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Abstract

The objective of this study is to gain knowledge about landscape changes on surface coal mines following reclamation in southwestern
Indiana, USA using satellite and airborne remote sensing. Three Landsat Thematic Mapper (TM) images acquired in 1989, 2000 and
2006 were used to map the land use/cover pre- and post-surface mining using both unsupervised and supervised classification
algorithms. The post-classification comparison change detection algorithm was used to determine the land use/cover changes over
time. A portable spectroradiometer was used to record reflectance spectra of vegetated surfaces in the field for calibration and training
site selection. The land use/cover maps derived from satellite images were assessed using high-resolution color orthophoto and field-
collected data. The overall accuracies for the 1989, 2000 and 2006 land use/cover maps are 91, 90 and 85 percent with kappa statistic
of 0.87, 0.86 and 0.80, respectively. Finally, a number of landscape metrics were calculated using FRAGSTATS to characterize
pattern changes at the landscape level. The results indicated that the vegetation planted on the mined surfaces in the reclamation
process were mainly croplands and grasses, while most of the forest land used for surface coal mining was not reclaimed to its original

use.
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I. INTRODUCTION

Surface coal mining can potentially result in adverse
environmental impacts such as erosion, gully formation, acid
mine drainage and increased sediment loading as a result of
abandoned and inadequately reclaimed mined lands (Parks, et
al., 1987). In addition, spoil piles, destruction and degradation
of vegetation and agricultural lands and discharge of effluents
from coal washing facilities into nearby water bodies also have
had adverse effects on local environments (Rathore, Wright,
1993). Assessing the effects that surface mining activities have
on the environment is a major issue in sustainable development
and resource management (Latifovic, et al., 2005).
Quantification of vegetation conditions pre- and post-mining
therefore becomes an important aspect of sustainable land
management that requires more sophisticated and
comprehensive information on the dynamics of impacts on
the environment (Schmidt, Glaesser, 1998). Successful
monitoring of landscape changes pre- and post surface coal
mining requires observations with frequent temporal coverage
over a long period of time. However, such tield observations
in mined areas are usually not available. For this reason, remote
sensing becomes an ideal technology that provides rapid and
repetitive monitoring capability on surface coal mining and
reclamation success (Rathore, Wright, 1993).

Remote sensing is the science of deriving information about
the earth’s surface from images acquired at a distance, and
has been widely used for land use/cover studies at local,
regional and global scales (Chen, 1998; Joshi, et al., 2003;
Latifovic, et al., 2005). Kushwaha (1990) investigated the use
of satellite remote sensing data in forest-type mapping and
change detection in the Western Ghats in Karnataka, India.

Normalized difference vegetation index (NDVI) derived from
the visible and near-infrared (NIR) bands of satellite imagery,
as an important indicator of relative biomass and greenness
(Chen, 1998), is often used to calculate primary production,
dominant species and anthropogenic impacts when utilized
concurrently with field studies (Paruelo, Epstein, 1997; Ricotta,
Avena, 1999). In addition, satellite remote sensing provides
an important basis for vegetation mapping and landscape
monitoring, primarily through the relationships between
reflectance and vegetation structure and composition(Joshi,
et al., 2003). However, few studies have focused on the
assessment of vegetation changes and its impact on the
environment pre- and post- surface mining over the long term.
Rathore and Wright (1993) reviewed the application of remote
sensing on monitoring environmental impacts of surface coal
mining in the 1970s and 1980s. Graham et al. (1994) applied the
principal component analysis (PCA) on Landsat Thematic
Mapper (TM) images to monitor vegetation changes in large
areas affected by iron ore mining operations in Noranda,
Quebec, Canada. Prakash and Gupta (1998) studied the impact
of coal mining on land use changes by using temporal remote
sensing data in the Jharia coal field in India. Schmidt and
Glaesser (1998) investigated the use of remote sensing data
for monitoring environmental impacts of open cast lignite
mining in eastern Germany. Recently, a study was conducted
using Landsat imagery to assess land use/cover changes
resulting from extensive surface mining development in
Athabasca, Alta, Canada (Latifovic, et al., 2005).

