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Abstract

Spatial Informatics typically invalves interpretation of remotely sensed images and analysis of multi-sources
of data. Random perturbation in the observations and diversity of hypothesized models give rise to the uncer-
tainty and diffieulty of image interpretation and data analysis. The Minimum-Description-Length (MDL)
principle is a best established criterion, which selects the best model with the minimal length of jointly
encoding the data and the model. Although in terms of probability, MDL criterion is equivalent to the Maxi-
mum Aposterior Probability (MAP) criterion, it is advantageous at combining different data types and differ-
ent model structures in a uniform measure - the total number of bits. It is more realistic to computerized
information processing, because everything is discrete with limited resolution. This paper clarifies the formu-
lation of the MDL eriterion, its relationships to information theory, stochastic complexity, and Bayesian deci-
sion strategy. To sufficiently demonstrate the applicability of this criterion, 2 number of cazes where this
eriterion can be and has been applied are deseribed, including global interpretation of remotely sensed images
for landuse mapping, line generalization, digital terrain modelling, spatial indexing in GIS, and unsuper-
vised clustering, The emphasis is on showing how each of these classic problems can be reformulated under
this new criterion. The reformulations are likely to lead to breakthroughs or significant progresses in the

fields.

I. INTRODUCTION

Spatial Informatics refers to a major branch of the
general information science which studies the ac-
quisition, representation, processing, analysis, and
use of the information of spatial phenomena. 1f we
only consider the geographical sphere of the earth,
spatial informatics is instantiated explicitly to
geomatics typically so called in North Ameriea, or
geoinformatics so called in Europe. These terms are
used to refer to a new interdiscipline which is a
marriage of geography and informatics. Here geog-
raphy is meant as a general umbrella covering natu-
ral and cultural geography, geodesy and cartogra-
phy. Informatics typically so called in Europe iz
also called computer science in North America. It
studies the general mechanisms of information rep-
resentation and processing. All the discovered for-
malisms and mechanisms are realized and inte-
grated in a machine — the computer. There are
three parts that constitute an application domain
of informaties: the information, the computer, and
the user. The constitution of these three parts, in
general, takes the form of an information system.
In geomatics, we are concerned only with geographi-

cal (or spatial) information systems (GIS or SIS).

What is really special in spatial infomation systems
in comparison with all other information systems
like office automation, bank accounting, economic
management, library archiving, and so on ? Some
major specialties of problems and issues in spatial
informatics may be identified as follows:

1. Spatial dimensionality: The prevequisite for start-
ing thinking on any problems and issues in spatial
informatics and acquiring observations and exist-
ing data is that we must prezume the existence of
the space. In GIS, we can ignore the Einstein space,
but only work with the Euclidean space. The order
of the data in spatial information systems cannot
be arbitrated. Instead, all the spatial data must be
indexed in a spatial reference system. In general,
three-dimensional space and one-dimensional and
uni-directional time constitute the four dimensions
of such a spatial reference, which  provides the
very basis for any other transformed spatial index-
ing.
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2. Geometric isomorphism: The mapping between
the real spatial objects and their models in the spa-
tial information systems should preserve the isomor-
phism in geometry. Without this isomorphism, the
spatial data cannot be analyzed on an objective
ground. By geometry, we mean the relative posi-
tion, orientation, shape, size of spatial objects and
other geometric relationships among them. On
the basis of geometry, the more flexible topology
among objects can then be defined.

3. Stability and randomness: The complexity of
spatial phenomena is several orders higher than
other phenomena. In most cases, the acquired data
describing some spatial phenomena contains com-
paratively small amount of information that can-
not encode the full complexity of the phenomena.
Therefore prior knowledge must be used. The most
general prior knowledge takes the form of implicit
assumptions. Disregarding application domains the
first assumption is that the world is not made up of
chaotic phenomena, but it has its own structures.
The structure means the stability of the world in
space, time, and resolution scale of observation, e.g.
imaging or measurement. Attached with the sta-
bility of the world, randomness is ubiquitous. Spa-
tial data are often acquired (observed) at a scale of
resolution either above or below some ideal level,
thus must have a random distribution. This ran-
domness is usually supposed to be either uniform,
(Gaussian, fractional, or waveletal. In fact, random-
ness of spatial phenomena so considered by human
beings is a reflection of over-complexity of the na-
ture which exceeds our capability of mathematical
analyziz and modeling,

4, Multiple sources of information: Geography is an
umbrella covering many aspects of the spatial phe-
nomena on the earth surface, such as topography,
geomorphology, hydrology, forestry, agriculture, ur-
ban planning and administration, traffic network,
and so on. All these aspects produce spatially in-
dexed data. Information from multiple sources are
initially encoded in different forms. A proper in-
dexing and fusion of multiple sources of spatial in-
formation is an obvious difficulty which is not sig-
nificantly present in other information systems,
Even in the spatial information systems, new infor-
mation may be produced through interaction of dif-
ferent components of the system.

5. Multiple categories of modeling: Geography isa
science of modeling the geographical phenomena.

Different aspects of spatial phenomena should be
maodelled into different categories. For example, a
maodel of urban traffic network may be quite differ-
ent from a model of hydrological network, and should
be completely different from a model of forest canopy
distribution. In remote sensing, the basic catego-
ries of models are geometric and radiometric mod-
els. These two categories of models are direct re-
lated to image observations. With the presence of
uncertainty and noise, multiple models of different
categories may need to be estimated from a com-
mon set of observations and existing data. This is
so-called problem of information fusion in GIS.

