contained
unique water tap numbers within each parcel which
are used for billing purposes and eventually lead to a
process where we were able to link water tap number
and parcel address. From the County Assessment
data base we were able to further link parcel address
with parcel number (APN) and produce a digital par-
cel map with both street address and APN, a critical
task for the majority of a city’s information manage-
ment needs. When using a variety of ancillary data
from different sources, coding errors always exist.
After applying some standard quality control mea-
sures which included editing the data where neces-
sary, we were able to assess data integrity of the par-
cel base map to be 97% accurate.

Although the parcels had originally been scanned from

N(Vi ,Vj ’B) I B € [0’°°]

Figure 3. Some disc or circle based B-neighborhoods.
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paper cadastral maps, the CAD generated parcel maps
were not georeferenced. When the parcel maps were
projected into a State Plane Coordinate System us-
ing the North American Datum (NAD) 83 and over-
laid on 6" panchromatic Aerotopia Digital Ortho pho-
tography, we found parcel boundaries transecting both
structures and street segments with an average dis-
placement error exceeding 10 feet. To reduce this
error we applied rubber sheeting algorithms and ad-
justed the parcel map to physical, accurately geo-po-
sitioned monuments, surveyed by the Public Works
Engineering Department. Thirty strategically se-
lected monuments, with accuracy within .01 inch,
were used as control points and the parcel map
georeferenced.

Our process decomposes city blocks or street casings
to generate street centerlines. The generation of city
blocks in this instance is derived by dissolving the
parcel database based on the first seven figures of
the APN which are block-unique. This process can
return fictitious sliver parcels which will result in a

contaminated street database with erroneous street
segments. The error is eliminated by assigning sliver
or multiple polygons within a block an identical at-
tribute value from which we dissolve and produce a
clean city block database (Figure 5).

The center of a street is of course the mid point be-
tween two opposing blocks. If the blocks are uniform,
measuring perpendicular to the block face might suf-
fice, but where the block faces are curved, a more rig-
orous sampling is needed. In the City of Berkeley
the street curvature varies from straight lines in the
flat lands to the southwest, to extreme curved lines
in the hill areas to the northeast (Figure 6).

To measure the mid point between two opposing
blocks we sample along both block faces and compare
each sample point to its two closest sample points on
the other block face. From this we can easily produce
a set of essential or mid points which make up a sub-
set of the street centerline. We conservatively sample
every 9 meters along the block face in order to insure
we capture the complexity of the curves in the hill
area to the northeast (Figure 7).

We construct the Delaunay Triangulation (DT) of the
set of points which serves to connect each sample point
to its nearest two points on its opposing block face.
Of course the DT constructs this connection for the
block face across the “street space” as well as the op-
posing face which constructs the same block (Figure
8).

Since our interest is in constructing the mid point
across the “street space”, we buffer each city block
polygon by a very small constant value (in this in-
stance 0.3 meters) and eliminate all line segments
that lie within. The resultant data base contains in-
dividual line segments (Figure 9) whose mid points
lie on and can be used to generate the street
centerlines for the entire city (Figure 10).

Figure 6. Southwest Berkeley and Northeast Berkeley street network patterns
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Figure 7. Sample every 9 meters along the block face.

It is important to note that in the case of cul-de-sacs
the same block face generates points that become
Delaunay neighbors which results in essential or mid
points that will eventually result in a fork in the
centerline termination point. The few cases where

this occurred were eliminated before further process-
ing occurred.

What visually appears to be a simple task, to decom-
pose the midpoint database and create street
centerlines, is a complex process to automate. If only
the essential points that sample along the centerline
for a given street had to be decomposed, the mini-
mum spanning tree (MST) would suffice, however com-
plexity is introduced by the varied and often compli-
cated ways that streets intersect each other. The
addition of X, Y and T intersections (Figure 11) call
for a decomposition algorithm which can be tuned to
integrate the essential points in a street center sample
point pattern in order to accurately construct street
centerlines. We employ both the Lune and disc based
neighborhood methods of the B-skeletons and apply a
fairly narrow range within the overall spectrum
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Figure 8. DT created from the densified block bound-
ary coverage.

V. RESULTS

Table 1 contains the results of a number of B values
for both the lune and disc based algorithms.

