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Abstract

A vast majority of the spatial linear data, which is converted to a digital format by means a manual digitizing process, is used regularly,
without properly verifying the reliability of such converted data. It is essential to identify this level of reliability as such data is
employed in numerous big projects, which continue to be designed and implemented without knowing the uncertainty and/or risk
associated with the outcome. A posteriori knowledge of the level of uncertainty might be enabled using the data per se. In this paper,
an effort is made to predict the horizontal accuracy of digitized contours by means of their given digital geometry. This forecast is
made by developing a model which makes use of contour geometry indices and provides an estimate of their horizontal accuracy.
Subsequently, this knowledge can be utilized to interpolate the surface represented by these digitized contours.
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LINTRODUCTION

The availability of reliable digital spatial data is a significant
factor influencing the efficiency of spatial information systems
(Gong, 1992; Gong, et al., 1995; Kraus, et al.,2007; Leyk, et al,
2005). Analog maps compiled by laborious processes are a notable
source of such information. These maps were introduced in these
systems following extensive digitization. Since mid-80s and almost
throughout the 90s, this digitizing was performed manually by
means of a typical digitizer (digitizing table), by integrating all
errors included in a map, plus the errors during the digitizing
process. Efforts for estimating the final horizontal error of the
analog map resulted in values ranging from 0.43 mm—~0.77mm
(Thapa, Bossler, 1992). Efforts to estimate the digitizing errors
led to a more qualitative approach of the problems rather than
an estimation of the size of these errors (Amrhein, Griffith,
1991; Aronoff, 1993; Brudson, Openshaw, 1992; Dunn, et al.,
1990; Dutton, 1992; Goodchild, et al., 1991; Gong, 1992; Gong,
etal., 1995, 2000; Keefer, et al., 1988; Maftini, et al., 1992; Ore,
2001; Otawa, 1987; Warner, Carson, 1991; Wenzhong, Tempfli,
1994). Whilst some were methodical, several others resulted
in simple conclusions.

In the case of contours on a map, it is necessary to know the
accuracy of their position. Typically, the only detail available
is the geometry of these contours and the scale of the map
from which they were derived. The elevation accuracy within
an elevation surface can be calculated by knowing the
positional accuracy of points constituting the contour lines
as a measure of the variance of the coordinates of these points
(0, and 6_=f(0)) (Achilleos, 2006, 2008).

This paper aims to outline an approach for predicting the
horizontal accuracy of these contours by means of their digital
geometry available. This prediction is made by developing a
model that employs the geometric indices of contours and
estimating their horizontal position accuracy. The result is an

estimation of the variance of coordinates of every point
consisting the contour line, in the form of ¢, o, (function of &)
(Achilleos, 2006, 2008), as mentioned earlier.

II. ERRORS WITHIN THE SURFACE ELEVATION
DATA

Constructing elevation surfaces using contours from an analog
map as elevation data, presumes that such data are of good
and, preferably, known quality. This way of surface
construction is quite rare since other ways faster and more
accurate means are available to accomplish this. Nevertheless,
huge databases containing elevation surfaces constructed
from contours continue to exist . From the earlier passages, it
should be evident that these databases need to be examined
and verified (Brudson, et al., 1993; Dunn, et al., 1990; Dutton,
1992; Maffini, et al., 1992).

A. The surface construction procedure

The digitized contours embody horizontal errors which are
propagated through the procedure of surface construction to
the final result, the elevations. The contour horizontal errors
are propagated via the geometric transformation during the
coordinates stage (Achilleos, 2006) This stage prepares data
for the interpolation phase. The errors are then propagated to
the calculated elevations of the surface (Achilleos, 2008).
These errors could be quite serious when the interpolated
surface is subjected to further use (Achilleos, 2006, 2008),.
The digitizing errors accompanying the contour lines were
unknown in this work, and hence, these errors were approached
by estimation. Incorporating a model for estimating these
digitizing errors could definitely provide the capability to
estimate the elevation errors of the surface in a detailed and
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accurate manner,
B. Digitizing

The digitizing process aims to convert analog information into
digital form (Burrough, 1986; Hunka, 1978; Robinson, et al.,
1984). This process encompasses all errors that are primarily
resulting from human factors, equipments, and the media used
for printing the analog map =(Chrisman, 1990; Goodchild, et
al., 1991; Otawa, 1987; Thapa, Bossler, 1992).