Maodeling of spatial phenomena from observations
is a central issue in spatial informatics. With the
ubiquitous presence of randomness in the data, the
science of probability and statistics must be used,
which provides a basis for any acceptable scientifi-
cally sound mathematical approaches. However,
two facts must be considered. Firstly, a simulta-
neous solution for models of multiple categories in
terms of Maximum Aposterior Probability (MAP)
may not be formulatable, because in some models
some probabilities may be unknown or not esti-
mable, or because some models of different types
are simply not comparable. Secondly, some formu-
lations of solutions may be in terms of continuous
mathematics with variables of infinite resolution;
however everything in computer must be repre-
sented as discrete values, so we must take into ac-
count the limitation of finite resolution. For many
reasons like these, we should use a new criterion
called the Minimum-Deseription-Length  (MDL)
principle for model selection and robust estimation.

In the next section, we provide a brief introduction
to and a formal formulation of the MDL principle.
We will point out the advantages of the MDL crite-
rion over the classical MAP eriterion. In section III
and IV, we show how this new eriterion can be used
in image interpretation and data analysis. Practi-
cal examples for MDL-based image interpretation
include (1) a general paradigm for interpretation of
remotely sensed images for landuse mapping, (2)
an objective recursive mechanism for line generali-
zation. Examples for data analysis in GIS include
(1) digital terrain modeling, (2) spatial indexing.
Finally, a new criterion for unsupervised clustering
is proposed as an application of the MDL criterion
in general pattern recognition.

What is important in this work iz how to reformu-
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late each of these classical problems in a new way
under a new criterion, which is very likely to lead to
breakthroughs or significant progresses in the fields.
Once a somewhat fuzzy problem is completely for-
mulated into mathematical expressiong, solving the
problem is reduced to a pure mathematical matter
or an experimental effort, which is then beyond the
scope of this paper.

II. FORMULATION OF THE MDL CRITERION

Statistical modeling can be regarded as a problem
of understanding and explaining a given set of ob-
served data which often appear quite chaotic at the
first glance. By understanding and explanation, we
naturally presume that there should be some regu-
larities underlying the data, and some redundancy
as complement of regularities inherent in the data.
A thorough understanding of the data set means
that we can give a description of these regularities
and redundancy which in turn can determine the
data set completely. Our purpose in general is only
to have a perfect nonredundant description of the
data by removing all redundaney. In this sense,
there is only one criterion to be used in model selec-
tion and estimation, namely to consider the total
number of binary digits with which the data set and
the model can be written down completely. This
number is called the total description length of the
data including its explaining model. The shorter
this description length is, the better the model is.
The best model out of all alternative models will be
the one with the shortest total deseription length.
This is the intuitive formulation of the Minimum
Description Length (MDL) principle.

The root of the MDL principle goes back to the algo-
rithmic notion of information by Solomonoff [16],
Kolmogorov [5], and Chaitin [1], which defines the
stochastic complexity of a binary string to be the
length of the shortest program needed to generate
this string in a universal computer. This principle
was first formally introduced by Rissanen [11-14]
as a new criterion for statistical modeling. Later
on, it was formulated independently by Georgeff and
Wallace [4] as a general theory selection criterion
for inductive inference. Fua and Hanson [3] and
Leclerc [6] belong to those who first applied the MDL
principle to the image analysis problem, specfically
for object delineation from aerial images and gen-
eral image segmentation. Pan and Forstner [9] first
applied this principle in the field of neural network

research for automatic architecturing of pattern
recognition neural networks.

The following formulation of the MDL criterion in-
tegrates various discontiguous aspects of the previ-
ous theoretical discoveries and practical constructs
into a consistent description with the clarity and
ease required for direct application in spatial
informaties.

A. Data, Model, and Language

Let us consider the problem: given a set of ohserved
data D, we are seeking a good model M which can
explain the data D. If alternative models may be
hypothesized, we are seeking the best model. In
order to hypothesize models, we need a language
which provides the necessary terms, syntax, and
semantics with which a model M and the data D
with or without a model can be described. Thus
there are at least three categories: data, model, and
language. We will call this language the descrip-
tion language of the given problem domain, denoted
by £. In fact, such a language represents all our
prior knowledge about the problem domain., With-
out any prior knowledge, we even have no words
and terms to describe any problem in the domain.
We naturally presume that the syntax and seman-
tics of every term to be used are well understood,
and every relationship and procedure associated
with terms are also well defined. In other words,
any terms, syntax, and semantics of this descrip-
tion language need not to be encoded, because they
are known a priori.

B. The Description Language

Let us now consider the ensembles of data and mod-
els, The whole ensemble of all possible data sets
form a data space ». The whole ensemble of all
possible models form a model space M. In this sense,
any observed data set D is a sample from the data
space »; and any possible model M is a sample from
the model space M We shall use £ (X) to denote the
complete description of X in the description lan-
guage ¢., and L{X) to denote the length (total num-
ber of bits) of £ (X):

LiX)=c(X)| (1)

With these space concepts, we now can set up some
principal eriteria over the deseription language

1. Completeness: The description language ¢ must
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be complete in two levels: (1) it must provide neces-
sary terms and syntax to describe any data set D
from the data space o; but not limited to only one or
some data sets; (2) all the descriptions of a given
data set D must exactly determine this single data
set.

2. Efficiency: For any given data set D, the length
L{D) of the description £ (D) of the data D in this
language ¢ must be shorter than the total number
of bits of the data set D in its original form.

3. Computability: The description £ ( [}) must be rep-
resentable and constructible by computer in a rea-
sonable amount of time.

4. Stability: This eriteria is a constraint on both the
description language ¢ and the definition of the best
description £ ,,.,(D)of a given data set D . It is to
say that (D) should not change significantly
when the data set £ has some trivial changes.

The first three criteria represent the consensus from
most MDL proponents, and the stability criterion
was first pinpointed by Leclerc]6] for image segmen-
tation problem.

