
Math 1030 Chapter 9

Reference.
Beezer, Ver 3.5 Section VO (print version p57 - p63)Subsection VS, EVS

(print version p197-203) Strang, Section 2.1 Exercise.
Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-

3.50-solution-manual.pdfSection VO (p.28-31) All questions.C10-C15, T05-T07,
T13, T17, T18, T30-T32 Section VS (p.75-77) Replace C (the set of complex
numbers) by R (the set of real numbers) M11, M12, M13, M14, M15, M20.

9.1 Vectors
Notation : R is the set of real numbers. IfX is a set, x ∈ X means x is an element
of the set X .

Definition 9.1 (Vector Space of Column Vectors). The vector space Rm is the set
of all column vectors of size m with entries from the set of real numbers, R. Rm

is also called the Euclidean m-space.

Definition 9.2 (Column Vector Equality). Suppose that u, v ∈ Rm. Then u and
v are equal, written u = v if

[u]i = [v]i 1 ≤ i ≤ m

That is, 
u1
u2
...
um

 =


v1
v2
...
vm


if

ui = vi 1 ≤ i ≤ m.
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Example 9.3. The system of linear equations:

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

can be rewritten as:

−7x1 − 6x2 − 12x3
5x1 + 5x2 + 7x3

x1 + 4x3

 =

−3324
5

 .
Definition 9.4 (Column Vector Addition). Suppose that u, v ∈ Rm. The sum of
u and v is the vector u+ v defined by

[u+ v]i = [u]i + [v]i 1 ≤ i ≤ m.

That is 
u1
u2
...
um

+


v1
v2
...
vm

 =


u1 + v1
u2 + v2

...
um + vm

 .
Example 9.5. Addition of two vectors in R4

If

u =


2
−3
4
2

 v =


−1
5
2
−7


then

u+ v =


2
−3
4
2

+


−1
5
2
−7

 =


2 + (−1)
−3 + 5
4 + 2

2 + (−7)

 =


1
2
6
−5


Definition 9.6 (Column Vector Scalar Multiplication). Suppose u ∈ Rm and α ∈
R, then the scalar multiple of u by α is the vector αu defined by

[αu]i = α [u]i 1 ≤ i ≤ m.
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That is

α


u1
u2
...
um

 =


αu1
αu2

...
αum

 .
Example 9.7. If

u =


3
1
−2
4
−1


and α = 6, then

αu = 6


3
1
−2
4
−1

 =


6(3)
6(1)
6(−2)
6(4)
6(−1)

 =


18
6
−12
24
−6

 .
Example 9.8. The system of linear equations

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

can be written as:

x1

−75
1

+ x2

−65
0

+ x3

−127
4

 =

−3324
5

 .
9.2 Vector Space Properties
Warning : Read the statements of Theorem Vector Space Properties of Column
Vectors and skip the rest of this section unless you are/going to be a math major.
The material skipped will not appear in the tests and the final exam. With defini-
tions of vector addition and scalar multiplication we can state, and prove, several
properties of each operation, and some properties that involve their interplay. We
now collect ten of them here for later reference.

3

https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=8&item=9.9
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=8&item=9.9


Theorem 9.9 (Vector Space Properties of Column Vectors). Suppose that Rm

is the set of column vectors of size m with addition and scalar multiplication
as defined in Definition Column Vector Addition and Definition Column Vector
Scalar Multiplication . Then:

1. ACC Additive Closure, Column Vectors

If u, v ∈ Rm, then u+ v ∈ Rm.

2. SCC Scalar Closure, Column Vectors

If α ∈ R and u ∈ Rm, then αu ∈ Rm.

3. CC Commutativity, Column Vectors

If u, v ∈ Rm, then u+ v = v + u.

4. AAC Additive Associativity, Column Vectors

If u, v, w ∈ Rm, then u+ (v +w) = (u+ v) +w.

5. ZC Zero Vector, Column Vectors

There is a vector, 0, called the zero vector, such that u + 0 = u for all
u ∈ Rm.

6. AIC Additive Inverses, Column Vectors

If u ∈ Rm, then there exists a vector −u ∈ Rm so that u+ (−u) = 0.

7. SMAC Scalar Multiplication Associativity, Column Vectors

If α, β ∈ R and u ∈ Rm, then α(βu) = (αβ)u.

8. DVAC Distributivity across Vector Addition, Column Vectors

If α ∈ R and u, v ∈ Rm, then α(u+ v) = αu+ αv.

9. DSAC Distributivity across Scalar Addition, Column Vectors

If α, β ∈ R and u ∈ Rm, then (α + β)u = αu+ βu.

10. OC One, Column Vectors

If u ∈ Rm, then 1u = u.