The influence of certain characteristics on the analog map
information, such as line width, line complexity, analog data
density, etc. has been proved categorically . (i.e. geometry
elements) affect the digitizing result (Dutton, 1992; Maffini, et
al., 1992; Otawa, 1987; Thapa, Bossler, 1991).

The MANTISSA project carried out in 1990 established that
the minimum error under the best possible conditions is in the
order of 0.19mm (Melling, 1991). The conditions that were
applied are nearly prohibitive for everyday work. These
approaches are usually based on a series of assumptions.
Investigating the digitizing error is a questionable subject,
since the traditional manual digitizing is being replaced by
modern, faster and more flexible methods (Waters, et al.,
1988).

The volume of information available which is abundant,
structured, organized, and used widely in applications, is
difficult to be replaced readily. However, this digital information
includes errors from the digitizing process, and remain
unknown. Therefore, there is a need to investigate this existing
information and evaluate its accuracy systematically.

III. DESIGNING THE INVESTIGATION
DIGITIZING ERRORS

OF THE

A. Background

Given that the metadata of digital information is usually
unknown, one can only estimate or predict its level of quality
by utilizing the digital information itself and any other possible
derivative. In other words, one should try to predict the image
of the error on the basis of the information which includes this
€Iror.

In the case of contours, digital data may provide elements for
the geometry of these contours. Therefore, a model that
attempts to predict the digitizing errors should be based, in
the absence of other data, on the geometry of the contour as
described by digital data.

The design of the variables for the construction of the model
is based on the rational of the three consecutive points (Figure
1). These three points determine approximately the geometry
on the peak of a contour where the digitizing error should be

Figure 1. The three consecutive points

predicted. Based on this geometry, all the input variables of
the model are measured. The direction of the tangent and,
therefore, its vertical may be defined by these three points in
a distinct form.

B. Defining the digitizing error

The digitizing error is defined as the deviation of the digitized
contour lines from their real position, which is defined as the
real position of the contour on the analog map.

This deviation is defined as the vector connecting the point
on the real contour and the point which is finally effected and
digitized. Usually this second point is located outside the
contour line (Figure 2).

digitized point

Deviation, -\ L

/ De\'ialionr\

targeted point for
digitizing

Figure 2. Deviation from the digitizing process

As illustrated in Figure 3, the deviation may be analyzed in
two components, vertical (r,) and tangential (r).

This paper deals with the vertical component of the error. The
tangential component defines a transposition of this point on
the same contour line (Figure 3). This transposition has no
effect on the accuracy of the horizontal position of the contour
line, provided that it is relatively small and does not
significantly affect the shape of the contour.
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Figure 3. Analysis of the deviation in its two components

The mean digitizing error, derives from the existence of many
digitizing errors that are found on the vertical line at each
point of the contour, something that results from the
participation of a group of people (Figure 4).

Figure 4, Vectors of the digitizing error at point i of the contour

The vectors of these errors, is a common direction (vertical to
the tangent of the contour line), a common definition point
(point i of the contour line) but a different course (left or right
of the contour line) and a different measure (length) (Figure 4).

Digitizing errors present a random behaviour and for specific
digitizing conditions they follow a regular distribution the mean
value and their standard deviation as parameters (Brudson,
Openshaw, 1993; Gong, 1992; Gong, et al., 1995; Nakos, 1990;
Keefer, et al., 1988; Warner, Carson, 1991).

Following this, the digitizing error is analyzed and processed
on the basis of two parameters that can describe its distribution
and provide its image.

e Mean value of the vectors of the digitizing error
e Mean value of the measure of the digitizing error vectors

When addressing the problem of digitizing errors as a
distribution of vectors on a specific vertical direction, the

expected mean value would be very close to the definition
point of these vectors, namely point i (Figure 5).

standard deviation
(SIZE)

mean value
(TENDENCY)

Figure 5. Error distribution

Addressing the problem in this manner defines the potential
real position of point i, with a confidence interval (Figure 5).
The mean value of these vectors is an indication of the error’s
tendency to be distributed towards one direction or course
(left or right of the contour). In contrast, the size of the digitizing
error is determined by the mean measure of the error vectors,
irrespective of the course (left or right). The resulting size
approaches the deviation of these vectors and describes the
size of the digitizing error.

