54 Junhua Teng et al.: An Efficient Algorithm for Raster-to-Vector Data Conversion

An Efficient Algorithm for Raster-to-Vector Data Conversion

Junhua Teng', Fahui Wang?, Yu Liuv*

! State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration,

Hangzhou,310012, China
E-mail: htgis@163.com

? Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA;
*Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing 100871, China

Abstract

Data conversion from raster to vector (R2V) is a key function in Geographic Information Systems (GIS) and remote sensing (RS)
image processing for integrating GIS and RS data. The R2V module is available in commercial RS software packages, but there is still
room to improve the computation efficiency. This paper presents an efficient R2V algorithm that processes large images and
automatically builds GIS topology while scanning image lines one by one. The new algorithm, termed Two-Arm Chains Edge Tracing
(TACET), has several significant advantages. First, it converts all types of area objects of RS classification in only one processing
cycle. Secondly, it constructs complete area topological relationship by recording the shared edge between two polygons only once.
Finally, it is scalable when processing large images. The program based on the algorithm is faster in processing large RS images with

comparison to commercial software such as ENVI.
Keywords

raster to vector, data conversion, Two-Arm Chains Edge Tracing (TACET) algorithm, LittleHuskie R2V

I. INTRODUCTION

Raster to vecror (R2V) data conversion or vectorization is a
key function in geographical information systems (GIS) and
remote sensing (RS) image processing for data integration
between RS and GIS (Mattikalli, et al., 1995). In general, there
are two types of R2V algorithm, namely line vectorization and
polygon vectorization. Line vectorization is often used in CAD
for digitalizing images from paper media, e.g., extracting
contour lines from scanned topographic maps. During this
process, linear elements on a map are automatically recognized
and represented in a vector format. Numerous algorithms of
line vectorization are developed, and many software packages
such as AlgoLab (http://www.algolab.com/r2v.htm),
RasterVect (http://www.rastervect.com) and Scan2CAD (http:/
/www.softcover.com) are available to cater the large CAD and
art design markets. Polygon vectorization is often used in
extracting geographical features from RS imagery classification
results. One application of polygon vectorization is to update
land use database from RS data. This paper focuses on polygon
vectorization.

Several important existing studies on polygon vectorization
are highlighted here. Congalton (1997) discussed the
importance of R2V or V2R in theory, and explored and evaluated
the outcomes of R2V and V2R conversions. Lou et al. (2005)
discussed the problem of R2V conversion based on classified
remote sensing images, and recognized the difficulties of
handling all classes of geographical objects simultaneously
in the process. Riekert (1993) proposed an algorithm of
extracting area objects from raster image data, which proved
to be significant improvements over previous algorithms. At
present, the R2V module is included in many RS software
packages such as ENVL. However, there is still room to improve

the algorithm to enhance its performance. This research builds
upon the work by Riekert (1993) and makes further
improvements and clarifications. Its advantages become
evident in handling complex large images.

The R2V conversion is an important task for at least three
reasons as explained in the following.

e R2V is a time-consuming process and demands high
computing power. The faster the algorithm is, the larger
image it can handle. Generally, the time complexity of a
R2V algorithm is O(n#m), where n and m denote the size
of an image, because each pixel needs to be accessed at
least once to be determined whether it is a node or a
vertex.

e The speed of a R2V algorithm is also determined by spatial
complexity. As the resolution of an image becomes
sharper, the data volume increases. This may either
significantly slow down the display of an image or prevent
it from being wholly loaded due to limited computer
capacity. It is critical to find an approach with reduced
spatial complexity.

e In order to make R2V results ready for GIS users, it is
desirable for the vector data to contain all types of
classification in one file instead of multiple files with each
type saved in one single file. It is also more convenient to
manage the complete topological relationship among
classes. RS data have become a fast and convenient source
for updating spatial database. Take land use changes as
an example. If all land use classifications are saved in one
data set with topology, it is easy to edit one area and
maintain consistency in adjacent areas.