Indiana was the second state in the United States to enact a
reclamation law to regulate surface mining in 1941. The law
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required coal companies to plant trees on spoil banks after
mining. However, survival and growth of planted trees was
generally poor on the newly reclaimed mine conditions. Many
mine operators opted to reclaim to “higher and better” uses
such as agriculture, hey land and pastures that are much easier
to establish and maintain to meet the stringent erosion control
requirements (Purdue University, 2004). Therefore, there is a
need for rapid and cost-effective techniques for the evaluation
of reclamation success, especially vegetation changes after
surface coal mining. The overall goal of this study was to
assess the long-term impacts of surface coal mining on
vegetation changes in southwestern Indiana, USA using
remote sensing. Two specific objectives were: 1) mapping the
land use/cover and changes pre- and post-surface coal mining
in southwestern Indiana using Landsat TM imagery, and
2) characterizing the landscape patterns and changes of the

mined area through spatial analysis.

II. METHODS
A. Study area and data

Surface coal mines investigated in this study are located in
the west-central and southwestern portions of the state of
Indiana, USA in a large geologic depression known as the
Illinois Basin, which originated in tropical wetlands during the
Pennsylvanian Period approximately 300 million years ago
(Damberger, 1971) (Figure 1). Currently, there are ten active
surface coal mines in Indiana that were opened in the 1990s,
their names, counties, and areas are presented in Table 1.
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Figure 1. Location of the active surface coal mines opened in the 1990s in southwestern Indiana, USA

Table 1. Indiana active surface coal mines opened in the 1990s

INGS Mine County Name Mine Name Year Start Arca(km?)
203003 Gibson Francisco Mine 1996 10.99
203025 Gibson/Pike Patoka River 1996 4.24
203057 Knox Freelandville 1996 4.81
203059 Knox Pride Mine 1996 3.60
203074 Daviess Midway II 1993 1.15
203239 Sullivan Penndiana Pit 1994 6.98
203351 Sulivan/Vigo Farmersburg 1996 21.12
203358 Warrick Cypress Creek 1998 3.62
203359 Davies Cannelburg 1997 5.40
203363 Pike White Church Pit 1996 3.28
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Three scenes of Landsat TM images (path22/row33) acquired
on the 27", 17" and 10" of September in 1989, 2000 and 2006,
respectively, were purchased through the USGS Earth
Resources Observation & Science Data Center and used to
map the land use/cover and landscape changes for the study
area. Indiana statewide sub-meter color orthophoto obtained
in 2005 was used as reference data for training site selection
and accuracy assessment. Two field trips were conducted in
June 2006 and May 2007 to collect field data using a portable
spectroradiometer and a global positioning system (GPS) unit.
GPS-based data was projected into a vector layer, which was
then overlaid on the Landsat images to integrate the parameters
collected in the field with information derived from remotely
sensed data at each corresponding 30x30 m grid. In addition,
a GPS-based digital camera was used to take pictures of the
sampling sites during field trips. Each picture is linked with its
latitude/longitude coordinates and directions on a point
shapefile and used for image classification and accuracy
assessment.

B. Image registration and normalization

Change analysis of satellite images acquired on different dates
requires accurate geometric registration in which the root-
mean-square-error (RMSE) should be less than one (Prakash,
Gupta, 1998). In this study, the image obtained in 2000 was
chosen as the reference data in image-to-image registration of
the two images acquired in 1989 and 2006. A total of twenty
ground control points (GCPs) were selected on each image.
The first-order polynomial and nearest neighbor resampling
method were used and an average RMSE of (.54 was obtained.
After geometric correction, a normalization method termed
histogram matching in ERDAS Imagine® was used to
compensate for the effects of differing solar illumination or
vegetation growth changes evident on images. Histogram
matching is a purely statistical technique that relates the
cumulative density function of one image to the density
function of another to eliminate the subjectivity problem and
reduce the dependence on a geometrically accurate spatial
match between multi-date images (Chavez, MacKinnon, 1994).