IV. ANALYZING THE DIGITIZING ERROR DATA
A, The research data

The conditions on the basis of which the whole process would
be carried out were defined from the beginning of this research.

A topographic map was created, which resulted from the analog
topographic map of a 1:10,000 scale. This map was digitized
very carefully; an intervention was also made in order to
integrate specific forms of contour lines of particular interest
(addition and removal of parts of the map). Following this, the
contour lines were approached by 3" degree polynomial, so
that their distorted parts are smoothed out and appear more
realistic. When the map was completed in a digital form, it was
printed on a 1:10,000 scale at an extra high resolution printer.
This product was the “analog” map of the research to be
digitized (Figure 6).

A group of people with experience in digitizing was selected
by sampling among the companies in the field of gathering,
organizing and marketing spatial data. This group also included
undergraduate and postgraduate students with digitizing
background. A remarkable number of people were screened
and 34 were finally selected to digitize the map, thus
participating in the research.
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Figure 6. Digitizing map

B. Analyzing data

(i) Statistical data for the digitizing error vector
Having measured the digitizing error at every point of the
contour lines (Figure 6, 7) from every digital map of the
participants, the mean vector of the digitizing errors and the
mean size of these vectors were calculated for every point.
The total number of points that are examined on the map is
1032.

y

Digitized contour
Real contour

The three consecutive points

Figure 7. The logic of the algorithm for the calculation of
the digitizing error

Table 1 presents the elements of the mean vector of the
digitizing error r. It is observed that the mean digitizing error r
is 0.00 mm from all points examined, a fact indicating that there
are negative and positive values of errors at the same
percentage.

Figure 8 below presents an extract of the map, on which the
mean vectors of the digitizing error r are indicated together
with the corresponding circles. It can be observed that the
error tends to switch locally (changes sign from negative to
positive and vice versa, at a local level). The same is observed
in Figure 9 which presents an extract of the open curve with

Table 1. Statistical data of the mean vector of
the digitizing error r

Digitizing error measure

Statistical data

mean 0.000mm
sd 0.190mm
min -0.640mm
max 0.536mm
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Figure 8. Circles of the mean vector of error r
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real situation 4

A

) ’
*
e i |

s
- .
¥ simulation

'__lf

the error diagram in the Oy axis and the curve length in the Ox
axis. The switch is more apparent is this figure (Figure 9),
where there is an image of time line.

In Figure 8 2-3 circles seem to have extremely large size and
indicate cases where the algorithm that measures these errors
failed. These points were excluded from the analysis and the
statistical processing.

(ii) Statistical data for the mean vector of the digitizing error
Table 2 presents statistical data of the mean size of the vectors
of the digitizing error ll/ll. These sizes are measured in mm.

It is observed that the mean value of ll7ll is:
0.284mm

that is slightly higher than the distinctive capacity of the human
eye (0.25mm), which is broadly accepted in cartography.
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Table 2. Statistical data of the mean size of
the digitizing error il

Digitizing error measure

Statistical data

mean 0.284mm

sd 0.084mm
min 0.061mm
max 1.098mm

The maximum value of I/l that was observed (except in cases
of the measurement algorithm failure) is:
1.098 mm

On the whole, the results are found to be satisfactory, When
observing the value range within which 99.9% of the errors is
found, the maximum limit was found to occur at 0.54mm, very
close to 0.50mm, a value that is the feasible error of obtaining
data from an analog map. Moreover, the mean value of errors
is 0.28mm, which is usually considered to be the distinctive
capacity of human vision (0.25mm).

Figure 10) below presents an extract of the map with the circles
of error llll at each point of the digital curves. These circles
confirm the aspect that the mean digitizing error is bigger at
the curved parts of the contours rather than at the straight
ones. It is also observed that this fluctuation of the mean
measure of the digitizing error is gradual and not abrupt (Figure
10). This observation also indicates the serial dependence of
the digitizing error,

Figure 10. Extract of the map with the digitizing error in
the form of error circle

(iii) Auto-correlation of the digitizing error

Figure 11 presents the auto-correlation of the mean vector of
the digitizing error r of each point. It is observed that the auto-
correlation at each point with the previous 4—6 points is higher
in number than the auto-correlation presented by the mean
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Figure 11. Diagram of the auto-correlation of size r
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Figure 12. Diagram of the auto-correlation of size Illl

measure of vector lIl(Figure 12). For one position lag, auto-
correlation lies within 0.70—0.75, while with regard to size r,
auto-correlation appears to reach even the 16th position (16th
lag) and beyond.