1082-4006/08/14(01)-54$5.00
©2008 The International Association of Chinese Professionals
in Geographic Information Science (CPGIS)

Geographic Information Sciences

Vol. 14, No. 1, June 2008 85

II. BASIC CONCEPTS IN R2V ALGORITHM

As discussed in the previous section, R2V includes line
vectorization and polygon vectorization. Line vectorization
focuses on line thinning by converting bold lines in a digital
scanned image into skeleton lines. This paper focuses on
polygon vectorization. Polygon vectorization may be also
related to line vectorization. For instance, one may use line
vectorization to extract polygon edges first, and then export
the derived edges into a GIS software package for further
processing. However, this approach is rarely used because of
its low transformation accuracy and efficiency. In contrast to
line vectorization where line features are extracted based on
center points of pixels, polygon vectorization defines
boundaries by edges between pixels.

Inapolygon R2V algorithm, three concepts, namely pixel, node,
and topological relation, are essential components. First, a
pixel is the basic element of a RS image. Second, a 2x2 window
of pixels can be defined such that a node or an edge can be
identified. Boundaries among polygons are created by
connecting the central points of such node or edge windows.
In this research, we used “edge tracing” to name this process.
During edge tracing, the topological relation between two
neighboring polygon is constructed simultaneously.

A. Pixels and coordinates

A pixel in a raster image is considered as a primitive element. It
is treated as a polygon (square) in the vector format. Every
pixel in an image has a certain resolution. For example, the
resolution of Landsat TM image pixel is 30x30 meters. By
transforming the raster into vector, a pixel becomes a 30x30
square. Figure 1 uses an example to show how pixel positions
in an image are transformed into vector coordinates. All arcs
that define polygon boundaries are orthogonal.

B. Edges and nodes

In polygon vectorization, it is essential to delineate boundaries
between polygons. Clearly, polygon boundaries may not be
in homogeneous areas in an image. Hence, based on a 2x2
window, we can identity six cases of edge connections (Figure
2(a)—(f)) and eight cases of node connections (Figure 2(g)—

e—— (i, J)

Pixel(i, j) maps to
Rectangle ABCD based on
A:((i-0.5)*DeltaX, (j-0.5)
#Delta)

Bi. Cr. Di

Figure 1. Pixels transformed into polygons according to
their positions in an image

(n)) as shown in Figure 2. The comumon edge of two neighboring
pelygons consists of a sequence of edge connections. Two
or more edges intersect and form a node, at which we should
start or complete an edge tracing operation.

In the above figure, a, b, ¢ and d stand for different values (e.g.,
land cover types) in a classified image. These 14 cases can be
employed as templates to find edges and nodes in an image. In
the proposed algorithm, the last three cases are considered the
same as the 7th case (Figure 2(g)) since all result in four polygons.

C. Topological relations

Based on the extracted nodes and edges, topological relations
among polygons can be built. In the proposed algorithm, the
topological relation between two neighboring polygons is based
on their common edge. An edge has two sides (left and right).
Each corresponds to a polygon on the left or right of the edge.
One special case is that a bigger polygon may contain some
smaller ones. For example, A includes B in Figure 3(a). In such
cases, the inner polygons are called islands or holes, whereas
the outsider one is called contour. One polygon may have
only one contour edge, but multiple (¥>0) hole edges.

III. THE TWO-ARM CHAINS EDGETRACING(TACET)
ALGORITHM
A. Bitmap method

It is possible that a R2V algorithm traces all edges of different
types of geo-objects in one loop. However, complex

ala al|b al|a ala a|b a|b

b|b al|b al|b b|a b|b al|a

a b C d e f
a|b a | a al|b al|b al|b al|b al|b a|b
c|d c|d d|d a|d c|b c|a b |d b [a
g h i i k 1 m n

Figure 2, Six types of edge connections (top) and eight types of node connections (bottom)

56 Junhua Teng et al.: An Efficient Algorithm for Raster-to-Vector Data Conversion

relationships among polygons may complicate the process.
In Figure 3(a), after single polygons (i.e., A, B, C, D, E and F)
are traced, the next step is to determine the topological
relationships among them. Polygon B is a complex one with
one contour edge and four hole-edges of C, D, E and F.