C. The Alternative Models and the Best

It is generally assumed that the model space 2 is
an enumerable set of models:

M={M‘:iﬂl. 21....’ {2:'

If two alternative models M; and M;, i#j, have
the same number of parameters, and two param-
eter vectors have the same semantic meaning, the
two models should be considered as one model. Two
models are said to be different if either the number
of parameters in each model is different, or the se-
mantic meaning of some parameters is different.
Any structured model can be characterized by a
number of primitives and relationships between
primitives, and the primitives and relationships can
always be represented by symbols which can be
ordered properly into a vector of parameters. There-
fore in general, we construct a model M, as a vector
of n; parameters:

M; =16} 6, ... 6; ] (3)

-
i
When we fit this model into the data D its param-
eters will be estimated:

M; =16;1 Gjz - Oy} 4)
The total description length of the data D which is
explained by a model M, is thus
L= |L[DIMI-} |+]1‘,{M!-} |
=L'fD|MfJ-+ L(M‘:} (5)
Let L(D)=1£(D) | denote the description length of
the data D without any model, a model M, is said
to be efficient if and only if
L{D,M{-]ﬁ L (6)

This is in fact the necessary condition for accepting
amodel M,. Amodel M, is said to be better than

another model M;if and only if
L(D,M;)< L{D,ij (7)

We now come to the point of formulating the MDL
criterion.

The minimum-description-length criterion

A model M, is said to be the best in the whole model
space o if and only if
L(D.M;) < (D), M )

VM e (j#i) (8)
Notice that the conditional description length
L(DIM,) varies with the different estimate M, of

the parameters of M,, therefore the joint descrip-
tion length L{D,M;) should be detailed as

LfD.MI.;=L{Dm?;.,Mf)

+L(MIM, )+ LIM,) (9)

Because the description language ¢ is supposed to
be complete, so there must be a way for indexing
each model M, in the model space, so the syntax

and semantics of each model M, need not to be en-

coded. What we only need is an index i for M,.
Thus we can write

L(D,M;)= L(DIM;,M;) + LOM;\ M) + L(M;)

= L(DIM,, i)+ L(M,1i)+ L(i)  (10)
Therefore the MDL eriterion secks the best fitting
state a't?, of the best model M, satisfying
L(DIM;,i)+ L(M,1i) + L(7)

< L(DIM, i)+ L(Mli)+ L(i)  (11)
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L(D\M,,i)+ L(M,1i)+ L(i)
.:L{Dm}j,j;mz.mju}ﬂ:m Visi  (12)

where M, denotes the optimal estimate of the pa-

rameters of M,, M,denotes any other non optimal

estimate of M,. In case there is only one model type,
the MDL criterion is reduced to seek the optimal
estimate of the model parameters as expressed in
(11).

D. Probability and Deseription Length

The complexity measure from information
theory

According to the information theory initiated by
Shannon [15], a discrete information source can be
modeled as a Markov process. Consider a variable
which may be instantiated to a set of values
[, %5,....%,...]. If a value x, is emitted from this
source with a probability P(x;), the information
amount of this x, is:

Hx=x;) = 1(x;) = =IbP(x;) (13)

where. Ib denotes the base-2 logarithm. An opti-
mal description language ;o for this information
source is supposed to minimize the deseription
length of the variable x. In such an optimal lan-
guage, the description length L{x). equals the in-
formation amount 7/(x):

Lix)=—=IlbP(x) (14)

This is the very basic relation between the probabil-
ity of a wvariable and its description length. With
this relation, we may compare the MDL criterion
with the Bayes decision rule and MAP criterion.

The Bayes rule and MAP criterion

The Bayes strategy for selecting the best model out
of the model space af by considering the statistical
properties of alternative models. The selected model
is optimal in the sense of yvielding the lowest prob-
ability. The Bayes decision rule is that the best
model M,.out of the whole model space should sat-
isty
P(DI Mf }P(Mi]

where P(DIM) denotes the probability of data D
given model M. This form of objective function is
often referred as the Maximum Aposterior Probabil-
ity (MAP) criterion. In case P(DIM,) or P(M;) is
unknown or not explicitly computable, the objective
function (15) may be transformed to an equivalent
expression as

P(D1IM)P(M,)
=P(D.M,)=PM DVP(D) (16)
Dropping the term p(D) which is common for the

variable /, yields an alternative form of the objec-
tive function:

P(M,ID) (17
MAP versus MDL

By applying the relation (14) between the descrip-
tion length and the probability, the conditional de-
scription length of the data D given a model M,
and that of the model M, are given by

LIDIM )==IbP(DIM,) (18)
L(M;)=—~IbP(M;) (19)

The MDL ecriterion can be rewritten as choosing the
M, that minimizes

—IbP(DIM; ) —bP(M ) L(M,) (20)

This is equivalent to the MAP criterion which maxi-
mizes

P(DIM,)P(M,) (21)

The MDL and MAP criteria may be compared in
several aspects:

1. Prior versus Commonsense Knowledge: MAP eri-
terion uses the prior probability P(M;) of the model
M, while MDL uses its description length L{M,).
If the description language is optimal, the two terms
should be equivalent. This means the prior prob-
ability is implicitly specified by the given descrip-
tion language. In case the prior probability is un-
known, L(M,) in fact represents our commonsense
knowledge instead of prior knowledge about the
model M.

2. Uniformity and Flexibility: MAP uses the joint
probability of the data D and the model M;, which
is a real value, as the quantity for optimization,
while MDL uses the total number of bits which is
an integer. With the relation (18) and (19), we can
see MDL is more flexible. If P(M,) is unknown, we
can calculate the description length of the model

e |
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parameters. P(DIM,) usually refers to the prob-
ahility of the residuals of the data D from the esti-
mated model M,. There are quite a few commonly
accepted probability functions for residuals e.g.
uniform or Gaussian noise, and outliers., Therefore
L(DIM,) can be computed from the assumed prob-
ability functions P(DIM,) and also some direct de-
seription of the outliers,

3. Mathematical Truth versus Discrete Reality:
Notice the probability by definition represents a
mathematical idealism, while the description length
in units of bits is a practical measure, Consider
every value represented and manipulated by com-
puter is in fact discretized, we must take into ac-
count the limitation of finite resolution for any pa-
rameter.