Figure 12 shows that there is auto-correlation and dependence
of the mean measure of the vector of the digitizing error Il at
each point with the 4...6 points of the previous positions at
the curve (4...6 lags). The auto-correlation for one position lag
(Istlag) is 0.60—0.70. (Bora-Senta, Moisiadis, 1992; Neter, et
al., 1990).

V. DESIGNING THE GEOMETRY INDICES
Modelling the digitizing error requires the design of certain
geometry indices, which would be the independent variables

of the model under consideration,

Many indices are designed (35 in particular), which in their
majority present a high correlation among them. In the
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modelling process, some of these indices are finally used; the
ones that describe the phenomenon in a better way. These are
further presented below.

The design of the geometry indices was implemented in three
groups; the point-based measured indices, the locally
measured indices, and the indices that describe the prior
geometric situation from the point under examination.

A. Point-based indices

The point-based indices are indices that calculate geometrical
data of the digital contour at each point and in the very close
area around it (three consecutive points). These indices include
the following, which are also used.

(i) Central coordinates (Ix, ly)

The indices of the central coordinates (lx, ly) are defined as
the distance at the X and Y axes of the point examined from the
centre of gravity of the map (Figure 13). After the coordinates
of the position of the map’s centre of gravity (x, y ) are
calculated from all the digitized points, the central coordinates
are measured from equations 1 (1).

Centre of
gravity

Figure 13. Central coordinates index (lx, ly)

x=x,—-x, x = Z.\'E In
i=1
! )
Iy=y—-y. y.= Z yviin
i=1

where

(x, yl.):the coordinates of the point under examination
(x, ¥ ):the coordinates of the centre of gravity

n: sum of digitized points of contours of the map

The central coordinates determine the relative position of the
digitizing point with respect to the entire map (position in
relation to the centre of gravity).

(ii) Curvature (cur)

The curvature at each point of the contours is defined as the
quotient of the change of direction at the point examined to
the local length (Figure 14). The change of direction is
measured in radians (rad). The higher this measure is, the bigger
the curvature of the analog curve that was digitized.

cur=chdir/llen 4

Figure 14. Distinctive curvature index

The curvature is calculated from equation 2 (2):
cur=chdir/llen 2)

where

chdir: change of direction [azimuth (i+1,i) - azimuth (i-1,i)]

(Brundson C., Openshaw, 1993)

llen: local length [d(i-1),i + d(i, i+1)]

(iii) Diversion(ekt)

The diversion index (ekt) is the vertical distance trom the last
digitizing point towards the straight line defined by the previous
two digitized points (Figure 15).

Figure 15. Diversion index

The calculation of diversion is based on the calculation of the
distance of a point from a straight line (3).
i Ax,+B y,+C
- 2 2 (3)
A°+B

where
A,B,C: the coefficients of the equation of the straight line that
is defined by points i-1 and i.

(Ax+By+C=0)

(iv) Direction of tangent(dir)
The index of the direction of tangent (Figure 16) is calculated
from equation 4 (4) and the unit used is the radian (Warner W,
etal., 1991).

dir = Azim(i-1, i+1) 4

This index describes the movement of the digitizer’s crosshair
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Figure 16. Indices of the tangent’s direction

during the digitizing phase.
B. Locally measured indices

The locally measured indices are an expansion of certain
indices measured at the point at a broader area around the
point under examination. In other words, it regards a
generalization process. The three consecutive points are now
defined as (i-1) ", i, (i+1)" (Figure 17).

Figure 17. Defining the three consecutive points at local level

In this group, the indices are similar to the indices of the first
group (point-based indices), with the difference that they refer
to the points (i-1)", i, (i+1)’ . The length that determines
these points is a result of the investigation in conjunction
with the study of the auto-correlation presented by the
geometrical indices.

Nevertheless, finally, none of the indices from this group was
used in the modeling, in this project.

C. Indices of prior geometrical situation

These indices aim to describe the phenomenon of the serial
dependence that exists in the data/products of the digitizing
process, as observed in research studies.