Proof. While some of these properties seem very obvious, they all require proof.
However, the proofs are not very interesting, and border on tedious. We will prove
one version of distributivity very carefully, and you can test your proof-building
skills on some of the others. We need to establish an equality, so we will do so
by beginning with one side of the equality, apply various definitions and theorems
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(listed to the right of each step) to massage the expression from the left into the
expression on the right. Here we go with a proof of Property DSAC in Vector
Space Properties of Column Vectors. For 1 ≤ i ≤ m,

[(α + β)u]i = (α + β) [u]i definition
= α [u]i + β [u]i
= [αu]i + [βu]i definition
= [αu+ βu]i definition

Since the individual components of the vectors (α + β)u and αu + βu are equal
for all i, 1 ≤ i ≤ m, Column Vector Equality tells us the vectors are equal.

Many of the conclusions of our theorems can be characterized as identities,
especially when we are establishing basic properties of operations such as those in
this section. Most of the properties listed in Theorem Vector Space Properties of
Column Vectors are examples. So some advice about the style we use for proving
identities is appropriate right now. Be careful with the notion of the vector −u.
This is a vector that we add to u so that the result is the particular vector 0. This is
basically a property of vector addition. It happens that we can compute −u using
the other operation, scalar multiplication. We can prove this directly by writing
that

[−u]i = − [u]i = (−1) [u]i = [(−1)u]i

We will see later how to derive this property as a consequence of several of the
ten properties listed in Theorem Vector Space Properties of Column Vectors. Sim-
ilarly, we will often write something you would immediately recognize as vector
subtraction. This could be placed on a firm theoretical foundation – as you can
do yourself with exercise T30. A final note. Vector Space Properties of Column
Vectors Property AAC implies that we do not have to be careful about how we
parenthesize the addition of vectors. In other words, there is nothing to be gained
by writing (u+ v) + (w + (x+ y)) rather than u+v+w+x+y, since we get
the same result no matter which order we choose to perform the four additions.
So we will not be careful about using parentheses this way.

9.3 Vector Space
For math major only. Non-math major can skip the rest of this section. The
material will not appear in the midterms or final In this section we will give
an abstract definition of vector space.
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Why do we need the abstract definitions? A lot of different algebraic objects
(e.g. polynomials, matrices, sequences, functions) share similar properties with
the set of column vectors. We can use the common properties to derive similar
results. we therefore don’t need to reproof and restate the results.

One stone, kill many birds .

Definition 9.10. Suppose that V is a set upon which we have defined two opera-
tions: (1) vector addition, which combines two elements of V and is denoted by
+, and (2) scalar multiplication, which combines a real number with an element
of V and is denoted by juxtaposition. Then V , along with the two operations, is a
vector space over R if the following ten properties hold.

1. ACAdditive Closure

If u, v ∈ V , then u+ v ∈ V .

2. SCScalar Closure

If α ∈ R and u ∈ V , then αu ∈ V .

3. CCommutativity

If u, v ∈ V , then u+ v = v + u.

4. AAAdditive Associativity

If u, v, w ∈ V , then u+ (v +w) = (u+ v) +w.

5. ZZero Vector

There is a vector, 0, called the zero vector, such that u + 0 = u for all
u ∈ V .

6. AIAdditive Inverses

If u ∈ V , then there exists a vector −u ∈ V so that u+ (−u) = 0.

7. SMAScalar Multiplication Associativity

If α, β ∈ R and u ∈ V , then α(βu) = (αβ)u.

8. DVADistributivity across Vector Addition

If α ∈ R and u, v ∈ V , then α(u+ v) = αu+ αv.

9. DSADistributivity across Scalar Addition

If α, β ∈ R and u ∈ V , then (α + β)u = αu+ βu.

10. OOne

If u ∈ V , then 1u = u.
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The objects in V are called vectors, no matter what else they might really be,
simply by virtue of being elements of a vector space.

Example 9.11. column vector space The set of column vectors Rn is a vector
space.

Example 9.12. Row vector space
The set of row vector (1 × n matrices), is a vector space with the following

operations:

• Vector addition: [a1 a2 . . . an]+[a1 b2 . . . bn] = [a1+b1 a2+b2 . . . an+bn]

• Scalar multiplication α[a1 a2 . . . , an] = [αa1 αa2, . . . , αan]

Example 9.13. Matrices
The set of m×n matrices, denoted by Mmn, is a vector space with the follow-

ing operations:

• Vector addition:
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

+


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bm1 bm2 · · · bmn

 =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
...

am1 + bm1 am2 + bm2 · · · amn + bmn


• Scalar multiplication

α


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 =


αa11 αa12 · · · αa1n
αa21 αa22 · · · αa2n

...
...

...
...

αam1 αam2 · · · αamn


Property Z: The zero vector is 

0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0


Property AI:The inverse of 

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn


7



is 
−a11 −a12 · · · −a1n
−a21 −a22 · · · −a2n

...
...