4. Computational Complexity: It appears that the
MAP involves only some conventional computations
when the probability functions are known, and MDL
computation would be too complex. In fact, what
we only need is the description length of the models
and residuals; it is not necessary to actually encode
them in their optimal description languages. Itis
however true that an application of the ideal MDL
criterion generally requires a global optimization
which may involve a large effort of search or relax-
ation in the model space.

E. Some Priors and Finite Resolution

We now consider the problem of finite resolution for
any variable to be encoded and introduce some pri-
OTS.

Integers

Consider an integer variable & with the domain
[i,j], where i, j are integers and i < j, which takes

a set of discrete integer values K = {k,k;,....k,}. The

total description length of this integer set (without

any model) is given by

LK)y= LD+ L{j—i+nlb(j=i) (22)

If we know { varies from 0 to N -1, then
L(i)=Ib(N) (23)

If the range of an integer | is unknown, we may use

a universal prior for the natural numbers proposed

by Riszanen (1983a):
Liiy=Ib*(i)+1b(c)

where

(24)

I (1) = 1b(i) + IB(IBCE)) + Ib(ID(IB(D)))

+..up to all positive terms (25)
¢ = 2, 865064 (26)
Real values

A real value variables x with resolution £ can be
encoded as a transformation to integer

L(xlg)= Ltfi:_in (27

where [] denotes the roundoff of a real to its closest
integer. The resolution £ is the minimum differ-
ence between any two values of the real variable x
If £ is unknown, it can be estimated through a code
length optimization process. Notice that the smaller
€ is, the greater the precision is and the better the
model fits to the data, but the longer the code length
will be.

Variables of known probability function
Two widely used probability functions are equal and
normal distributions. Their description lengths

without or with a resolution £: L{x), L(xlg) are
given below:

* Equal Distribution:

x~ Ela,b] (28)
I
Pe(x) = _b—u asx=sh (29)
0 x<aorx>=b
L (x) = Ib(b - a) (30)
Le(xle)= u{”‘T‘*] (31)
s Normal Distribution:
x=Nu,o) (32)
e
A = 2o
PVN= Tore®
—m<(x,4)<es, >0 (33)

Lplx)= ':!2- ih(2m)+ b o)
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2
s [I_'u] (34)
2In2\ o

L,,,a:xm):%;b{z:r;

o l {x-n 3
+:b[£}+2]n2( E ) (35)

where Pg, Lp denote the probability and deserip-
tion length under the equal distribution, and P,
L, under the normal distribution respectively.

III. MDL-BASED INTERPRETATION OF RE-
MOTELY SENSED IMAGES

Images are observations. This concept is a substan-
tial generalization of the classical surveying and
measurement notions where observations are re-
ferred only to collection of isolated and point-wise
values, e.g. an angle, a distance, a height, a tem-
perature, a force, etc. Animage is an observed map-
ping of a surface. The amount of data in an image
observation is at least 2-orders higher than point-
wise observations. Neighboring pixel values are
correlated in general, which is a reflection of the
constraints over the physical properties of the im-
aged surfaces. Interpretation of an image aims at
recovering the physical properties of the surfaces
by exploitation of various constraints. Mathemati-
cal formulation of any constraints leads to models
for image interpretation. Models can be either for
pure image phenomena, for pure scene phenom-
ena, or for image formation process. Models of di-
versified information sources gshould be combined
in the sole interpretation process. At this point,
the MDL principle plays the role of the overall eri-
terion for optimal model selection and simultaneous
estimation of model parameters.

To demonstrate the approach, two examples will be
described in the following. The first one is a global
formulation of the problem of interpreting remotely
sensed images for landuse mapping. The second
one is generalization of extracted edges onto more
significantly structured edges,

A.Image Interpretation for Landuse Mapping

This is still an ongoing effort [8,10]. For landuse

mapping purpose, remotely sensed images are in-
terpreted with three levels of modeling: structure
S, geometry 7, and image intensity / (or say, radi-
ometry. If we only consider single channel of spec-
trum, radiometry is reduced to image intensity).

The structure § refers to the topology of landuse
parcels, e.g. containment of a small parcel in a larger
one, and neighborhood of two parcels, etc. If we limit
our attention only to agriculture fields, we may dis-
cover some constraints over the topology of agricul-
tural landuse parcels. In fact, we have observed
that the macro structure of polygon maps repre-
senting the boundaries of landuse parcels is the re-
sult of a spatial process in which larger parcels are
sequentially or parallelly partitioned into smaller
omes during reallotment. The most significant char-
acteristic of thiz landuse structure is its fractal-
like recursiveness of the polygon partitioning. We
have developed a Stochastic Polygon Map Gram-
mar (SPMG) as a generic model of this structure.
In this grammar, there is one generic structural
primitive: quadrilateral, and two types of spatial
relations: spatial containment and neighborhood. A
large quadrilateral polygon may be partitioned into
a sequence of smaller neighboring quadrilateral
polygons with a certain probability which is a fune-
tion of many factors relating the overall statistics,
local geometric shapes and size, ete. For a given
polygon split tree over several generations, the joint
probability of this tree is the multiplication of all
the probabilities associated with each splitting ac-
tion. Therefore, the probability P(5) of a given poly-
gon structure § is computable. Fig. 1 shows a poly-
gon split tree. The input image in Fig. 2(a) is gener-
ated by using this grammar.