An index of this group, which is used in the modeling is:

e Distance from centre of gravity(dcom)
The index of the distance from the centre of gravity of the
contour that is examined is a size that aims to describe how

close or far the complex part of the digitized contour is found
prior to the point under examination. A complex part of the
contour means that there are more dense points-peaks in order
that the centre of gravity is transferred near this complex part
(Figure 18). High index values indicate that the most complex
part of the previous part of the contour is far enough from the
point under examination, while low values indicate the opposite
(Figure 18).

Control point

i

Centre of mass

Figure 18. The index of distance from the centre of gravity

The calculation of this index is based on equations similar to
equations 1 (1).

V1. MODELING THE MEAN BEHAVIOR OF THE
DIGITIZING ERRORS

Two approaches are employed while investigating and
modeling the behavior of the digitizing errors:

e Investigation with the use of the geometrical characteristics
of the digitized contours;

e Investigation with the use of the geometrical characteristics
of the digitized contours and serial dependence (auto-
correlation) of the errors

The first approach is based on the assumption that digitizing
errors follow a pattern of independent behavior (the error of a
point does not depend on the errors of the previous points).

The second approach introduces the concept of the dependent
behavior (the error of a point is directly dependent on the
errors of the previous points and the following points, in turn,
will depend on it).

A. A model for the mean vector of the digitizing error

At a first attempt to model the digitizing error, regression was
applied with the stepwise method (gradually selecting the
variables). The independent variables that were selected in
the linear model, among the geometrical indices, are the
following in order of contribution:

e ekt
e Ix
e sin(dir)

The degree of adjustment of this model in the data is:
Multiple R 0.5792



70 Georgios A. Achilleos: A Model to Estimate Horizontal Errors within Existing Manually Digitized Maps

R Square 0.2641

Adjusted R Square 0.2597
Standard Error 0.1412
Durbin-Watson Test 0.6571

The independent variables present the highest possible
contribution, but they cannot describe the phenomenon of
the digitizing error satisfactorily (R Square 0.2641). Efforts were
made with other forms of models (polynomial or generic non
linear models), but they did not provide better results than the
linear model (it is preferred for its simplicity).

On the basis of the value of the Durbin-Watson test, the model
presents an intense serial dependence, which should be either
eliminated so as to have only the effect of the geometrical
indices (Neter, et al. [24]), or used in order to improve the
phenomenon’s explanation (Bora-Senta and Moisiadis [5];
Chartfield [8]; Xenakis [32]).

The problem of the serial dependence is indicated in the
Diagram of the model’s residuals (Figure 19).

0.61

0.44

0.24

Residuals of r
=)

-0.6
-0.6

"02 0 02 04 06
Predicted value of r

T 04

Figure 19. Diagram of the residuals of model s/sindir, ekt,
Ix prior to the elimination of the serial dependence

The integration of auto-correlation in the modeling process of
the phenomenon is effected for one position lag. This results
from studying the diagrams of auto-correlation of r and Ilrll in
combination to the auto-correlation diagrams of the geometrical
indices.

The elimination of the serial dependence with the use of the
autoregression process, leads to a model as depicted in Table 3.

The diagram of the residuals of this model (Figure 20) is clearly
corrected and does not present indications of error regularity
or heteroscedasticity, however its adjustment in the data
remains feeble.

The integration of the serial dependence in the modeling leads
to the model of Table 4.

Table 3. Model r/sindir, ekt, Ix after the elimination of
the serial dependence

Multiple R 0.4831
R Square 0.2217
Adjusted R Square 0.2184
Standard Error 0.1391
Durbin-Watson Test 1.9167
EKT +0.01982
LX +0.00721
SINDIR -0.09822
CONSTANT -0.03876

Table 4. Moadel #/sindir, ekt, Ix, »_1 with the use of regression

Multiple R 0.7962
R Square 0.6830
Adjusted R Square 0.6781
Standard Error 0.1174
Durbin-Watson Test 1.8752
EKT +0.01274
LX +0.00019
SINDIR -0.02414
R_1 +0.68231
CONSTANT -0.02391

This model (Table 4) presents a better degree of adjustment in
the data than the previous one (Table 3). The serial dependence
is integrated in the form of an independent variable in the
model (r_1). This variable is the value of the dependent variable
r at the previous position of the point under examination
(position i-1).

The existence of the term r_1 on Table 4 produces limitations
in the application of the model of the error’s tendency (Bora-
Senta, Moisiadis, 1992; Neter, et al., 1990). The model offers a
satisfactory simulation degree of the digitizing error (Keefer,
et al., 1988). This matter is examined below.