C. Image classification and accuracy assessment

Both unsupervised and supervised classification algorithms
were used to classify the multi-date images into land use/
cover maps. Unsupervised classification (or clustering) is an
effective method of partitioning remote sensing data in
multispectral feature space and extracting land use/cover
information (Loveland, et al., 1999; Huang, 2002). In ERDAS
Imagine®, unsupervised classification is performed using an
algorithm termed the Iterative Self-Organizing Data Analysis
Technique (ISODATA). In this study, 30 classes and a 95%
confidence threshold were used in the ISODATA unsupervised
classification. The classified 30 spectral classes were labeled
by geo-linking them with high-resolution orthophoto, which
was then used to select training sites for further supervised

classification. Considering the study area is dominated by
agricultural lands with small portions of forest and water, a
five-class classification system was used in this study. The
five classes are Water\Wetland (WW), Forested Upland (FU),
Agriculture Green (AG) (both crops and re-vegetated grasses),
Agriculture Fallow (AF) (both fallow and bare soil before re-
vegelating), and Mines\Developed (MD). Since the developed
area here includes several roads and few residential, we
combined it with the mined area into one class. The training
sites are set up to identify the spectral characteristics of each
class of interest. At least five training sites were identified
from satellite imagery and established for each class based on
inspection of the orthophoto and field data. Two supervised
classifiers (i.e., maximum likelihood and minimum distance to
the means) were then used to compare each pixel to the
signatures of training sites and assigned to the class for which
the probability is the highest (Wu, Shao, 2002) or the distance
is the shortest (Jensen, 2005).

Derived land use/cover maps in 1989, 2000 and 2006 were
evaluated using high-resolution orthophoto combined with
field inspections. Thirty pixels for each class in the
classification maps were selected using a stratified random
sampling scheme in accuracy assessment to generate the error
matrix. The accuracies of the land use/cover maps were
reported by overall accuracy, producer’s accuracy, user’s
accuracy for each class and a more rigorous kappa statistic
obtained by a statistical formula that utilizes information in
the error matrix (Jensen, 2005). Land use/cover changes during
the periods of 1989—2000 and 2000—2006 were detected using
the post-classification comparison change detection
algorithm, a widely used quantitative change detection method
in the field of remote sensing (Civco et al., 2002; Arzandeh,
Wang, 2003). This method first classifies the rectified images
acquired on different dates separately, then compares and
analyzes the classified images to determine the change
detection matrix and finally constructs the changes map.
Therefore, it is imperative that the individual land use/cover
map used in the post-classification change detection be as
accurate as possible (Arzandeh, Wang, 2003).

D. Spatial analysis

The spatial pattern of land use/cover and their changes over
time at the landscape level were characterized by several
landscape metrics calculated using FRAGSTATS, a spatial
pattern analysis program for categorical maps (McGarigal,
Marks, 1995). The land use/cover maps derived from image
classification were used to quantify the areal extent and spatial
configuration of patches within a landscape. Class level
landscape metrics including Number of Patch (NP), Largest
Patch Index (LPI), Total Edge (TE), Clumpiness Index
(CLUMPY) and Patch Cohesion Index (COHESION) were
calculated for the spatial pattern analysis, for these metrics
represent statistically significant changes over time on surface
coal mines in this study.
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III. RESULTS AND DISCUSSION
A. Image classification and accuracy assessment

The land use/cover of the study area in 1989 before surface
coal mining was relatively simple. The land use/cover on
Farmersburg, the largest active surface coal mine in Indiana,
was covered mainly by agricultural land (69%) and forest
(28%), while the developed area covered less than 3 percent
(Table 2). In 2000, the mined area increased from 2.6 percent to

Table 2. Areas (km?) of the four major land use/cover in the
Farmersburg site during the years of 1989, 2000 and 2006

1989 2000 2006
Land use/cover N
km? Percent km? Percent km? Percent
Forested Upland
(FU) 36.6 28.2% 37.8 29.1% 22.7 17.5%
Agriculture Green
(AG) 37.3 28.7% 20.6 15.9% 433 33.3%
Agriculture Fallow
(ATF) 52.9 40.7% 58.1 44.7% 41.5 31.2%
Mines\Developed
(MD) 343 26% 131 10.1% 21.5 16.5%

10 percent while crops and grasses decreased from 29 percent
to 16 percent. In 2006, the mined area kept increasing up to
16.5 percent, which was mainly from forested upland (29 percent
down to 17.5 percent) this time rather than from agricultural
lands.