In order to handle this type of problems, Lou et al. (2005) in ENVI
4.2 introduced a preprocessing method to create a binary image
at first. In one single processing loop, it turns one particular

(a) Contour and island

value of pixels to 1 and all other pixels into 0 as background. By
doing so, the whole image becomes a binary (0 or 1) bitmap.
Since there are multiple values for pixels in the original image, it
takes several loops to complete the whole process. For the case
in Figure 3(a), it needs six loops to represent six values (A, B,
C, D, E and F). Figure 3(b) shows the preprocessing result of
class B, where polygons D, E and F in Figure 3(a) are converted
into background and merged into one type. We propose an
improved algorithm as discussed below.

(b) Feature B extracted in a multiple-loop R2V

Figure 3. Topological relations in R2V

B. Improvements

(i) Plane-sweeping process

A scalable algorithm is developed in order to process large
image files in R2V. Regardless of the image size, the algorithm
loads only two lines of image at a time for tracing. Figure 4
shows that only the grey area from a whole image is need in a
single iteration of R2V. A 2-line floating window is loaded to
the active memory, and it moves from the top line to the bottom
to complete tracing a whole image (plane sweeping).

(ii) Topology

In order to build topological relations among polygons, an
edge is considered to have two side skins with one central
stick. In Figure 5, blue lines represent two side skins to form
polygon topology, and red lines are sticks to define edges’
geometry. Two side skins are connected to each other while
tracing polygons. In Figure 5, four polygons are formed, namely
E, E, F and the outer-line polygon. The outer-line polygon is
identified with the support of two side skins.

(iii) One-looped process
This R2V algorithm scans from the top line to the bottom line
by a 2-line floating window in one cycle. All polygon edges

are traced, and the polygon topology is built simultaneously.
It is a fast and efficient algorithm termed Two-Arm Chains
Edge Tracing (TACET).

C. Key concepts of two-arm chain edge tracing

(i) Two-arc chain polygon
In this new algorithm, each polygon is completed by two arc
chains. As shown in Figure 6, in the tracing processing, the top
left node is defined as the start of a polygon, and the bottom
right node is defined as the end of the polygon. It is coded in
C++ as class CGisPolygonR2V, in which m_LeftListOfArcs
and m_RightListOfArcs record the pointers of arcs and
correspond to the two side skins of arcs such as:
Class CGisPolygonR2V

{

long int m_PolygonSystemlID

CObArray m_LeftListOfArcs;

CObArray m_RightListOfArcs;
|5

(ii) Ares

As discussed earlier, an arc in this new algorithm has one
central stick with two side skins. The stick is used to trace an
arc’s geometrical feature by recording the coordinates of

| 2-line floating
7 window

[TTT T T T I T Tl

Figure 4. Two-line floating window in R2V

Geographic Information Sciences

Vol. 14, No. 1, June 2008 57

Blue Line: Skin
Red Line: Stick

D Outer-Line
polygon

Vg

Figure 5. Two side skins tracing to form polygon topology

Polygon
begins

at the top Left List of Arcs
left node

7

2

P

§ A polygon is completed by

= two Arc chains

i

= Polygon

ends at

the bottom
right node

Figure 6. Two arc chains are used in polygon tracing

vertices. The two side skins, defined as left skin and right
skin, are used to trace polygons. When one arc ends (e.g., at
anode), its pointer is added to the polygon arc chains, i.e., the
left skin is added to m_LeftListOfAres and the right skin to
m_RightListOfArcs. The C++ codes are:
Class CcsArc

{

long int m_ArcSystemID;

