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Abstract

In order to determine the efficacy of archived remotely sensed data to create historic fire maps, this study compares a remote sensing
based wildland fire map with an historical fire database for California, USA. Fires occurring in two years (1996 and 1999) were
mapped using data obtained from the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor. A vector database of fire
perimeters, compiled and maintained by the State of California was obtained as a source of comparison for the AVHRR based fire
map. The two datasets were overlaid and spatially compared in seven land cover types and ten ecoregions. The sources of
disagreement and overlap between the datasets were quantified in order to elucidate trends in fire detection algorithm performance
over the land cover types and ecoregions. Various methods of vector based comparison were examined in order to more effectively
describe the spatial relationships between the two fire maps. The results show that algorithm performance varies over both
ecosystem type and geographic region of California. The remote sensing method was able to map between 62% and 74% (1999 and
1996, respectively) of fire area mapped in the State maintained database. There was between 40% and 45% (1999 and 1996,
respectively) of geographic overlap in the datasets. The results illustrate the need to calibrate remotely sensed algorithms by
ecosystem type and geographic location in order to more effectively produce historic fire map products for research and other

purposes.

L. INTRODUCTION

Wildland fire occurs on a large scale in California, USA,
resulting in extensive annual ecosystem change (Sandberg et
al., 2002). Wildland fire effects include a potentially significant
localized disturbance, local, regional and continental impacts,
and plumes of “smoke” (particulate emissions) visible from
space (Lee et al., 2003; Fearnside, 2000; Wotowa and Trainer
2000; Davies and Unam 1999; Conrad and Ivanova, 1997).
Single fire events in California may result in excess of 40,000
hectares (100,000 acres) of burned area. These large scale
disturbances are linked to global processes of climate change

through the direct contribution of emissions to the atmosphere -

and carbon fertilization effects that contribute to the
development of “fuels” that burn (Dale et al., 2001). The
impacts of wildland fire on carbon cycles and storage are
compounding. Carbon that was sequestered in vegetation
(especially forests), is immediately converted to emissions
(particulates, gasses, and aerosols), the vegetation that
previously occupied the site is taken out of photosynthetic
“production,” and the decomposition of rooting systems can
cause the soil to become a source of carbon dioxide (National
Research Council, 2003).

The interaction between terrestrial disturbances and climate
can be studied through the examination of historic relationships
between burned areas and climatic factors. These relationships
may be evidenced by spatial correlations between vegetation
conditions, weather regimes, other disturbances, and the
location of wildland fires. The first stage in such an examination
is the creation of an historic burned area map. This study

describes the efficacy of a remote sensing approach for
building historic maps of fire occurrence using the NOAA
Advanced Very High Resolution Radiometer (AVHRR).

AVHRR (onboard the NOAA-14 satellite and earlier) data are
available at a nominal resolution of 1.1 km in five channels: the
visible, near-infrared (IR), mid-IR and two thermal-IR portions
of the spectrum. Such spectral resolution offers considerable
benefits to fire monitoring (Harris, 1996). Channels 1 and 2
provide data capable of detecting, monitoring and measuring
smoke emissions (Khazenie and Richardson, 1993; Kaufman
et al., 1990), but contain no thermal information. Channel 3 is
extremely sensitive to sub-pixel hot spots, making it the most
important channel for fire detection (Rauste et al., 1997; Pozo
et al., 1997) though it has a low temperature saturation point
(~321 k) (most existing algorithms concentrate on the third
channel, hoping to overcome this disadvantage). Channels 4
and 5 are far less sensitive to sub-pixel hotspots, but they can
frequently help detect fires when combined with other channels
(Flasse and Ceccato, 1996; Justice et al., 1996). In addition,
the AVHRR onboard post-NOAA-14 satellite also includes a
1.65 um short wave infrared (SWIR) channel. The SWIR
channel has been proven highly effective in discriminating
burned boreal forest (e.g., Fraser and Li, 2002). Recently,
MODIS (the MODerate resolution Imaging Spectroradiometer,
onboard EOS series satellites) imagery has become another
source of data of appropriate spatial and temporal resolution
to be used for global studies of biomass burning (Kaufman et
al., 1998). However, if focusing on the study of historical
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burned area detection and emission estimation before 2000,
the archive AVHRR data are the data sources un-replaced with
other data sets such as MODIS.