The accuracies of the land use/cover maps in 1989, 2000 and
2006 using maximum likelihood algorithm are presented as error
matrixes in Table 3. The overall accuracies of the 1989, 2000
and 2006 land use/cover maps are 91, 90 and 85 percent with a
kappa statistic of 0.87, 0.86 and 0.80, respectively. Producer’s
accuracy of each class was calculated by dividing the correct
pixels in that class by the total number of pixels in the
corresponding column. This statistic indicates the probability
of reference pixels being correctly classified and is a measure
of omission error. User’s accuracy of each class was calculated
by dividing the correct pixels in that class by the total number
of pixels in the corresponding row. This statistic is the
probability that a pixel classified on the map actually represents
that category on the ground and is a measure of commission
error. Either as a producer or user of these land use/cover
maps, the obtained accuracies are considered satisfactory,
especially for forested upland and agricultural lands (AF and
AG), most of which are above 90 percent. The relatively low
producer’s accuracy of the water class is because open water

Table 3. Error matrixes of the 1989, 2000 and 2006 land use/cover maps derived from Landsat TM images

C]assific.ation of Reference data Fistl] User's Producer’s
1989 image WW FU AG AR MD Accuracy Accuracy
Water\Wetland (WW) 2 0 0 0 0 2 100% 67%
Forested Upland (EU) 0 38 0 1 0 39 97% 91%
Agriculture Green (AG) 1 3 38 1 0 43 88% 93%
Agriculture Fallow (AF) 0 1 3 52 3 59 88% 95%
Mines\Developed (MD) 0 0 0 1 6 7 86% 67%
Total 3 42 41 55 9 150
Overall Accuracy: 91% Kappa Statistic: 0.87
Classification of Reference data Total User’s Producer’s
2000 image WW FU AG AF MD Accuracy Accuracy
Water\Wetland (WW) 2 0 0 0 1 3 67% 50%
Forested Upland (FU) 2 34 3 0 | 40 85% 94%
Agriculture Green (AG) 0 1 21 2 1 25 84% 84%
Agriculture Fallow (AF) 0 1 59 2 63 94 % 97%
Mines\Developed (MD) 0 0 0 0 19 19 100% 79%
Total 4 36 25 61 28 150
Overall Accuracy: 90% Kappa Statistic: 0.86
Classification of Reference data Total User’s Producer’s
2006 image WW FU AG AF MD Accuracy Accuracy
Water\Wetland (WW) 3 0 0 0 1 4 5% 50%
Forested Upland (FU) 0 27 0 0 0 27 100% 77%
Agriculture Green (AG) 1 3 43 1 2 50 86% 92%
Agriculture Fallow (AF) 1 4 2 32 3 42 76% 91%
Mines\Developed (MD) | | 1 2 22 27 8§2% 79%
Total 6 35 46 35 28 150

Overall Accuracy: 85%

Kappa Statistic: 0.80
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occupies a small portion in this area and resulted in few samples
being selected from it, for the number of pixels selected for a
class is proportional to the area of this class in a stratified
random sampling. Generally speaking, open water is the class
with the highest classification accuracy in supervised
classification using Landsat imagery, so we are confident that
the accuracy of the water class will be higher than it was in
this assessment if more water samples are included in future
assessment.

The orthophoto used as reference data in accuracy assessment
was obtained in 2005, while Landsat images were obtained
going back to 1989. The question arises as to how a 2005
orthophoto can be used to assess the classification maps
derived from the 1989, 2000 and 2006 satellite images. Since
the land use/cover changes were subtle in this area from 2005
to 2006, there is no issue in using the 2005 orthophoto as
reference data to evaluate the 2006 land use/cover map. To
solve the problem of no reference data available in 1989 and
2000, three TM images of 1989, 2000 and 2006 were displayed
in false color composite (RGB=432) and examined carefully
through geo-link. No significant difference in the colors of
each class was found among them. This is because all three
images were acquired in September, in which vegetation and
its spectral characteristics are similar. On the other hand, the
land use/cover in this area is relatively simple and most changes
occurred among those five classes. Therefore, by comparing
the false color composite of the 1989 and 2000 images with the
2006 image, one is able to determine the land use/cover on the

ground based on its false color in the accuracy assessment.