With regard to the model’s residuals (Figure 20), they present
a distribution as the one in Figure 20 and do not indicate

0.6
0.4 =

0.2+

Residuals of r
o

0.4 1

-0.6
-0.6

02 0 02 04 06
Predicted value of r

04

Figure 20. Diagram of the residuals of model r / sindir, ekt, Ix after
the elimination of the serial dependence
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regularity or heteroscedasticity. This observation is
documented by applying the F-test control.

In brief, the tendency of the digitizing error, apart from its high
auto-correlation, appears to have a stronger relation to the
digitizing direction. This relation is stronger not to the direction
as azimuth (dir), but to its sine (sindir) (namely, azimuth 10¢
and azimuth 390¢ have the same sine and present the same
behaviour with regard to the error’s tendency).

B. Model for the mean size of the digitizing error

A regression process was applied with the stepwise method
and the variables selected from the sum of the geometrical
indices for the linear model are the following in order of
contribution:

e cur
dir
e dcom

The degree of adjustment of this model in the data is:

Multiple R 0.3479
R Square 0.1761
Adjusted R Square 0.1659
Standard Error 0.1317
Durbin-Watson Test 0.7782

It is obvious from the statistical Durbin-Watson size that this
model presents an intense serial dependence. This is also
indicated by the diagram of the residuals (Y axis) in connection
with the predicted value (X axis) (Figure 21). This diagram
shows that the residuals tend to be more negative than positive.
When resolving the model using auto-regression, the serial
dependence can be eliminated and the model as shown on
Table 5 below is obtained.

The new model (Table 5), although better than the previous

0.34

0.29

S

o

Residuals of |||

!
=

|
=
to

=
w

—

01 02 03 04 05 06
Predicted of ||r]|

(=]

Figure 21. Diagram of residuals of model llrll/cur, dir, dcom prior
to the elimination of the serial dependence

Table 5. Model llrll / cur, dir, dcom after the deletion of
the serial dependence

Multiple R 0.5128
R Square 0.2960
Adjusted R Square 0.2792
Standard Error 0.1271
Durbin-Watson Test 1.9029
CUR +0.08730
DIR +0.01628
DCOM -0.00571
CONSTANT -0.25172

one, continues to offer a low degree of adjustment in the data.
However, it is a useful tool for applying simulation procedures
of llrll which is further described.

The diagram of the residuals of this model is improved in terms
of serial dependence (Figure 22). It presents a minimum

0.34
0.24
0.1+

0+

Predicted of ||~

0 01 02 03 04 05 06
Predicted of||r]|

Figure 22. Diagram of residuals of model llrl/cur, dir, dcom after
the elimination of the serial dependence

heteroscedasticity, which is trivial (Neter et al., 1990).

By integrating the serial dependence in the form of an
independent variable into a model with the use of simple
regression, the following results are obtained (Table 6).

The model of Table 6 is improved, thus offering the possibility
to simulate the mean measure of the digitizing error.

Table 6. Model llrll/cur, dir, dcom, llrll_1 with
the use of regression

Multiple R 0.7233
R Square 0.5711
Adjusted R Square 0.5582
Standard Error 0.1131
Durbin-Watson Test 1.8328
CUR +0.06821
DIR +0.00592
DCOM -0.00672
IIRI_1 +0.59261
CONSTANT -0.07592
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The diagram of the residuals of this model is in the form of
Diagram 6 (Diagram 6).

In brief, the mean measure of the digitizing error presents a
high dependence with the size of curvature (cur) and complexity
(expressed by the dcom variable), as opposed to the tendency
of the digitizing error, which is highly dependent on the
digitizing direction (sindir variable).

This observation is rational, given that the complex form of
the contours that are digitized affects the person who digitizes,
thus leading to bigger errors in size (error measure). On the
contrary, the direction presented by the contours that are
digitized, affects the person performing the digitization. This
is so, as the one who performs the digitization attempts to
preserve the digitizing course close to the analog contour,
thus resulting in the digitizing errors continuously changing
their sign (right- left of the analog contour / error tendency).

C. Applying the models in simulation procedures

The digitizing error may be approached partially, not with the
aim to predict its behavior accurately, but to simulate this
procedure for research purposes. The prediction capacity of
the model plays an important role in the simulation.