When b= 1, the Gabriel Graph (GG) is generated by
both algorithms and a fully connected street network
results which easily solves four-way intersections but
over connects at T and Y intersections forcing consid-

erable post-processing to create a satisfactory street
network.

Although the disc based neighborhood appears to be
the best and is very effective connecting straight and

| N |

Figure 9.

The isolated DT line segments crossing a
street.

Figure 10. Resulting street midpoints for a small
section of the city.
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Figure 11. X, T and Y intersections defined.

Figure 12. B= 1, the Gabriel Graph (GG) illustrated
for a small section of the city.

Figure 13. > 2 produces some failed intersections.

curved line segments, it too produces some failed in-
tersections when B> 2 (Figure 13).

After an iterative process we found the circle or disc
based approach where = 1.2 to produce the most in-
teresting result (Figure 14).

This iteration solves all four-way or X- intersections,
Y-intersections and it creates complete arc segments
where there are no intersections. The only remain-
ing problem occurs at T-intersections where the algo-
rithm does not properly connect the street center lines.

Table 1. Contains the results of a number of B values for both the lune and disc based algorithms

B-value Neighbor- X-int. T-int. Y-int. Straight Curved Comment

hood segments segments
1.0 Circle X X X X T, X & Y overconnect.
1.2 Circle X X X X
2.0 Circle X X Straight segments not complete
3.0 Circle X Straight segments not complete
4.0 Circle X
6.0 Circle X
20.0 Circle
1.0 Lune X X X X T, X & Y over-connect.
1.2 Lune X X X X T & X over-connect.
2.0 Lune X X X X T over-connect.
3.0 Lune X X X Straight segments not complete
4.0 Lune X X Straight segments not complete
6.0 Lune X X Straight segments not complete
20.0 Lune
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Figure 14. 3=1.2 produces the best result.

This anomaly occurs as the original block face sam-
pling to produce the DT and eventually the street
centerline point sample set, lacks four block corners
at T- intersections and thus can only produce connec-
tions that deviate considerably from a right angle.

In post-processing it is possible to automatically ex-
tend an arc until it intersects another and corrects
the T-intersections. These commands are common
editing tools in most GIS where a distance can be set
to specify how far the algorithm will search for an
intersecting arc. This post-processing step could re-
sult in a complete data set but more often a few
anomalistic errors remain which need attention to
ensure that all complicated cases, such as circles and
complex intersections are represented correctly. Once
the street centerline data set is anatomically correct,
we can generalize or omit the redundant vertices in
the street centerline data set using weeding algo-
rithms common to most GIS software. Figure 15 il-
lustrates the final street centerline data set processed
with a weed tolerance of 2 feet.

VI. CONCLUSIONS

The central objective of this study, to develop a new
method that extracts the form of a set of points em-
bedded in a plane and automatically defines and gen-
erates street centerlines from parcel-block informa-
tion, was successfully accomplished. Based on no-
tions of neighborliness, a spectrum of potential
centerline solutions are generated which automate
the process and provide a better centerline fit, espe-

Figure 15. The final street centerline data set.

cially where curves exist. This parameterized notion
of neighborly provides a flexible and powerful method
of tuning the centerline construction to better auto-
mate and describe the centerline between parcel-
blocks and correct intersection problems common to
current automated centerline generators. This method
is useful in characterizing centerlines where massive
parcel-block data sets prevail and auotmated systems
are their only match.

VII. LIMITATIONS

Although we generalize the process of generating
street centerlines, the application is still dependent
on the accuracy and completeness of the parcel-block
data base. Since we use tax parcel maps as a base
data set, right-of-ways are not included. The shape
of the block polygons are not always a good represen-
tation of how the street is actually aligned. In addi-
tion, wide streets with dividers or traffic islands are
represented as a single line unless these islands are
added in the block coverage.

ACKNOWLEDGMENTS

This research was partially supported by a contract from
the City of Berkeley, and a grant from the Beatrice Farrand
Fund of the University of California, Landscape Architec-
ture Environmental Planning Department.



Geographic Information Sciences Vol. 5, No. 1, June 1999

23

REFERENCES

[1] Alnoor, L. and Martinez, R. B. 1996. “Automated deri-
vation of high accuracy road centerlines thiessen poly-
gons technique,” in ESRI User Conference Proceedings,
London, England.