...
...

−am1 −am2 · · · −amn


You can try proving all other properties.

Example 9.14. The vector space of polynomials, Pn

The set of all polynomials of degree n or less in the variable xwith coefficients
from R, denoted by Pn is a vector space.

• Vector Addition:

(a0 + a1x+ a2x
2 + · · ·+ anx

n) + (b0 + b1x+ b2x
2 + · · ·+ bnx

n)

= (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + · · ·+ (an + bn)x

n

• Scalar Multiplication:

α(a0 + a1x+ a2x
2 + · · ·+ anx

n) = (αa0) + (αa1)x+ (αa2)x
2 + · · ·+ (αan)x

n

This set, with these operations, will fulfill the ten properties, though we will not
work all the details here. However, we will make a few comments and prove one
of the properties. First, the zero vector (property Z) is what you might expect, and
you can check that it has the required property.

0 = 0 + 0x+ 0x2 + · · ·+ 0xn

The additive inverse (Property AI) is also no surprise, though consider how we
have chosen to write it.

−
(
a0 + a1x+ a2x

2 + · · ·+ anx
n
)
= (−a0) + (−a1)x+ (−a2)x2 + · · ·+ (−an)xn

Now let us prove the associativity of vector addition (Property AA). This is a bit
tedious, though necessary. Throughout, the plus sign (+) does triple-duty. You
might ask yourself what each plus sign represents as you work through this proof.

u+(v +w)

= (a0 + a1x+ · · ·+ anx
n) + ((b0 + b1x+ · · ·+ bnx

n) + (c0 + c1x+ · · ·+ cnx
n))

= (a0 + a1x+ · · ·+ anx
n) + ((b0 + c0) + (b1 + c1)x+ · · ·+ (bn + cn)x

n)

= (a0 + (b0 + c0)) + (a1 + (b1 + c1))x+ · · ·+ (an + (bn + cn))x
n

= ((a0 + b0) + c0) + ((a1 + b1) + c1)x+ · · ·+ ((an + bn) + cn)x
n

= ((a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n) + (c0 + c1x+ · · ·+ cnx

n)

= ((a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)) + (c0 + c1x+ · · ·+ cnx
n)

= (u+ v) +w
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You might try proving all the other properties.

Example 9.15. The vector space of functions
Let F be the set of functions for R to R Equality: f = g if and only if

f(x) = g(x) for all x ∈ R.

• Vector Addition: f +g is the function with outputs defined by (f +g)(x) =
f(x) + g(x).

• Scalar Multiplication: αf is the function with outputs defined by (αf)(x) =
αf(x).

The zero vector is a function z whose definition is z(x) = 0 for every input x ∈ R.
Try proving all the other properties.

Example 9.16. The crazy vector space
Let C = {(x1, x2) | x1, x2 ∈ R}.

1. Vector Addition: (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1).

2. Scalar Multiplication: α(x1, x2) = (αx1 + α− 1, αx2 + α− 1).

I am free to define my set and my operations any way I please. They may not look
natural, or even useful, but we will now verify that they provide us with another
example of a vector space. We will check all it satisfies all the definition of vector
spaces.

• Property AC, SC
The result of each operation is a pair of complex numbers, so these two
closure properties are fulfilled.

• Property C

u+ v = (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1)

= (y1 + x1 + 1, y2 + x2 + 1) = (y1, y2) + (x1, x2)

= v + u
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• Property AA

u+ (v +w) = (x1, x2) + ((y1, y2) + (z1, z2))

= (x1, x2) + (y1 + z1 + 1, y2 + z2 + 1)

= (x1 + (y1 + z1 + 1) + 1, x2 + (y2 + z2 + 1) + 1)

= (x1 + y1 + z1 + 2, x2 + y2 + z2 + 2)

= ((x1 + y1 + 1) + z1 + 1, (x2 + y2 + 1) + z2 + 1)

= (x1 + y1 + 1, x2 + y2 + 1) + (z1, z2)

= ((x1, x2) + (y1, y2)) + (z1, z2)

= (u+ v) +w

• Property Z
The zero vector is 0 = (−1, −1) (not (0, 0))

u+ 0 = (x1, x2) + (−1, −1) = (x1 + (−1) + 1, x2 + (−1) + 1) = (x1, x2) = u

• Property AI
For each vector, u, we must locate an additive inverse, −u. Here it is,
−(x1, x2) = (−x1 − 2, −x2 − 2). As odd as it may look, I hope you are
withholding judgment. Check:

u+ (−u) = (x1, x2) + (−x1 − 2, −x2 − 2)

= (x1 + (−x1 − 2) + 1, −x2 + (x2 − 2) + 1) = (−1, −1) = 0

• Property SMA

α(βu) = α(β(x1, x2))

= α(βx1 + β − 1, βx2 + β − 1)

= (α(βx1 + β − 1) + α− 1, α(βx2 + β − 1) + α− 1)

= ((αβx1 + αβ − α) + α− 1, (αβx2 + αβ − α) + α− 1)

= (αβx1 + αβ − 1, αβx2 + αβ − 1)

= (αβ)(x1, x2)

= (αβ)u

• Property DVA
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If you have hung on so far, here is where it gets even wilder. In the next two
properties we mix and mash the two operations.