CObArray m_ListOtVertexCorrdinate;
B

(iii) Two-Arm Chain

A comprehensive class CHfArms is used to record the tracings
of both arcs and polygons. Since the R2V algorithm is a plane-
sweep process, the tracing is always from left to right in the
horizontal direction and from top to bottom in the vertical
direction. Figure 7 shows all member variables in the class
CHtArm. Two arms are used to trace polygons and arcs: the
vertical arm m_pArcVerticalArm and the horizontal arm
m_pArcHorizonalArm. The concepts of virtual arm and solid
arm are introduced here, if the pixel has the same value with
the above one, then the horizontal arm m_pArcHorizonalArm
is virtual, otherwise is solid, and in the same way, if the pixel
has the same value with the left one, the horizontal arm
m_pArcHorizonalArm is virtual, otherwise solid. Considering
that the whole two-dimension space is divided into three parts
by the two arms, three variables, namely m_pAbovePolygon,
m_InsidePolygon and m_pLeftPolygon, are used to record

m_p Above Polygon

m_p Inside Polygon

m_p Left Polygon
m_p Arc Vertical Arm

Figure 7. An instance of CHtArm class

the above polygon, inside polygon and left polygon
respectively. Corresponding to the side skins of arcs (i.e., arms),
these polygons are necessary for building the topology
simultaneously with edge tracing. The variable m_PixelValue
records a pixel’s value (e.g., land use type), and the variable
m_I[ColPos records the pixel’s column position. The C++
definition of the Two-Arm Chain class is:

class CHtArm:public CObject

{

public:
long int m_PixelValue;
long int m_IColPos;
CGisPolygonR2V #*m_plnsidePolygon;
CGisPolygonR2V *m_pAbovePolygon;
CGisPolygonR2V ~ *m_pLeftPolygon;
CCsArc #*m_pArcVertical Arm;
CCsArc *m_pArcHorizonal Arm;

B

D. Connecting rules for two-arm chains

Since topological relations among edges and polygons are
built in each arm, the whole R2V process can be implemented
by connecting the arms. This was not made clear in Riekert
(1993). The following explains the connecting rules for the
Two-Arm Chains algorithm.

(i) Rules for creating polygons

In this new algorithm, a polygon is traced by beginning from
the top left node and ending at the bottom right node. It should
be noted that the outer polygon is created when the last node
(i.e., the bottom right pixel) of the whole image is reached.

(ii) Rules for passing topological relations among neighboring
CHtArmobjects

When tracing from one arm to another from left to right and
from top to bottom, topological information is passed between
them. Two other two-arm objects (i.e., pTivoArmPrevious and

58

Junhua Teng et al.:

An Efficient Algorithm for Raster-to-Vector Data Conversion

pTivoArmAbove) are considered in connecting the arms by
following the following principles. First, the vertical arm of
pTwoArmPrevious object and the horizontal arm of
pTivoArmAbove object are ignored because the iteration goes
from left to right and from top to bottom. Secondly, the side-
skins information of each arm is inherited from its neighboring
solid arm and passed on to the next arm across the virtual arm.
Thirdly, after connecting the arms, all horizontal arm
information in each two-arm object is transferred to the next
solid vertical arm, or terminated when the polygon is closed.

o

p Two Arm Above

=

p Two Arm Previous p Two Arm Next

Figure 8 shows two typical examples out of 11 scenarios (further
illustrated in Figure 9 and Figure 10). In the left graph of Figure
8, the vertical and horizontal arms of pTivoArmAbove object
are both virtual. The pTivoArmPrevious object passes its left
side-skin information on to pTivoArmNext, and pTivoArmNext
also inherits the right side-skin information from its neighboring
solid arm of pTivoArmPrevious object. The corresponding
transferring rule is:

pTwoArmNext-> m_pAbove Polygon = pTwoArmPrevious->
m_pAbovePolygon

S

p Two Arm Above

Polygon closed (

<

<

p Two Arm Previous

p Two Arm Next

(a) Prior line

(b) Two-Arm Chain of
prior line

Ignored Arm Virtual Arm Solid Arm
Figure 8. Two typical examples of passing topological relations between arms
Line scanning direction
|
C C
o
D D