Using AVHRR, remote sensing of wildland fire has been tested
in the Canadian boreal forest (Fraser et al., 2000), Alaskan
boreal forest (Bourgeau-Chavez et al., 1997), Spanish
Mediterranean ecosystems (Al-Rawi et al., 2001) and other
regions (Chuvieco and Martin, 1994). Other sensors employed
for mapping wildfires include SPOT High Resolution Visible
and InfraRed (HRVIR) in the tropics (Phulpin et al., 2002),
Landsat Thematic Mapper (TM) in Thailand (Giri and Shrestha,
2000), the Bi-spectral InfraRed Detection small satellite (BIRD)
in Australia (Wooster et al., 2003), Tropical Rainfall Measuring
Mission Visible and InfraRed Scanner (TRMM VIRS) in the
tropics (Giglio et al., 2000), and Moderate Resolution Imaging
Spectroradiometer (MODIS) in Africa (Justice et al., 2002).

A variety of methods have been employed in the comparison
of remote sensing results to ground based fire area surveys.
Bourgeau-Chavez et al. (1997) reported percent fire area
detected for each fire (using both AVHRR and a radar imager
aboard European Remote-Sensing Satellite ERS-1), and as an
aggregate of all burn areas for fires that were “detected.” Fires
not detected were excluded from the analysis. Al Rawi et al.
(2001) and Li et al. (2000) take a raster (pixel) based percentage
approaches. These studies reported percentage of pixels
inside and outside ground survey data. Fraser et al. (2000)
performed a regression of remotely sensed burn areas with
areas from a ground based survey-of wildfires, showing a
strong relationship between the fire sizes measured in sifu
and the remotely sensed fire sizes. Remmel and Perera (2001)
generated more elaborate “accuracy metrics.” Through these
metrics, not unexpected issues with positional uncertainty and
“false” detection were revealed.

Percentage of area detected ranges from 31% (Remmel and
Perera, 2001) to 100% (Al-Rawi et al., 2001), depending on
sample size. Accuracy can be improved by restricting the
sample to several large fires. Previous studies have validated
the remote sensing of fires in relatively homogenous land cover
types (e.g., boreal forest, Fraser et al., 2000; Li et al., 2000;
Remmel and Perera, 2000; Borgeau-Chavez et al., 1997), over
small areas (Al-Rawi et al., 2001), or in relation to other satellite
data (Wooster et al., 2003; Justice et al., 2002; Phulpin et al.,
2002). In this study, the Center for the Assessment and
Monitoring of Forest and Environmental Resources (CAMFER)
at the University of California at Berkeley applied a wildland
fire detection algorithm (the CAMFER algorithm, modified from
Lietal. (2000) for hotspot detection and Fraser et al. (2000) for
burn scar mapping) to a wide variety of land cover and
ecosystem types across the state of California using AVHRR
data. The objective of this study was to compare the
performance of a consistent algorithm across eco-regional and
eco-systematic boundaries and elucidate differences in the
way fires are detected and mapped in different natural
landscapes. We quantify the observed differences in map

accuracy over different ecosystems and regions in order to
determine the level of confidence with which fires can be
mapped in different natural environments. The broad scale
application of remote sensing algorithms for fire detection at
continental or even global scales can benefit from this type of
ecological validation and investigation. In that context, this
paper aims to describe fire mapping results not only in terms
of overall accuracy, but also in terms of divergent detection
rates as they relate to on the ground differences in vegetation
and land cover.

II. MAPPING AREA AND DATASETS

The California landscape represents an extensive set of
ecological conditions in which to test a remote sensing
approach to fire detection and mapping. There exists within
the state boundary moist and cool coastal forest, nearly barren
desert, urban area, high elevation forest, grassland, savannah,
woodland, chaparral and nearly every conceivable
combination of these systems (Barbour et al., 1993). For these
reasons, California was deliberately chosen as a testing area
for remote sensing based fire mapping using AVHRR.