B. Land use/cover changes

Land use/cover changes among classes during the periods of
1989—2000 and 2000—2006 on the Farmersburg mine are
presented in Table 4 as change matrixes, which include the
detailed “from-to” information from initial state to final state
among the five classes. During the period of 1989—2000, the
land used for surface mining was mainly from FU (3.40 km?),
AG (3.49 kim?) and AF (5.06 km?). At the same time, only one
km? of the mined land being reclaimed to vegetation (FU or
AGQG). The largest land change in this period was between
agricultural lands: approximately 20 km? AG changed to AF
and 9 kim? AF to AG. The reason for this is because only part of
the cropland used for coal mining was reclaimed to its original
use, while some bare soils are not yet re-vegetated. During the
period of 2000—2006, the largest land change still occurred
between AG and AF, but the direction is opposite, i.e., 26.20
km? of AF changed to AG and 8.44 km? of AG to AE. The FU
used for mining almost doubled (6.33 km?), meanwhile only
0.34 km?® of mined area was reclaimed to FU. These results
showed that although most of the lands used for surface coal
mining were reclaimed to vegetated lands (croplands and
grasses), only a small portion was reclaimed to forest land.
That is, the vegetation planted on mined surfaces in the
reclamation process was mainly crops and grasses, with most
of the forested upland used for surface coal mining not being
reclaimed to its original use.

Table 4. Change matrixes of the land use/covers (km?) in the Farmersburg site during the periods of 1989—2000 and 2000—2006

Final state in 2000

Initial state in 1989

Class total

WW FU AG AF MD
Water\Wetland (WW) 1.18 0.58 0.31 0.51 0.09 2.66
Forested Upland (FU) 0.34 28.32 3.85 4.76 0.49 37.77
Agriculture Green (AG) 0.08 1.38 9.74 8.87 0.51 20.58
Agriculture Fallow (AF) 0.08 2.95 19.94 33.70 1.43 58.09
Mines\Developed (MD) 0.20 3.40 3.49 5.06 0.91 13.05
Class Total 1.88 36.62 37.32 52.90 3.43
Class Changes 0.70 8.30 27.59 19.20 2.53
Image Ditference 0.79 1,15 -16.74 5.19 9.62
Final state in 2006 Initial state in 2000 Class total
Ww FU AG AF MD
Water\Wetland (WW) 1.53 0.57 0.10 0.43 0.46 3.09
Forested Upland (FU) 0.15 20.92 0.61 0.72 0.34 22.74
Agriculture Green (AG) 0.18 5.20 8.99 26.20 2.72 43.29
Agriculture Fallow (AF) 0.16 4.74 8.44 22.07 6.07 41.49
Mines\Developed (MD) 0.64 6.33 2.43 8.67 3.46 21.54
Class Total 2.66 37.77 20.58 58.09 13.05
Class Changes 1:13 16.84 11.59 36.02 9.59
Image Difference 0.43 -15.03 22.71 -16.60 8.49
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C. Landscape metrics by land use/cover

Table 5 lists several landscape metrics computed for each land
use/cover class. The metrics were considered by class because
each class reveals different information about resource
management at surface coal mines. The NP of a particular class
is a simple measure of the extent of subdivision or
fragmentation of that class. In the five classes, the NP of the
class MD increased dramatically from 924 in 1989 to 1664 in
2000 and again to 2418 in 2006. These increases in NP are
consistent with the area increases in MD during the same
periods: 74 percent for 1989-2000 and 73 percent for 2000
2006 (Table 5). The LPI at the class level quantifies the
percentage of total landscape area comprised by the largest
patch. As such, it is a measure of dominance. The smaller
value of this index reflects the lack of dominance of any land
use/cover. In 1989, the dominant land use/covers in this area
were FU (LPI = 2.89) and AF (LPI = 2.18); in 2000, the AF
continued to be the dominant land use/cover with a LPI of
3.18 while the dominance of FU decreased to 1.09; in 20006, the
dominant land use/covers changed to FG (LP1=2.22) and MD
(LPI = 1.55), indicating that while more AF was developed to
MD, large portion of the lands were reclaimed to vegetation.
The TE at the class level is an absolute measure of total edge
length of a particular class. The largest change in TE occurred