(c¢) Current line

(d) Two-Arm Chain of
Current line

(e) Add Extra Two-Arm
Chains based on prior
line

(f) Run-Length Code
Tracing Edges(Two-
Arm Chain Creating)

.

oo

i
I

”"”I MV X

(g) Connecting Two-Arm
Chain of prior line

g

v v

»

Figure 9. Edge tracing while creating two-arm chain

Geographic Information Sciences

Vol. 14, No. 1, June 2008 59

<
(a) (b)
*
.................. [e
(e) (6]
———> ¢—P—>
v
(0)
o
0—»: > . » >
v v
(m) ()

¢
" (@
I ¢
v
i DI ,,,,,,,,,,,,,,,,,, s | >
(8) (h)

I ¢
e i
v v
®) i

¢

¢ » B P » >
v v
©) ®

Figure 10. 16 possible scenarios of Two-Arm Chains connections

pTwoArmNext-> m_plInsidePolygon = pTwoArmPrevious->
m_pAbovePolygon

pTwoArmNext-> m_pLeftPolygon = pTwoArmPrevious->
m_plInsidePolygon;

In the right graph of Figure 8, the left side-skin information of
pTivoArmPrevious object and the right side-skin information
of pTwoArmAbove are terminated because of closing of the
polygon at the bottom right, i.e., the end of polygon tracing.
Its left side-skin information is inherited from pTwoArmAbove,
and its right side-skin information from its neighboring
pTvoArmPrevious object. Here all horizontal arms information
is transferred into vertical arms,

E. Rules for connecting ares to form a polygon

If nodes are met during the process of connecting two-arm
objects, the corresponding arc tracing is completed. At this
time, the CCsArc object should be saved and assigned to the
resulting polygon. If the ending arc object is a horizontal arm,
the left side skin is appended to the left arc chain of the
m_pAbovePolygon object of current two-arm object, and the
right side skin is appended to the right arc chain of the

m_plInsidePolygon object of current two-arm object. If the
ending arc object is a vertical arm, the right side skin is
appended to the right arc chain of the m_pLeftPolygon object
of current two-arm object, and the left side skin is appended to
the left arc chain of the m_plnsidePolygon object of current
two-arm object (also see Figure 7).

E. Implementing the two-arm chain edge tracing (TACET)
algorithm

(i) Edge tracing based on the two-arm chain algorithm

Figure 9 shows the edge tracing procedures based on the
Two-Arm Chain algorithm. Figure 9(a) illustrates the
distribution of pixels in the top line of an image. Because of
the map boundary, the corresponding arcs are all solid except
for the last one (as shown in Figure 9(b)). Figure 9(c) shows
the distribution pattern of pixels in the next line, and Figure 9
(d) is the derived Two-Arm Chains. In Figure 9(d), two Two-
Arm objects have virtual horizontal arms because of the same
pixel values C and A as in the prior line. As the Two-Arm
objects in the prior line(in Figure 9(b)) have to be inherited,
extra Two-Arm objects are added into current line (Figure 9

60 Junhua Teng et al.: An Efficient Algorithm for Raster-to-Vector Data Conversion

(d)) though these objects have the virtual vertical arms. As
shown in Figure 9(e), the blue ones are inherited from the prior
chain. As a pixel’s position in each arm (represented by class
CHtArm) is saved in the member variable m_IColPos, the
horizontal edges can be formed by recording the running-
length codes according to its contiguous CHtArm objects.
For example, m_IVolPos is 0 in the first CHtArm object, and
m_IColPos is 2 in the second CHtArm object. Therefore, the
horizontal edge is from 0 to 2 along the horizontal axis. Figure
9(f) shows the complete chains’ information, where solid arms
are represented as solid lines and virtual arms are dashed lines.
As discussed in the next subsection, solid and virtual arms
play different roles in connecting arms. Figure 10(g) shows
how two Two-Arm Chains (one shown in Figure 9(b) and
another in Figure 9(f)) are connected. If no corresponding
Two-Arm objects exist between Figures 9(b) and 9(f), extra
Two-Arm objects with virtual vertical arms are created similarly.