We obtained a vegetation coverage, and Jepson Ecoregion
coverage (Davis et al., 1998) as polygons, from the California
GAP analysis project (See Figure 1). These maps, like much of
the spatial data maintained by State of California, are in the
Teale Albers projection. For the purposes of this study, we
generalized the vegetation coverage to the following
categories, based on the original Holland (1986) classification:
open land, dunes, scrub, grassland, wetland, riparian, woodland,
forest. The ecoregions were already suitably broad and did
not require any modification.

The California Department of Forestry and Fire Protection
(CDF) compiles a geographic database of fire occurrence. The
CDF Fire Perimeter coverage (Arc/Info regions in Teale Albers
projection) contains digitized fire boundaries (as polygons)
collected from the State and Federal agencies responsible for
land management in California. A complete description of this
database is found at http://frap.cdf.ca.gov/projects/fire_data/
fire_perimeters/methods.asp (last viewed 7/18/2003). However,
for the purposes of this study, it is important to note that the
CDF coverage is not perfectly reliable.

The CDF website describes the fire perimeter coverage as
follows: “The fire perimeter database represents the most
complete digital record of fire perimeters in California. However
itis still incomplete in many respects.” The CDF fire coverage
is constrained by data availability at the multiple agencies
that contribute to the database and is therefore only as
complete as the fire records that were kept by the contributing
agencies. Asanexample, CDF, the agency responsible for fire
mapping on private lands in California, only entered fires 300
acres or larger into the database. The federal cutoff for fire
mapping is 10 acres. The fires were entered into the database
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Figure 1. Polygon coverages obtained from the California GAP project. (a) shows landcover generalized from detailed
vegetation polygons; (b) shows Jepson ecoregions. We used these data to allocate fires by landcover and ecoregion.

in a variety of ways, including digitization from paper maps.
Horizontal accuracy is not reported.

The creation of burn area maps that span decades or more is
stymied by the difficulty or impossibility of ground based
verification of fires from previous years. While some burn
areas may be evident for many years, the rapid re-vegetation
of other burn areas can quickly erase any visual clues as to
the precise location of the fire. Attempts to find and record
(with GPS or other survey technology) the boundaries of fires
that burned ten or more years ago may be completely futile.
For these reasons, the creation of a true and comprehensive
historic burn area map is difficult, especially over a large
geographic area managed by multiple agencies. The CDF fire
database, as the most complete record of historic fires available,
was used as a comparison to remotely sensed burn area maps
created in the CAMFER.

IIL.METHODS
Wildfire mapping with AVHRR data.

CAMEER applied the integrated approach to wildfire mapping
with the daily AVHRR data. The approach consists of two
stages: active fire detection and burnt area mapping. For active
fire detection, we combined the strengths of a fixed multi-
channel threshold algorithm and an adaptive-threshold
contextual algorithm and modified the fire detection algorithm
developed by Canadian Center for Remote Sensing (CCRS)
for fire detection in boreal forest ecosystems. At the active fire
detection stage, we first filtered out all possible active fires
(hotspots) with AVHRR channel 3, then used a test chain (by

combination of channels 2 — 5) to eliminate false alarms from
the possible active fires to finally form an active fire mask
used for burnt scar mapping at next stage. For burnt area
mapping, we adopted the basic idea of the HANDS algorithm,
which combines the strengths of hotspot detection and multi-
temporal NDVI differencing. We modified the HANDS
procedure to make it applicable to California and implemented
it in PCI image processing package. At this stage, we first
used mean and standard deviation (SD) of NDVI decrease to
produce all potential burnt scars (PBS), then confirmed (grew)
the PBS based on some criteria (e.g., a burnt scar must contain
a certain proportion of hotspots) to output a burnt scar map.
The threshold for NDVI decrease is dependent on the mean
and SD of NDVI reduction over a subset of hotspots
corresponding to major cover types in California: forest, grass
(rangeland), shrub, woodland and riparian. The pre-defined
threshold is determined by a constant times the SD plus mean
of NDVI decrease within a cover type.