If a model gives the value Y, as the prediction value, it should
be accompanied by the standard deviation of &, . This standard
deviation, for the specific statistical level of confidence, may
be translated into a confidence interval of the prediction.

Model:
Y, =[6]-[X] )
where
[b]: table of the model’s coefficients
[X]: table of vector of the model’s independent variables
Y,: dependent variable - prediction

The variance of the predicted value ¥, derived from (Neter, et
al., 1990):

P RUARRY ©6)
where
[V,]: The matrix of variance — co-variance of the model’s
coefficients(symmetric table)

This matrix comes from equation 5 (5) (Neter, et al., 1990):
V=o(X"X)" @

The prediction is considered to be better, i.e. it presents lower
variance, at the centre of the experimental area. The quality of
the prediction is diminished while moving away from this
centre.

Further on, these models are applied in simulation procedures.

(i) Simulation of the mean vector of the digitizing error
The models developed for the mean vector of the digitizing

error are as follows:

Model I:
r=0.0198 ekt + 0.0072 1x-0.0982 sindir-0.0387

where the serial dependence is deleted; and

Model 2:
r=0.0127 ekt + 0.0002 1x-0.0241 sindir + 0.6823 r _1-0.0239

in case the serial dependence is integrated in the data.

The variance-covariance matrix for the first model (Model 1) is
presented in Table 7, while for the second model (Model 2)
the matrix is presented in Table 8.

Table 7. Variance-covariance matrix of Model 1 (r/ekt, 1x, sindir)

ekt Ix sndir const.
ekt 5.3526E-3
Ix -3.8728E-3  0.1198E-3
sindir 1.6041E-3 2.8975E-3 7.7694E-3
const. —4.2251E-3 -3.6882E-7 -1.6269E-5 10.1328E-3

Table 8. Variance-covariance matrix of Model 2(r/ekt, 1x, sindir, »_1)

sndir r_1

ekt 1x
ekt  4.0612E-3
Ix  —1.6494E-8 0.0962E-3
1.3694E-7 6.3920E-3

const.

sindir —5.8858E-7
r_1 —1.3841E-5 -2.257E-7 5.8882E-5 23.693E-3

const. —2.3827E-5 —-2.127E-7 -6.686E-6 2.2115E-5 7.6064E-3

For Model 2, it is necessary to know the error for the first point
of each contour as input data in the prediction of the error of
the second point of the contour.

A random number is selected within the range that is
determined by the standard deviation of the mean vector of
the digitizing error, in combination with a certain statistical
confidence level (e.g. level of confidence 95%). In this
particular case, the mean vector of the digitizing error presents
a value of standard deviation +0.19. Therefore, for a confidence
level of 95%, the value range within which an initial value may
be selected for the first point is:
+0.3812

In the simulation under consideration, each contour is selected
so that it is approached by thirty (-30-) repetitions and that the
mean value is calculated.

The results of the simulation with the application of models I,
2 compared to the data from the errors that were measured, are
shown on Table 9. It is observed that the simulation presents
the digitizing error better than it is in reality, given that lower
range values appear (min, max) and the standard deviation of
the predicted values of the digitizing errors is nearly half the
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Table 9. Simulation results based on Models 1 and 2

OBSERVED  puinicTED | PREDICTED
min r —0.6403 —0.8891 -0.1754
max r +0.5360 +0.9123 +0.1726
mean r -0.0041 +0.0012 +0.0039
sdr +0.1872 +0.1051 +0.0816
real size.

Furthermore, it is observed that model 2 gives lower predicted
digitizing errors than the corresponding ones of model 1.

The two distributions of digitizing errors (observed, predicted)
are compared statistically in order to find out whether or not
and to what extent they are identified serially. This control is
performed using the test-x* (Hammond, McCullagh, 1974) and
the result is affirmative.

C1: the two distributions are approached statistically at a
satisfactory level

x2=24.0698

Xeritical >>43.77

n=998-1=997 freedom degrees and confidence level 95%

The two distributions are checked in parts (e.g. per forty
points) in order to confirm this behavior at a smaller scale. The
result is the same, namely that the two distributions are
approached. This check is a good indication that the simulation
applied approaches the phenomenon satisfactorily.