(ii) Two-Arm Chains Connection Analysis

During the above process of connecting the Two-Arm Chains,
polygons are also created. 11 valid cases can be identified
from 2* (=16) possible scenarios. In Figure 10, solid lines
represent cases when two neighboring pixels have different
values, and dashed lines represent two neighboring pixels
with the same values.

In Figure 10(a), all arms in four directions are solid (also refer
to the 7" case (Figure 2(g)) in Figure 2). In this case, one
polygon (top left of the node) is closed, and it begins tracing
anew polygon (bottom right of the node). In Figure 10(b), the
top connection is a virtual arm, and the polygon’s information
is thus transferred from left to right. Since the arms of right
and bottom are both solid, it starts tracing a new polygon. In
Figure 10(c), the polygon’s information is transferred from top
to bottom, it also starts tracing a new polygon. In Figure 10(d),
it starts tracing two polygons. In Figure 10(e), one traced
polygon is closed, and other polygons’ information is
transferred from top to bottom. Figure 10(f) shows the
connection by a vertex where the left arm is extended into the
bottom arm, and Figure 10(g) is similar as the top arm extends
to the bottom arm. Figure 10(h) is an invalid case because
there is only one solid arm. In Figure 10(i), one traced polygon

(a)

is closed, and the polygon’s information is transferred from
left to right. Figure 10(j) and Figure 10(k) are both connections
by a vertex, and Figure 10(1) is also an invalid case. In Figure
10(m), one traced polygon is closed. Figures 10(m)—(p) are
three invalid cases.

(iii) Ridge and island detections

Since this algorithm traces polygons while scanning lines one
by one, it cannot detect whether it is an island (as shown in
the left of Figure 11) or a ridge (as shown in the right of Figure
11). A solution to this problem is provided below.

In the TACET algorithm, topological relationships are
generated at the left-top corner of polygons when a polygon
tracing process is completed at the right-bottom corner. Each
polygon only consists of two arm-chains. For an island, we
need to decide the parent polygon that contains the island.
Unfortunately, this issue was not described by Riekert (1993)
in detail. According to the definition of a CHtArm object, the
member m_IColPos records the order of this CHtArm object
along a horizontal scan. Hence, it is straightforward to find the
polygon associated with the arm prior to the current one. The
previous polygon is a parent polygon if the current traced
polygon is an island.

As shown in Figure 11(a), at point A as the starting node of
Two-Arm Chains, it creates two polygons #1 and #2. When it
meelts point B, it creates two new polygons #3 and #4, and
detects that #3 is an island of #2. When it meets point C as an
ending node, polygons #3 and #4 are closed. While it meets
point D, polygons #1 and #2 are closed. In Figure 11(b), the
same results are derived at points E and F. However, when it
reaches point G as a bottom right node, the polygons are
closed. What is the difference between points C and G? At
point G, the arm pointing to polygon #2 connects with the arm
pointing to a different polygon #3. This means that assuming
polygon #3 as an outer polygon at the beginning point F is
not valid. Therefore, polygon #3 does not exist, and the edges
of polygon #3 are combined with those of polygon #2. On the
contrary, at point C, the vertical arm pointing to polygon #4
connects with the horizontal arm also pointing to polygon #4
on the inner side. On the outer side, they point to the same

Figure 11. Ridge and island detection in polygon tracing

Geographic Information Sciences

Vol. 14, No. 1, June 2008 6l

polygon #3 as well. This leads to closing two polygons #3
and #4, and generating an island.