We collected daily NOAA-14/AVHRR HRPT (High Resolution
Picture Transmission format) images and pre-processed them
with PCI Geocomp-n software (PCI Geomatics Corporation,
Canada). The original spatial resolution is 1.1 km at nadir and
the entire imagery was re-sampled into 1 km after
preprocessing. Due to cloudiness, the temporal range of the
imagery was limited to May through October of 1999 and July
through October of 1996. We chose these years for testing
due to above average wildfire activity and the availability of
CDF data for comparison. Using the algorithm described
above, we produced binary burn area maps for California in
1996 and 1999 separately, using 10-day NDVI composites as
before (1 calendar year earlier) and after (1999 or 1996 10-day
composite at the end of the fire season) images for the NDVI
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differencing, and thresholds of 0.4 for 1999 and 0.25 for 1996,
timing SD plus mean of NDVI decrease.

Fire map format conversion

We exported the burn area maps as Tiff images in the Lambert
Conformal Conic projection, with 1 km resolution. In order to
be compared with the other datasets, this native format needed
to be converted to the Albers projection. With Arc/INFO and
ArcView software, we converted the images to grids, and
grouped the cells into areas of contiguous burn pixels. In this
step, we assumed burn pixels to be part of the same fire event
if they shared a non-diagonal boundary. We classified
diagonal neighbors as separate fire events and assigned unique
identification (id) numbers accordingly (this was necessary
for topological reasons that would affect the data in vector
format). Next, we converted the grids to polygons
(vectorization of what was originally raster data) for ease of
comparison, manipulation and re-projection. The polygons
retained the id numbers originally assigned to the
corresponding group of pixels. To facilitate overlay with other
datasets, we re-projected the satellite fire data to Teale Albers.

These manipulations slightly distort the data from its native
format. In order to retain pixel distribution patterns and avoid
re-sampling, we converted raster-based data to vectors prior
to re-projection. However, vector re-projection results in a
slight alteration of area. This resulted in a minimum polygon
size (the geographic remnant of what was once an one kilometer
pixel) of slightly less than 100 hectares (one square kilometer),
that deviated in size depending on geographic location. This
effect necessitated a certain degree of caution with regard to
overlay with other data. The uncertainty in positioning and
shape resulting from the change in format and projection
necessitated the use of comparison techniques insensitive to
geographic drift of features.

Methods of Comparison

We analyzed the coincidence of the CDF and CAMFER maps
through two methods of vector data comparison. The first
method involves relaxed rules for agreement between the two
coverages (See Figure 2). The area of intersection is not
computed, but CDF and CAMFER fire polygons are considered
to be “matching” if any part of them overlaps. This approach
is designed to reduce the effects of registration error (in either
CDF or the original AVHRR data) on the ultimate determination
of fire detection effectiveness. It also approximates an
interpretation of the map comparison on a fire-by-fire basis, in
terms of matching acreages, rather than a pixel based or
intersection based approach. We call this the “hit-or-miss”
method.

The second approach involves a geographic union of the CDF
fire polygons and the CAMFER fire polygons derived from
the original, raster-based data (See Figure 3). This union,
performed in Arc/INFO, results in the splitting of polygons
(when overlapping) according to whether they a.) enclose area
coinciding to both CDF and the CAMFER map (intersection),
i.e. area of the CDF coverage detected by the remote sensing
approach, b.) enclose area exclusive to the CDF coverage, i.e.
lack of detection, or c.) enclose area exclusive to the remote
sensing data, i.e. CAMFER fires that do not have
corresponding polygons in the CDF polygon coverage. With
this approach, we tracked the precise areas of agreement and
disagreement between the two layers. We call this the
“intersection” method.