This statistical approach of the two distributions can be seen
in Figure 23 (Figure 23) where an extract of the two distributions
is depicted. Based on this diagram, the level of approach of
the two distributions can be compared, which in statistical
terms is regarded as reliable (error probability 5%).

real situation

Sy

| A e

simulation

Figure 23. Comparative presentation between the real digitizing
error and the error predicted from the simulation

(ii) Simulation of the mean size of the digitizing error
A similar approach as in the mean vector of the digitizing error
is followed in the case of the mean size llrl.

The models that were developed and used in the simulation of
this size are:

Model 3:
I1=0.0873 cur—0.0163 dir + 0.0057 dcom + 0.2517

Model 4:
Il = 0.0682 cur—0.0059 dir + 0.0067dcom + 0.5926 lIrl_1 + 0.0759

The variance-covariance matrix of these two models are shown
on Tables 10 and 11 (Tables 10, 11).

Table 10. Variance-covariance matrix of model 3(r/cur, dir, dcom)

Cur abs_dir dcom const.
cur 1.0615E-2
abs_dir -0.818E-8 2.8395E-3
dcom 1.3461E-3  -0.1782E-3 2.5612E-3
const.  -4,335E-3 -1.9016E-3 -5.318E-3 1.3563E-2

Table 11. Variance-covariance matrix of model 4
(Ilrlfcur, dir, dcom, IIMI_1)

Cur dir dcom rl_1 const.

cur 8.5782E-3

dir  -0.281E-3 2.3177E-3

1.1094E-3 —-0.1803E-3 2.0788E-3

—0.349E-3 24.822E-3

const, =2.8295E-3 —1.8311E-3 -3.8507E-3 —9.349E-3 12.8591E-3

dcom

Ilrl_l —1.1008E-3 1.2297E-3

The values range within which the selection of the absolute
value of the digitizing error is made for the first points of the

contours is:
+0.1592

The results of the simulation are shown on Table 12 .

Table 12 shows that in both cases of models, the minimum
value predicted is negative (very close to zero), something
that in fact cannot happen. Once again, it can be noted that
the values of this table (Table 12) are the statistical result of
thirty (-30-) successive simulation repetitions.

It is observed that the predicted values of the error size that
resulted from the two models are almost identical with the
mean value of the error size observed. A difference is observed
at the maximum value predicted by model 3, as well as at the
variations of the errors that are predicted in both models. On
the whole, it is observed that model 4 predicts smaller errors.

With a procedure similar to the one for the mean error vector,

Table 12, Simulation results based on Models 3 and 4

Obered  piied  bredicwd

min |7l +0.0675 -0.0068 -0.0042
max |11l +0.6527 +0.6211 +0.3988
mean 7l +0.2685 +0.2692 +0.2637
sd 1Al +0.0797 +0.0582 +0.0367
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one may observe the uncertainties of the predictions of these
models (models 3, 4). Moreover, a test-x* may be carried out in
order to ascertain whether and how the observed error
sequence is approached by the predicted sequence.

The test provides the following results:
x*=24.0863
X critical >>43.77

which determine that the two distributions are approached
statistically for a confidence level 95%.

VII. GENERAL OBSERVATIONS REGARDING THE
MODELING AND SIMULATION

Modeling a phenomenon is a complex procedure (usually in
connection with the phenomenon’s complexity), that requires
meticulous attention and deliberation, and also many
repetitions in order to succeed.

In this research effort, the nature, complexity, and multi-
variability of the digitizing process make the modeling of the
phenomenon difficult.

The fact that the data presents an intense serial dependence,
affects the adjustment of a simple linear model and imposes
the use of a time series model, so that the explanation of the
phenomenon is satisfactory at a level of approximately 70%.
The possibilities to utilize such a model are limited, mainly to
simulation cases and to comparisons of the various geometric
forms of parts of contours with the digitizing error.

These models may also be combined, so that the digitizing
phenomenon is approached in a better fashion. The use of
“mean vector of digitizing error” and “mean size of digitizing
error” may realize an uncertainty zone around each digitized
contour, within which the contour may be positioned.

The simulation results may be utilized appropriately in cases
where the question is the effect of the digitizing error on
secondary products, that resulted from the processing of the
digitized information. These products, such as terrain slopes,
length-sections and cross-sections, digital terrain models,
visibilities, calculations of solids (volume, expanded surfaces),
reports, etc., are influenced by these errors, given that they
make use of the horizontal position of the digitized contours.
The possibility to simulate the digitizing error offers the
opportunity to study the distribution of the problem in these
secondary products and to estimate the level of risk undertaken
by using these products.
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