[2] Aronoff, S. 1989. Geographic Information Systems: A
Management Perspective. WDL Publications, Ottawa,
Canada.

[3] Burrough, P.A. 1986. Principles of Geographic Infor-
mation Systems for Land Resources Assessment.
Clarendon Press, Oxford.

[4] Christensen, H. A. 1996. “Street centerlines by a fully
automated Medial-Axis transformation,” Proceedings
of GIS/LIS, Falls Church, VA., pp. 107-115.

[5] Donahue, J.G. 1994. “Cadastral mapping for GIS/LIS”,
ACSM /ASPRS International Proceedings.

[6] East, C. T. 1996. “Automated road centerline genera-
tion from double edged road coverages,” in ESRI User
Conference Proceedings, Palm Springs, CA.

[7] Edelsbrunner, E., Kirkpatrick E.G. and Seidel, R. 1983.
“On the shape of a set of points in the plane,“ IEEE
Trans. Information Theory 29 (4):551-559.

[8] Freeman, H. and Shapira, R. 1975. “Determining the
minimum-area encasing rectangle for an arbitrary
closed curve,” Comm ACM 18:409-413.

[9] Getis, A. and Boots, B. 1978. Models of Spatial Pro-
cesses: An Approach to the Study of Point, Line and
Area Patterns. Cambridge University Press, New York.

[10] Goodchild, M.F. 1992. Geographical Information Sci-
ence, International Journal of Geographical Informa-
tion Systems, 6(1):31-45.

[11] Gong, P. 1994. Integrated Analysis of Spatial Data
From Multiple Sources: An Overview, Canadian Jour-
nal of Remote Sensing, 20(4):349-359.

[12] Harary, F. 1969. Graphy Theory, Adison-Wesley, Read-
ing.

[13] Kirkpatrick, K.B. and Radke, J.D. 1985. “A frame-
work for computational morphology,” in Computational

Geometry, Toussaint, G.T., ed., Elsevier Science Pub-
lishers B.V. (North Holland), pp. 217-248.

[14] Lankford, P.M., 1969. “Regionalization: theory and al-
ternative algorithms,” Geographical Analysis 1 (2):
196-212.

[15] Li, Yuwei. 1984. Spatial Pattern Recognition by De-
composition, Mathematical Geology, 16(3): 217-235.

[16] Okabe, A., Boots, B. and Sugihara, K. 1992. Spatial
Tessellations: Concepts and Applications of Voronoi
Diagrams. John Wiley & Sons, New York.

[17] Pavlidis, T. 1977. Structural Pattern Recognition,
Springer-Verlag, New York.

[18] Peucker, T.K., Fowler, R.J., Little, J.J. and Mark, D.
1978. “The triangulated irregular network”, Proceed-
ings of the Digital Terrain Models Symposium, Ameri-
can Society of Photogrammetry, St. Louis, pp. 516-540.

[19] Radke, J. 1983. “Pattern recognition in circuit net-
works,” Ph.D thesis, Department of Geography, Uni-
versity of British Columbia.

[20] Radke, J. 1988. A computational geometric approach
to the analysis of form. Computational Morphology,
Toussaint, G.T. (ed) Elsevier Science Publishers B. V.
(North Holland), pp 105-136.

[21] Shamos, M.I. and Hoey, D. 1975. “Closest Point Prob-
lems,” 16th Annual IEEE Symposium on Foundation
of Computer Science, pp. 151-162.

[22] Toussaint, G. T. 1978. “The convex hull as a tool in
Pattern Recognition,” Proceedings of AFOSR Workshop
in Communication Theory and Applications,
Provincetown, MA, pp.43-46.

[23] Toussaint, G. T. 1980. “Pattern Recognition and geo-
metrical complexity,” Proceedings of the Fifth Interna-
tional Conference on Pattern Recognition, pp. 1324-
1347.

[24] Toussaint, G.T. and Bhattacharya, B.K. 1981. “On
geometric algorithms that use the furthest-point
Voronoi diagram,” Technical Report No. socs-81.3,
School of Computer Science, McGill University.