We evaluated how the two fire coverages compared in each
Jepson ecoregion and each land cover type. The polygons
are allocated to cover type and ecoregion by their centroids.
We created centroids for each fire and each polygon resulting
from the union of coverages and determined fire membership
to cover type or ecoregion according to where the centroid
(center of mass) was located. Since single fires may be
decomposed into numerous overlapping and non-overlapping

"Matching" Fires

Figure 2. The hit-or-miss method. In this comparison, the intersecting area is not calculated. The entire area of each “fire” is
considered to be “matching.” This approach is designed to assess the map accuracy on a per fire basis.
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Figure 3. The Intersection method. The open section represents the intersecting are of a fire polygon from the CDF database
and a fire polygon (mapped burn scar) generated with the CAMFER algorithm from AVHRR data.

areas through the union, the centroid based allocation is more
geographically specific with the intersection approach than
with the hit-or-miss approach. The assignment of ecoregional
and land cover membership enabled us to assess the level of
agreement between the coverages for each geographic zone.
We added the areas of intersection, CDF fire area, and CAMFER
fire area to produce statistics for the ecoregions and land
covers.

IV.RESULTS AND ANALYSIS

Table 1 shows the total acreage of fires in the CDF database

and the CAMFER maps, in each ecoregion and cover type, for
1999 and 1996. This includes fires in the CDF database outside
the weather induced window of RS (remote sensing) data
availability (May to October for 1999 and July to October for
1996). These fires are included for the purpose of judging the
efficacy of a remote sensing approach to produce an annual
burn map. Since portions of the year are characterized by
cloudiness that obscures the imagery, this constraint is built
in to the comparison. In 1999, 56 fires in the CDF database,
accounting for 23,984 acres, are listed as occurring prior to
May or after October. However in 1996, 88 fires accounting
for 68,448 acres are listed before July and (3 fires) after October.

Table 1. The total acreage mapped by the remote sensing technique (CAMFER fires) and as it appears in the CDF database of
fire perimeters (CDF fires). The data is summarized by its location in regard to the Jepson Eco-regions and land cover types

(Figure 1).
1999 1996

Eco-Region CDF Fires CAMEFER Fires CDF Fires CAMFER Fires
Cascade Ranges 159,094 40,406 3,707 1,831
Central Western California 123,630 240,339 148,986 102,681
East of Sierra Nevada 4,051 3,547 924 22,841
Great Central Valley 13,382 14,887 37,391 5,754
Modoc Plateau 36,322 9,649 32,719 64,000
Mojave Desert 5,860 30,606 13,578 77,620
Northwestern California 210,452 183,835 109,331 98,780
Sierra Nevada 106,928 36,950 152,409 74,802
Sonoran Desert 5,150 5,183 2,204 6,025
Southwestern California 115,837 94,083 135,664 70,596
Total 780,706 659,485 636,913 524,930
Land Cover

Forest 301,831 180,167 153,390 173,558
Grassland 24,585 52,261 78,807 9,473
Open land 5,795 2,814 5,040 3,229
Riparian 55 3,113 1,160 0
Scrub 235,361 271,452 297,906 274,890
Wetland 0 0 611 5,976
Woodland 213,079 149,678 99,999 57,804
Total 780,706 659,485 636,913 524,930
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It is notable that 51 of the 88 fires, totaling 40,984 acres occur
in June of 1996. Meaningful temporal analysis based on these
date attributes is confounded by the fact that the CDF database
also contains nonsensical data such as a ‘month’ value greater
than ‘12 or equal to ‘0.” In 1999, these nonsense months
account for 68 fires and 200,835 acres in the CDF database. In
1996, the non-data are present in the records for 65 fires,
amounting to 202,871 acres. Our ability to narrow the temporal
range of the comparison is restricted by this lack of information
in the CDF dataset.

The data in Table 1 show that the total CAMFER acreage for
both years is lower than the acreage indicated by the CDF
database. This is due in part to the availability of imagery in
the early and late parts of the fire season, but is also likely to
result from underestimation and lack of detection. Interestingly,
there is a consistent underestimate in the Sierra Nevada region
and the Northwest region of California, both largely forested
areas. Underestimates of Woodland fire are also characteristic
of both years.