in FU and MD. The TE of the class FU reduced continuously
from 1405 km in 1989 to 1376 km in 2000 and then to 935 km in
2006, while the TE of the MD increased continuously from 231
km in 1989 to 622 km in 2000 and 941 km in 2006. With more
lands developed to mines, the TE increased with increasing
area and patch numbers. The continuous decrease of the TE
of forest land indicated that more and more forested upland
has been developed for surface coal mining in the past decade.
The CLUMPY is calculated from the adjacency matrix, which
shows the frequency in which different pairs of patch types
appear side-by-side on the map. The value of CLUMPY equals
—1 when the patch type is maximally disaggregated, equals 0
when the focal patch type is distributed randomly and
approaches +1 when the patch type is maximally aggregated.
All CLUMPY values in this study are positive, ranging from
0.36 for WW in 1989 to 0.59 for MD in 2006. Generally speaking,
patch types of the FU, AG and AF were more aggregated than
the WW and MD in 1989. With the development of surface
coal mines and the needs of water bodies, the patch type of
the WW and MD gradually became more aggregated after
2000. The patch cohesion index, COHESION, measures the
physical connectedness of the corresponding patch types.
Patch cohesion increases as the patch type becomes more
clumped or aggregated in its distribution; hence, they are more
physically connected. The results of COHESION gave similar
results as for CLUMPY described before: the patch type of

Table 5. Landscape metrics for each land use/cover of the Farmersburg site, Indiana in 1989, 2000 and 2006

Year
Land use/cover Metric
1989 2000 2006
Water\Wetland NP 582 747 749
LPI 0.02 0.04 0.04
TE (km) 147.93 207.57 236.37
CLUMPY 0.36 0.39 0.41
COHESION 53.58 59.12 64.21
Forested Upland NP 2161 2248 1791
LPI 2.89 1.09 0.89
TE (km) 1404.66 1376.43 934,77
CLUMPY 0.54 0.54 0.52
COHESION 93.12 90.83 85.89
Agriculture Green NP 2693 2931 2539
LPI 0.27 0.19 2,22
TE (km) 1612.17 1083.03 1590.12
CLUMPY 0.47 0.42 0.53
COHESION 85.21 73:579 92.29
Agriculture Fallow NP 2175 1625 2872
LPI 2.18 3.18 1.60
TE (km) 1855.59 1690.89 1731.54
CLUMPY 0.52 0.58 0.48
COHESION 94.21 96.45 90.01
Mines\Developed NP 924 1664 2418
LPI 0.05 0.43 1.55
TE (km) 230.82 621.51 940.83
CLUMPY 0.39 0.59 0.57
COHESION 61.29 87.32 90.09

NP(Number of Patch), LPI(Largest Patch Index), TE(Total Edge),

CLUMPY/(Clumpiness Index), COHESION(Patch Cohesion Index)
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Figure 2. False color composite (RGB=432) of Landsat TM images of the Farmersburg site (above) and
their land use/cover maps (below) in 1989, 2000 and 2006, respectively

the FU, AG and AF were more connected than those of the
WW and MD but temporally the patch type of the WW and
MD became more connected after 2000.

IV. CONCLUSIONS

In comparison with other similar studies, the methods
presented in this paper are simple and straightforward yet
provide rapid and accurate solutions for detecting land use/
cover changes, especially landscapes changes pre- and post-
surface coal mining. Satellite remote sensing with high spectral
resolution and large geographic coverage provides a better
data source and tool in environmental monitoring than
traditional data acquisition and interpretation methods. The
combination of high spectral resolution satellite imagery, high
spatial resolution orthophoto and sufficient field inspection
has proven to be an efficient method for monitoring landscape
changes on devastated lands and reclamation of surface coal
mining,

In addition to area changes, landscape metrics provide more
information on land use/cover changes at the landscape level.
Examining a suite of landscape metrics over time was useful
for summarizing, describing and assessing land use/cover
changes on surface coal mines. The program FRAGSTATS is
easy to use but powerful enough to compute a wide variety of

landscape metrics for categorical maps. Therefore, it is
recommended to use landscape metrics to analyze pattern
changes of a land when assessing how surface coal mining
affects vegetation change and ultimately impacts the
environment. The results of this study can be used to
understand the broad-scale effects of surface coal mining on
vegetation communities pre- and post- mining, and to further
provide land mangers insights on land reclamation after surface
mining.
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