The geometry G refers to the shape, size, orienta-
tion, and position of each polygon. The geometry of
a polygon is completely determined by its boundary
which is an ordered list of edges. Each edge is sup-
posed starting from a knotting point, called vertex,
which is an intersection of at least three edges.
Therefore, the geometry of the whole polygon map
is completely determined by the full enumeration
of vertices and edges. The total description length
L(G] $)of the geometry G, given the structure 5,
of a polygon map is computable via summing up
the encoding lengths of vertices and edges. Each
vertex is determined by its x- and y-coordinates.
Each edge is determined by its starting and ending
vertex numbers, and internal knotting points. The

-
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encoding length of these values can be computed by
using the formulas given in the section ILE.

w1 Pl mue]

Figure 1. Recurzive Polygon Partitioning and its
tree representation

The image intensity [ refers to any model of pixel
values within an uniform image region which cor-
responds to one parcel. The simplest model is a
horizontal plane for the image intensity surface. A
more general model is a polynomial surface. Once
the ideal image intensity surface is given, the real
image data D ecan be considered as a corruption of
the ideal surface by image noise N and outliers 0.
The ideal image intensity [/ can be encoded as an
integer or as a set of parameters in the polynomial
surface model, so L{/| G,§) is computable. The im-
age noise is generally assumed to be either Gaussian
or white, so the probability P(NI 1.G,5) is comput-
able. The outliers refers to those pixels whose val-
ues are far from the assumed probability distribu-
tion. Each outlier can be encoded as a triplet: the x-
and y-coordinates and the intensity. Thus
(O | N,1,G,5) is computable. Therefore, the total
description length of the whole image given these
models is
L(D,IG,8)=L(DI|LG,S)

+L{1 | G, 5)+ L{G | 8)+ L(8)

=L{OINLGS+LINIILGS)

+L{I | G, 5+ L{G | §)+ L(S) (36)
where [(G15), L(/IG,S) and L(O|N,I,G,5) are
directly computable from the ways at which they
are encoded, no actual encodings are needed; and

L(8) and L(D|{,G,5) are computable from their
probabilities:
L(8)=-IbP(S)

(37)

LN LG S)==IbP(N | 1,G.5) (38)

Figure 2. (a). An input image; and (b). Its seg-
mentation.

Solving the interpretation problem is via a complex
process of minimizing the global quantity
L(D,1,G.5) For detailed information on this ap-
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proach, see [9]. Detailed formulation of L(D,1,G)is
given in [7]. Fig. 2 shows an example of image seg-
mentation by using this approach.

B. Line Generalization

In image analysis, line generalization refers to gen-
eralize raw edges extracted from an image either
by a local edge detector or through an image
segmentor. The raw edges contain too many de-
tails that are not useful or meaningful for further
interpretation. Generalization is to remove those
details that may be considered as positional noise.

An edge in a digital image can be represented as a
polyline which is characterized by a starting point,
a sequence of internal points, and an ending point.
The generalization of such a polyline is to remove
some internal points, so the remaining points bear
significant information on the shape of the edge. Let
S be an original polyline which is a series of points:
S=1py P2 e 2y (39)
Suppose § is generalized to a new polyline G with
fewer internal points
G=[py Pia e Pt ) m<n, i;&[ln),

i=L2,....m (40)
As G consists of a number of line segments, say,
I, P, WP, i) -lpy,, pi, ], s0 the generalization
@ can be decomposed as
G=007G, (41)
Gy =lp, p;,,] (42)
We consider all other points in § that are not in G
as positional noise points which also form a series
N
N=00N, (43)
N =Py 1 Pipsz oo Py 1l (44)
where we use 0 to denote the concatenation of two
or more series. With this decomposition, N, can
be considered as the noise to G,. Because G, is sup-
posed to be an ideal line segment and N, is a
rasterized series, so the positional noise N, takes
the form of shift of each internal point in the direc-
tion perpendicular to G;, because the shift along

G, is negligible to the shape of G,.

The total description length of § given a generali-
zation & as a model is
L(8)= LIG)+ L(§—G)= L{G)+ L{V) (45)

This is the objective funetion used to seek the best
generalization G:

L(G)+ L(§-G) = min(L(G)+ L(S~G)) (46)

We first transform the coordinates of points of N,
into a local reference system taking G,. as the x-
axis direction. Then, ideally the y-coordinate for
each internal point of N, should be zero if there is
no noise. The positional noise takes the form of
non-zero y-coordinates. Generally the positional
noise for two neighboring points are correlated. It
is obvious that the difference between two neigh-

boring y, , and y; is generally smaller than !y J_;|

and |:|.' |» 80 it is cheaper to only encode such differ-

ences. This kind of encoding may lead to a Random

Markov Chain model for the positional noise along

L;:
Visn=ay; & (J=i i +L...,i,,—1) (47)

where a is a parameter of correlation, &, is a vari-

able (error term) which follows a normal distribu-

tion:

£~ N(0,0,) (48)

where o, is to be estimated from the given data
Ny

With a=0 the noise is uncorrelated, which refers
to roughness. It is equal to say that the y; them-
selves follow a normal distribution. With a=1 the
noise is correlated, which refers to smoothness. In
general, estimated & is between (0,1). Because we
use a fixed description length of this parameter, so
a needs not to be encoded. Therefore, according to
formula (34), the description length of N, is then

fi41
LN, = L(Gy)+ 3 I(p))

F=iy

=L(g; )+ L(y, )
A . (49)
+ 3T (n(22) 42 In 6, +1)
2In2

The total deseription length of the positional noise
N is

m=1
L(N)= L(SIG)= Y L(N}) (50)

k=1

An approach to minimize the objective function (46)

-



T LA

Geographic Information Sciences Val, 1, No. 1, June 1995

B8N0 —ILHEAA

51

is to use a recursive mechanism similar to that of
Douglas and Peuker [2] but without any control
parameter.