Table 2 shows the acreage of “matching” fires, according to
the hit-or-miss method of comparison. These data show the
acres of fires that are mapped in approximately the same place,
enough to overlap over all or part of the fire polygon. In both
years, the Forest and Scrub ecosystems are the most significant,

in terms of acreage of matched fires. These ecosystems are
clearly predominant in terms of where fires are mapped and
matched in both CDF and CAMFER fire maps. The trend of
over or under estimation differs between the years, with
woodland being the only consistently cover type shown to
be consistently underestimated by a remote sensing approach.

The intersection method indicates the distribution of detected
(CDF and CAMFER), undetected (CDF) and non-intersecting
(CAMFER) area by cover type and eco-region. Table 3 shows
the relative amounts of CDF fires that intersect with CAMFER
fires. Table 4 shows percentage of detection success by cover
type. This percentage is defined as [area of intersection] /
[area of intersection + area of undetected CDF fire polygons].
This includes whole fires undetected by the CAMFER
algorithm (due in part to fires outside the temporal range of
the RS input data) and parts of fires not overlaid by the
CAMEFER fire map. In both 1999 and 1996, the forest cover
type is the most effectively detected and in 1999 represents
by far the most acreage of any ecosystem to be positively
identified as burn area. In 1996, however, the detection
percentage is slightly higher for scrub ecosystems. Grassland
is the most difficult system in which to accurately map fires
with massive underestimates in 1996 and a large area of fires in
1999 that do not match anything in the CDF database.

Table 2. Matched acreage (calculated with the hit-or-miss method) for remotely sensed burn scars (CAMFER fires) and fires in
the CDF database. The total acreage of all “matching” fires is added. Totals matches and the percent of all mapped area is

shown at the bottom of the table.

1999 1996

Eco-Region CDF Fires ~ CAMEFER Fires CDF Fires CAMFER Fires
Cascade Ranges 113,586 40,406 1,848 1,372
Central Western California 112,303 187,688 132,867 97,704
East of Sierra Nevada 0 0 0 0
Great Central Valley 1,249 0 0 0
Modoc Plateau 5,063 4,620 24,154 17,494
Mojave Desert 0 12,835 7,180 4,879
Northwestern California 201,206 177,078 85,331 96,259
Sierra Nevada 59,069 33,670 90,829 72,427
Sonoran Desert 0 0 0 0
Southwestern California 85,974 65,968 51,526 29,957
Total 578,450 522,265 393,735 320,092
Land Cover

Forest 255,078 172,221 119,059 170,190
Grassland 5,028 22,403 21,581 2,217
Open land 0 662 0 0
Riparian 0 0 0 0
Scrub 159,622 212,436 191,878 92,503
Wetland 0 0 0 0
Woodland 158,722 114,543 61,217 55,182
Total 578,450 522,265 393,735 320,092
Percent of Total Mapped Acres 74 % 79 % 62 % 61%
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Table 3. The results of a geographic union: the intersection method (see Figure 3). The area of intersection is represented by
the “cdf+camfer” column. The area of CDF fires not overlaid by mapped burn scars is represented in the “cdf only” column and
the area of burn scars that do not correspond to fires in the CDF database is represented in the “camfer only” column.

1999 1996

Eco-Region cdf+camfer cdfonly  camfer only cdf+camfer cdfonly  camfer only
Cascade Ranges 38,298 120,811 2,169 876 2,835 543
Central Western California 103,159 20,483 118,309 88,409 60,585 14,273
East of Sierra Nevada 0 4,055 3,547 0 926 22,842
Great Central Valley 1,243 12,151 35451 0 37,401 5,755
Modoc Plateau 3,543 32,786 6,106 3,720 29,012 60,693
Mojave Desert 10,217 5,861 17,771 2,225 11,356 75,391
Northwestern California 135,368 75,107 45,534 81,059 28,287 17,722
Sierra Nevada 27,880 79,096 9,069 62,849 89,608 11,952
Sonoran Desert 0 739 5,184 0 2,206 6,025
Southwestern California 32,960 77,109 63,757 18,515 117,204 52,087
Total 352,667 428,198 306,897 257,653 379,420 267,283
Land Cover