In summary, the Two-Arm Chain algorithm leads to two
different outcomes in these two cases and detects ridges and
islands. According to the above discussions, the two cases
depicted by Figure 11 are similarly dealt with in the proposed
TACET algorithm. The only difference exists in the way of
connecting two arms. Since all possible connections are
enumerated in Simply Section I11, it indicates the completeness
of the TACET algorithm. It should be noted that we assume
every polygon consists of two arms in this research. However,
polygon #4 in Figure 11(a) can be simply represented by one
arc. In other words, pseudo-nodes may be created in this
algorithm. These pseudo-nodes are “harmless” in managing
topological relationships of the resulting map. Hence, the two-
arm assunmption makes the proposed method simpler and more
elegant than that of Riekert (1993).

1IV. CASESTUDY ANDEVALUATION

The program implementing the Two-Arm Chain Edge Tracing
algorithm is nicknamed “LittleHuskie R2V”. Huskie is the
mascot of Northern [llinois University (NIU), where the primary
author, supported by the Zhejiang Association for
International Exchange of Personnel (ZAIEP), was visiting in
2006 and the secondary author was at the time affiliated with.
Bulk of the programming work was done from July to December
2006. The performance of LittleHuskie R2V is evaluated and
validated by comparing with ENVI 4.2, a widely used
commercial RS image processing software package.

The original sample images came from TM of Landsat 5 (Figure
12(a)). Three different sizes were used: 500x500, 1000x 1000
and 2000x2000. Based on the images, land use classifications
(as shown in Figure 12(b)) were derived. The classification
files were used as the input raster file for LittleHuskie and
ENVI to perform the task of R2V conversion.

Table 1 lists the testing results of LittleHuskie and ENVI 4.2, Tt
was carried out in a PC with a 2.4GHz CPU and a 512MB
memory. The results demonstrate that LittleHusike was 8 times
faster than ENVI in large image processing.

V. CONCLUSION

Data conversion from raster to vector (R2V) is a key function
included in commercial RS software packages. However, R2V
is currently a time-consuming process in software such as
ENVI, and calls for the need to improve the computation
efficiency. This paper presents an efficient R2V algorithm that
processes large images and automatically builds GIS topology
while scanning image lines one by one. The new algorithm,
termed Two-Arm Chains Edge Tracing (TACET), has several
significant advantages. First, it converts all types of area

(b) Classification result of TM image

Figure 12

Table 1. Comparison of LittleHuskie vs. ENVI 4.2

. Time by Time by LittleHuskie
Image size Polygons ENVI4.2(s) (seconds)
500x500 22,619 38 5
1000x 1000 90,181 417 31
2000x2000 230,824 4,840 282

objects of RS classification in only one processing cycle.
Secondly, it constructs complete area topological relationship
by recording the shared edge between two polygons only
once. Finally, it is scalable when processing large images. The
program based on the algorithm, called “LittleHuskie R2V", is
faster in processing large RS images with comparison to ENVL

62 Junhua Teng et al.: An Efficient Algorithim for Raster-to-Vector Data Conversion

ACKNOWLEDGEMENTS -

Financial supports from the Natural Science Foundation of
Zhejiang Province (No. Y506185) and two National Technical
Support Projects of China (No. 2006BAC03B02 and No. (3]
2006BACO3B01) are gratefully acknowledged.

REFERENCES (4]

[1] Congalton R. G., 1997, Exploring and evaluating the consequences

of vector-to-raster and raster-to-vector conversion.
Photogrammetric Engineering & Remote Sensing 63: 425—
434,

Lou X., Huang W., Shi A., Teng J., 2005, Raster to vector
conversion of classified remote sensing image. Geoscience and
Remote Sensing Symposium IGARSS-05 Proceedings. IEEE
International 5: 3656—3658.

Mattikalli N. M., Devereux B. J., Richards K. S., 1995, Integration
of remotely sensed satellite images with a geographical
information system. Computers and Geosciences 21: 947—
956.

Riekert W. F., 1993, Extracting area objects from raster image
data, IEEE Computer Graphies & Applications, March 1993:
68—73.