For generality, let us suppose we are considering a
portion §,; of an original linear pattern
8:8,,=[p; Pisy ---p;), where j—iz2. Alternative
generalizations may be hypothesized with some
most significant points of §, ;(see Fig. 3): the start-
ing point p;, the ending point p,., the two points
with either the largest positive or negative new y
coordinate p, and p, , 5, <s5,. Let p denote one of
p,and p, with the largest absolute y value, i.e.

the farthest from the line defined by p, and p,. The
following three hypotheses are the most significant:

Hypothesis 0:

G\ =lp; p;) (51)
Alternative Hypothesis 1:

G =p: p, p)l (52)
Alternative Hypothesis 2:

Gy =lp; by, Py, Pyl (58)

Ifone of p, and p, does not exist, G’ is reduced

to Ga{.i:}~ In general, we assume three hypotheses

are there. For each hypothesized generalization, a
total description length can be computed:

LR )= LG+ LINE) k=0,1,2 (54)

where N}j’ =8, Gﬁ'.

formula (50).

L{N}")) is calculated with

L{G}I'}]} can be easily formulated as its contents are

known discrete values. As p; and p; are common
to all three hypotheses, they need not to be consid-
ered for comparison. Let w, ; and i, ; be the width
and height of the bounding box of all the points in
§; j» assume each of points p, and p, tobe a ran-
dom point within this bounding box, then

LGH=0 (55)
L(G!)) = bw, ; + Ibh, | (56)
L(G|) = 2(lbw, ; +Ibh, ;) (57)

B s

Figure 3. Alternative hypotheses of line generali-
zation

The decision is now to select one from the three hy-
potheses with smallest description length L(S, ).
If the hypothesis 0 is selected, then stop for this
local §; ;, otherwise, S, ; is split into two or three
new subseries. Starting from i=1 and j=n, the
original series § is first split into two or three sub-
series. Each new subseries can be tested again for
further splitting. The test with a selection of the
hypothesis 0 is a hard eriterion to stop a local split.
This recursive splitting of §; ; 1s a gradient descen-
dent approach to reach the minimization of the to-
tal description length of the original series § to-
gether with the final series & as the most probable
model. Fig. 4 shows an example produced by using
this mechanism. The input is taken from Fig. 2(b).

In comparison with the well-known recursive split-
ting algorithm of Douglas and Peuker{2], this algo-
rithm is objective without requiring any subjective
control parameters. This is a major advantage.

IV. MDL-BASED ANALYSIS OF SPATIAL DATA
IN GIS

Spatial data in GIS refer to those quantitative val-
ues that are spatially indexed, and describe some
physical or cultural aspects of the earth surfaces.
Spatial data may come from different information
sources such as photogrammetric production, map
digitization, field survey, ete. Redundancy, noise,
and gross errors may exist in a spatial data set,
which should be removed or identified through data
modeling. In these cases, the MDL criterion is us-
able and useful for modeling or compression of raw
spatial data. In the following, two apparently dis-
tinct problems will be studied: (1) to search for the
best model of a digital terrain, (2) to seek the best
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way of indexing spatial data. It must be pointed
outl that these two problems are not new, however
our formulation of each problem under the MDL
criterion opens a new view and potential solution
which may be pursued in the future.

\ {i\;}ﬂ/ AN \ \> ;f
b ™, b A / S
N DR\
N\ N\

L1 {f.’>, R Ny
= N

Figure 4. Generalization of edges in Fig.2(h) un-
der correlated (top) or uncorrelated noise model (bot-
tom)

A. Digital Terrain Modelling

Araw data set D of a digital terrain in general takes
the form of a collection of three-dimensional points:
={p;=(x,yng)li=12,..., N,
O0sx;ca,0=sy,=bh,0=z <¢c} (58)
where a, b, and ¢ are three positive real constants.
It is generally assumed that the data points are dis-
tributed randomly, though denser point groups may
corresponds to finely detailed landform variations.
Let &, £,, and &, be the resolution of the coordi-

nates x, y,and z, the length of direct encoding the
data set D, according to formula (30) and (31) is

N
L(D)= 3 (L(x,)+ L(y) + L{z)

i=l

Sa]olz]Az]) o

Digital terrain modeling refers to a complete descrip-
tion of a digital surface by using the raw point set
D. A straightforward and the stablest surface
model is the Triangulated Irregular Network (TIN)
of this terrain which is generated through distance
transform (Voronoi graph transform) from the points
of D,

The primitive model M,

Given a point set D a TIN all whose nodes coincide
with all the points in D is unique to D, and the
transformation is a deterministic procedure, We
denote this unique TIN by M,(D) as the most primi-
tive model of D. We naturally assume this proce-
dure is provided by our DTM description language,
s0 it needs not to be encoded. Thus the description
length of D including My(D) should be

L(D, My) = L(DIM,)+ L(My) = L(D)  (60)

There are many alternative ways to deseribe such a
digital terrain based on the raw data set D. In the
following, we describe two major approaches of digi-
tal terrain modeling: the generalized TIN and the
regular lattice.