Forest 253,867 149,353 33,538 96,378 92,806 6,811
Grassland 3,178 26,836 112,833 28 57,851 8,089
Open land 0 5,802 5,586 0 5,631 12,570
Riparian 0 55 3,114 0 1,162 0
Scrub 44,402 87,149 86,253 109,908 143,492 217,899
Wetland 0 0 0 0 614 5,977
Woodland 51,220 159,003 65,572 51,339 77,865 15,936
Total 352,667 428,198 306,897 257,653 379,420 267,283
Percent of CDF Mapped Acres 45% 55% 39% 40% 60% 42%

Both the intersection and hit-or-miss methods illustrate that
the Sierra Nevada Mountains and the West coast of California
(notably North and Central) are the most active geographic
regions for wildfire. Detection levels are highest in the Sierras
and the Northwest Coast in both 1999 and 1996. Both methods
also indicate a decisive lack of mapping accuracy in grassland
systems, in contrast to the success achieved in the forest and
scrub ecosystems.

There is a sizeable amount of what we assume to be
overestimation in the scrub and grassland ecosystems. This
area represents mapped burn scars that do not correlate with
any fires in the CDF database. Due to the uncertainty inherent
in the CDF database, it is impossible to judge whether the
unmatched burn scars are false detections, or whether there is
an under-reporting of burned area in the CDF database. The
intersection analysis shows the regions with a large amount
of “false” positives to be Southwestern and central Western
California in 1999 and the Mojave desert and Modoc plateau
in 1996. These are all heavily scrub and grass dominated
regions (Figure 1) that experience high temperatures during
the summer.

Figure 4 shows the mapping results of selected fires from 1999
and 1996. These are large fires that were more or less effectively
mapped by the CAMFER algorithm. The figure serves to
indicate the amount which large fires influence the comparison
results. A single fire can represent over 100,000 acres: A

significant acreage in context of the totals shown in Table 1.
These large fires represent a very significant fraction of the
total fire area mapped in any one year. In the 1999 CAMFER
map, just two fires represent 39% of the annual burn area (the
area mapped in the Megram fire, Figure 4(f), as well as the Kirk
North and South fires, Figure 4(e)). The fires displayed in
Figure 4 also illustrate the trend of many-to-one relationships
between the fires in the CDF database and the CAMFER fire
maps. This effect can occur in both directions: one CDF fire is
mapped by multiple CAMFER burn scars (Megram Fire, Figure
4(f)), or multiple CDF fires are mapped as one CAMFER burn

Table 4. Percent detection by area of intersection compared
to CDF total area. Computed using the intersection method.
These data indicate less effective detection compared to the
more relaxed rules of matching in the hit-or-miss method (see
Table 2 percentages, at bottom).

Land Cover 1999 1996

Forest 63% 51%
Grassland 1 1% 0%
Open land 0% 0%
Riparian 0% 0%
Scrub 34% 43%
Wetland N/A 0%
Woodland 24% 40%
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Figure 4. The mapping results of selected fires. The scale differs slightly between these fires (see associated legends). (a).
Ackerson fire, Tuolumne County, 59,111 acres; (b). Parks fire, Lake County, 83,057 acres; (c). Gun II fire, Tehama County, 60,389
acres; (d). Kirk fires (North and South), Monterey County, 85,495 acres combined; (e). Megram fire, Humboldt and Trinity
Counties, 124,442 acres; (f). Un-named fire, San Luis Obispo County, 106,718 acres.

scar (Kirk fires, Figure 4(e)). The skewed distribution of fire  the 1999 CAMFER burn scar map) that does not reflect the
sizes and the many-to-one relationships complicate the  contribution of very large fires (over 50,000 acres, for example)
description of the data in terms of average fire sizes. Many  to the overall mapping success.

small fires resultin a fairly small average fire size (3973 acres in
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In general, the CAMFER algorithm is more effective in the
mapping of large fires. Despite the inherent uncertainty with
averages described above, the data are descriptive when one
considers the CDF fires that were mapped. The average size
of CDF “‘detected” fire in 1999, according to the hit-or-miss
method, is 10,329 acres while the average undetected fire size
is 766 acres. 1996 data displays a similar trend, with an average
detected fire size of 14,062 acres and average undetected fire
size of 805 acres. This trend is consistent with the results
reported by Fraser (2000) and Remmel and Perera (2001) for
the Canadian boreal forest. It also illustrates the constraints
associated with the AVHRR spatial resolution of one square
kilometer, approximately 247 acres. Fires less than 247 acres in
size are likely to be excluded from detection, though these
fires represent a fairly small component of the CDF fire database
(approximately 12,000 acres in both 1999 and 1996).