The generalized TIN model M,

It is generally true that high redundancy exists in
the primitive TIN model M;(D) for a given D . If
we keep those points D, of D which are character-
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istic in describing the surface, and then generate a
TIN from the points in D, this TIN is, in fact, a
generalization of M (D). With a proper interpola-
tion scheme, each of all other points which are in D
but not in D, can be interpolated from a triangular
facet containing it. The total description length of
D is then

L(D, M) = L(D| M) + L(M,)

= Y L(pIM)+ LD
patD=-0,)
= ) (LOx M)+ L(y; | M)
peEl D=0}
+L{z 1M )+ LUDy)

= 3 (L) +Ly)
PrEl-Dy}
+L{z; | M)+ L{D ) (61)
Compare formula (61) with (60) and (59), the differ-
ence

L(D, My) - L(D, M,) = L(D) - L(D, M,)
- Fﬁ{;:}i(z.-:n— LMY (eo

where L(z;1M,) is the number of bits to encode the
z-coordinate of the ;- point given the general-
ized TIN model M,. As x; and y; are encoded ordi-
narily as in M|, there is a deterministic procedure
to determine in which triangle T, =(p;.p;.p;3) @
known position (x;,y,) is located. And, this proce-
dure is already provided in our deseription language.
However, we need one bit to indicate that p, is not
in the set 0,. If we use a triangular plane model

for interpolation, let z!"" denote the simple interpo-
lated z-coordinate for the position (x,,y), the re-

sidual will be z, - z,“ ' therefore

Liz;IM) =1+ Liz; = 2") (63)
Therefore, the difference (62) in encoding length with
model M, and M, is computable. The necessary
condition to accept the alternative model M, is
L(D)- L(D, M) =0 (64)

In general, there may be many different choices of

M, from D, the best choice M, should satisfy
L(D)~ L(D, M,) = max(L(D) - L(D, M)

=max[ Z{L[z,}—L(z,IM|}}] (65)

' \peto-np

Regular lattice model M,

Suppose we divide the rectangular domain in the
plane (x&[0,al, y€[0,5]) by a regular lattice with
spacing s, and s, in x- and y-dimension, so the
x— and y-coordinates can be replaced by i and j
integer indices,

i=0,1,..,m n:[;‘l} (66)
J=0,1, ....m; m=|:fi] (67)

In this case, the model M, is a (n+1)x(m+1) ma-
trix

M, =(z;) (68)

The description length of M, is

[N ]

L(M,) = L(s)+L(s,)+ E L(z;) (69)

i, =0
Given M, , it can be determined by a fixed proce-
dure to which rectangular cell
R=({i, )i, j+ D, i+, /) (i+1,j+1)) each point p,
of D islocated. Therefore, its supposed height z}*'
can be interpolated via certain well chosen and fixed
interpolation scheme. The z-residual of the kth
point is: z; —z}°’ The total deseription length of the
data D including the model M, can be formulated,
in the way similar to (61), as
LD, M, )= LIDIM, )+ LiM;)

= 3 (Lx)+ L) + Lz, | M) + LMy )

mel
= 3 (Llx)+ L)+ L) + L(My) - (70)
pyeD

The difference in encoding length with M, and M,
is
L(D, My) = L(D,M,)= L(D)~- L(D, M)

= ¥ (Lz) - L) - LM,)  (T1)

Pl
The necessary condition to accept M, is
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L{D)- L(D, M;)=0, which requires

N Lz - L) > LiMy) (72)
PrED
or in detail,
¥ (Liz) - L(zP)
P D
>Lis)+Lis)+ Y Lzy)  (13)

i j=0
The best spacings of grid s, and &, which lead to
the best grid model M,, can be determined via an
optimization procedure:
L(D)- L(D, M,) = max(L(D)~ L(D, My))

a

= max( Z[L{zk} ~ Lzt

' oppeld

~(L(s, )+ L(s,)+ Y.
f.j=0

L(z))  (74)

There may be many other ways of digital terrain
modeling, e.g. a proper combination of TIN and regu-
lar grid. Each of these alternative model can be
treated in the similar manner of reasoning. In case
the interpolation function has local parameters as-
sociated with each triangle or polygon in order to
achieve a high fidelity, the encoding length of these
parameters should be taken into account in the
description length of the model. In case different
maodels are compared under the criterion of interpo-
lation precision which is evaluated by using addi-
tional points of known height, these additional
points should be considered as a part of the data
set D,

It is worth mentioning that the wavelet transform
may be used as a promising approach for digital ter-
rain modeling, The optimal way of using an opti-
mal wavelet package for compressing digital terrain
data can also be determined by using the MDL eri-
terion.

B. Spatial Indexing

Spatial indexing refers to encode the spatial data in
a certain way in order to facilitate or accelerate the
retrieval of information based on location, especially
for large databases like GIS's, We only consider
point-like spatial data. Suppose there is a set of

data points

S:IPL-PZ-"-*FM] (75)

Each point p, is determined originally by two coor-
dinates (x;,y;) in a global reference system. These
points may be distributed in groups. Among groups,
there could be hierarchical relations. To reflect the
hierarchical groupings in the point set S, generally
three alternative indexing schemes may be used:
R-Tree, sphere-tree, and cell-tree.

R-tree (Fig. 5) is a tree of minimum-bounding rect-
angles. Each rectangle r; is determined by four

parameters (x;y;,w;h;, f;), where x,,y, are the
coordinates of the top-left corner of this rectangle
in the reference system of'its super-rectangle, w A,

are its width and height, f, is the pointer to its su-
per-rectangle. At the leaflevel, each rectangle r; is
minimally bounding a group of points. The position
of each point (x,,y,) may be considered as a random
in the minimum-bounding rectangle r;:

f (76)
Yo =¥j Vg, (77}
It is obvious that local coordinates (u;,v;) of a point
p; in the rectangle r; is shorter than its original
coordinates (x;,y). The total encoding length
L(5,T,.) of the point set § in a R-tree T, will be

J.r X +"{|"' ﬂ_uu_w

I
uivﬂshj

L(S,T,)= 3 ((L(x;)+ L{y))+ L(w;)

i=l

FLOY+ LU+ Y (L) + Livg ) (78)
F i EI"r

where p; € r; only refers to the lowest-level rect-

L}
angles r;'s.