V. DISCUSSION AND CONCLUSIONS

The data indicate that the success of a remote sensing
approach to burn scar mapping is dependent on cover type.
That the percent mapping accuracy is so similar over two fairly
different fire years reinforces the conclusion that forest lands
are more effectively mapped by this algorithm than any other
cover types. It is worth noting that in the use of different
thresholds and different length intervals for NDVI change only
resulted in approximately 10% difference in mapping success
between 1999 and 1996 (see Table 4). The relative accuracy of
RS based fire mapping in different cover types is only slightly
affected by these differences.

These differences may be due in part to the behavior of fire in
different ecosystems. Rapid fire spread and short flaming
phases in ecosystems such as grassland may confound the
ability of the NOAA-14 satellite to pick up hotspots within
active fires. The NOAA-14 satellite has only one daytime
overpass, restricting the ability to detect fires that burn and
go out while the satellite is on the other side of the Earth. To
a lesser extent, this may affect fire mapping in scrub, chaparral
and shrub dominated ecosystems as well. At the same time,
the rapid re-growth of vegetation in grass and shrub
dominated systems may restrict the ability to detect changes
in NDVI that result from fire. Thus temporal restrictions in
both NDVI differencing and hotspot detection may combine
to constrain burn area mapping in ecosystems characterized
by high rates of combustion and re-vegetation.

Burn area mapping accuracy may be improved, in all regions
and cover types, through the use of a wider variety of sensors’
data. Higher temporal and spatial resolution of data from
sensors other than (or in addition to) AVHRR could increase
the number of hotspots detected and used as input to the
burn scar mapping algorithms. The successful mapping of
burn scars may, in turn, be improved through a more adaptive
adjustment of threshold values for NDVI decrease. While it is
not possible to increase burn scar discernment in systems

that increase in NDVI (such as an annual grassland) over the
study period (one year in this case), it may be possible to
increase accuracy in forest land without adding an excessive
amount of false detection. The development of a hybrid
approach using combinations of thermal sensor inputs,
threshold values, and NDVI differences over various time
scales may be appropriate for fire mapping over very large
spatial scopes. By determining the appropriate combination
of inputs for various ecosystems, mapping accuracy may be
improved through algorithm customization to the array of land
cover types in the study area.

The fact that the CDF fire dataset is not a perfect ground-truth
reference complicates comparisons with other fire map
products. Rather than validation of remotely sensed data,
comparison to the CDF dataset is, by necessity, a juxtaposition
of two approaches to building an annual fire area inventory.
While the CDF layer benefits from on-the-ground observation
and measurement of burn area, this quality is a double-edged
sword. This is due to the fact that multiple agencies contribute
to the dataset, each from their respective land base. Some
level of omission of burn area is possible through this process.
Standardization of the submission, documentation,
completeness, and positional accuracy of burn area maps would
be a tremendous benefit to the utility of the CDF dataset.

The remotely sensed map of burn area suffers from a different
set of constraints: the detection of burn area not from field
personnel, but from a satellite in space. Due to the inherent
limitations of the sensor, fires of a certain size are automatically
excluded from detection. While these fires do not make a
significant portion of the total burn area, they are never the
less a component of a burn area inventory. Errors of
commission are also of concern outside forested areas. When
there is uncertainty in the dataset (CDF) used for comparison,
itis difficult to judge the extent of this problem. However, the
data indicate that this is an issue requiring further inquiry into
the field conditions that might be responsible for “false”
detections.
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