To encode x;,y;,w;, and h;, these variable may be
considered as from some distribution within the
super-rectangle of r;. L(f;) for all rectangles of

different levels may be considered as a constant, A

R-tree T, of a data set § is optimal among all pos-
sible configurations if

L(S, f‘,]lzn_lrin L(S,T,) (79)

A sphere tree T, (Fig. 6) is a tree of spheres instead
of rectangles. In the 2-D space, a sphere is degener-
ated to a circle, however, without losing generality,
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let us still call a tree of circles as a sphere tree. Each
sphere s, is determined by its radius r;, the center
coordinates (x;,y;) and the pointer f; to its super-
sphere. The encoding length of a sphere is obvi-
ously shorter than that of a rectangle, but there is

no guarantee that the encoding length L(S, 7)) ofa
data set § in a sphere tree is shorter than thatina
R-tree. L(S,T,) is calculated as

L(S, T,)= Y ((L(x;)+ Liy))+ L(r))

j=1
FLUF)+ D (L) + Livy))  (80)

L=

where (u;,v;) are the local coordinates of a point p,
in a lowest-level sphere s;. They can be either Eu-
clidean or spherical coordinates.

[ |
= '|:1| |
| n||
%)
|:£'.":|
l_r_ |
ﬁﬂ
- JFL———1b

EFEEN WHUE W

Figure 5. Rectangle tree for indexing data points.

Figure 6. Sphere tree for indexing data points

A cell tree T, is a tree of polygons (see Fig. 1) in-

stead of rectangles or spheres. It is more complex
to encode a polygon obviously. The simplest way to
encode a polygon cell ¢, is a series of its knotting

points [(x;, 30 ) (xja. ¥ja ) eoes (X X, - The encod-

ing length of a data set § in a cell tree T, is given
by

LS. T)= DY, (B + Llyg)

J=1 k=l

+ 3 (L) + Livy ) (81)

1 EL

where p, € ¢, refers only to the lowest-level cells ¢;'s.
Notice that spatial indexing is not only an organi-
zation of spatial data for information retrieval, but
also an optimal indexing will reveal the hierarchi-
cal relations inherent in the data points. In this
sense, an optimal spatial indexing T of a data set
5§ of three alternative encodings 7,, T,, T, should
be

L{§, T)= min L({S,T,)

E LA N o

(82)

V. A NEW OBJECTIVE FUNCTION FOR UN-
SUPERVISED CLUSTERING

Unsupervised clustering is a classic topic in pattern
recognition with direct application in multispectral
classification in remote sensing and in other data
analysis tasks of the same nature. Suppose there
is a set of data points §= (v} in the pattern space.
Assume there are totally N, clusters that have been
discovered in the pattern space, and these clusters
completely cover the set of data points §. Each i-
th cluster includes a set 5, of N, data points which

is a subset of §. The mean vector of the set §; is m;:

m; = NL, Z.r

NEX

(83)

In the most general circumstance of unsupervised
clustering, the number of clusters and the mean
vector for each cluster are unknown. In order to
evaluate the performance of any clustering algo-
rithm, one of the most often used criteria is to mini-
mize the sum of the squared intraset distances [17],
given by

FIN. my,ms,....omy )
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Nr
= Z ZHJ. - m,”z (84)

i=] xes

Careful consideration on this criterion reveals the
following facts. On the one side, when N, is fixed,

the objective function F to be minimized leads to a
reasonable performance which corresponds to the
minimum intraset distances after clustering of the
data set. However on the other side, when N, is
actually unknown, there may be a fatal collapse
which is caused exactly by minimizing the funetion
F: If we take each data point » as a cluster, then
F =0, which is the absolute minimum.

At least in order to avoid this fatal collapse in theory,
we must set up a constraint to the characteristics
of clusters. In this sense, a new ohjective funetion
L can be constructed based on the MDL eriterion,
Let M be the model representing all the character-
istics of clusters: N, and {mli=1,2,...,N.}. The
new ohjective function is defined as

LS, M)=L(SIM)+ L(M)

N
= Z [ZL(J;—HI,‘}}+ Lim;)| 1(856)

wl=l NG,

where L denotes the description length. Within the
|1 brackets, the first term is the description length
of the data points within each cluster, which corre-
sponds to the encoding length of the residuals (51M)
given the model M; the second term is the descrip-
tion length of each cluster center, which corresponds
to the encoding length of the model M. To compute
the first term, we may assume a statistical distri-
bution within each cluster. To compute the second
term, we may use the prior probability of each clus-
ter. If the prior probability is unknown or not com-
putable, we may consider the way of encoding each
cluster center as a point in the pattern space, which
corresponds to our commonsense knowledge about
the cluster centers.

VL. CONCLUSIONS

The MDL principle is a best established criterion
for model selection and estimation. It is specially
advantageous at its flexibility of comprising mul-
tiple sources of information and its uniform mea-

sure of the best decision in number of bits. Inter-
pretation of digital images and analysis of spatially
indexed data are the two fields where the MDL cri-
terion can be best applied to demonstrate its full
usefulness. The two examples in image analysis
including a global interpretation of remotely sensed
images for landuse mapping, and general line/edge
generalization are proved and partially realized
applications. The two examples in spatial data
analysis are basically novel ideas for the classic prob-
lems in GIS. The new formulation of the DTM and
spatial indexing problems may lead to new under-
standing or solutions of these problems. The objec-
tive function proposed for unsupervised clustering
is novel in general pattern recognition, which is
important to image classification in remote sens-
ing and other data interpretation. The approach
demonstrated in these examples is also applicable
to all other problems in spatial informatics where
multiple models or multiple data sources are in-
volved and a somewhat best interpretation of spa-
tial data is required.
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