α(u+ v)

= α ((x1, x2) + (y1, y2))

= α(x1 + y1 + 1, x2 + y2 + 1)

= (α(x1 + y1 + 1) + α− 1, α(x2 + y2 + 1) + α− 1)

= (αx1 + αy1 + α + α− 1, αx2 + αy2 + α + α− 1)

= (αx1 + α− 1 + αy1 + α− 1 + 1, αx2 + α− 1 + αy2 + α− 1 + 1)

= ((αx1 + α− 1) + (αy1 + α− 1) + 1, (αx2 + α− 1) + (αy2 + α− 1) + 1)

= (αx1 + α− 1, αx2 + α− 1) + (αy1 + α− 1, αy2 + α− 1)

= α(x1, x2) + α(y1, y2)

= αu+ αv

• Property DSA

(α + β)u

= (α + β)(x1, x2)

= ((α + β)x1 + (α + β)− 1, (α + β)x2 + (α + β)− 1)

= (αx1 + βx1 + α + β − 1, αx2 + βx2 + α + β − 1)

= (αx1 + α− 1 + βx1 + β − 1 + 1, αx2 + α− 1 + βx2 + β − 1 + 1)

= ((αx1 + α− 1) + (βx1 + β − 1) + 1, (αx2 + α− 1) + (βx2 + β − 1) + 1)

= (αx1 + α− 1, αx2 + α− 1) + (βx1 + β − 1, βx2 + β − 1)

= α(x1, x2) + β(x1, x2)

= αu+ βu

• Property O
After all that, this one is easy, but no less pleasing.

1u = 1(x1, x2) = (x1 + 1− 1, x2 + 1− 1) = (x1, x2) = u

That is it, C is a vector space, as crazy as that may seem. Notice that in the case
of the zero vector and additive inverses, we only had to propose possibilities and
then verify that they were the correct choices. You might try to discover how you
would arrive at these choices, though you should understand why the process of
discovering them is not a necessary component of the proof itself.
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9.4 Basic Properties of Vector Spaces
For math major only. Non-math major can skip the rest of this section. The
material will not appear in the midterms or final

Theorem 9.17 (Cancellation Law for Vector Addition). if v, u and w are vectors
in a vector space V such that

v +w = u+w,

then v = u

Proof. By Property AI, there exists a vector −w such that w+ (−w) = 0. Thus,

(v +w) + (−w) = (u+w) + (−w)

v + (w + (−w)) = u+ (w + (−w)) Property AA
v + 0 = u+ 0 Property AI

v = u Property Z.

Theorem 9.18 (Uniqueness of the zero vector). Let V be a vector space. The
vector 0 described in Property Z is unique.

Proof. Suppose both 01 and 02 satisfy the property described in Property Z. Let
w be an element in V .

01 +w = w = 02 +w Property Z

01 = 02 by the previous theorem

Theorem 9.19 (Uniqueness of the additive inverse). Let V be a vector space and
v,u,w are vectors of V . If both v and u satisfies

v +w = 0,

u+w = 0,

i.e., both u and v are additive inverse of w in Property AI, then

v = u.

This shows that the additive inverse is unique.
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Proof.

v +w = 0 = u+w.

By Cancellation Law for Vector Addition,

v = u.

Theorem 9.20. Let V be a vector space, α a real number, v a vector in V . We
have the following statement.

1. 0v = 0 .

2. a0 = 0.

3. (−α)v = −(αv) = α(−v).

Proof. 1.

0v + 0v = (0 + 0)v Property DSA
0v + 0v = 0v = 0+ 0v Property Z

Hence,
0v = 0,

by Cancellation Law for Vector Addition.

2.

α0+ a0 = α(0+ 0) Property DVA
= α0 Property Z
= 0+ α0 Property Z

By Cancellation Law for Vector Addition,

α0 = 0

3.

αv + (−α)v = (α + (−α))v Property DSA.
= 0v

= 0 item 1
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By Property AI and the uniqueness of the additive inverse (Uniqueness of
the additive inverse),

(−α)v = −αv.

Next

αv + α(−v) = α(v + (−v)) Property DVA.
= α0 Property AI
= 0 item 2

By Property AI and the uniqueness of the additive inverse (Uniqueness of
the additive inverse),

α(−v) = −αv.

9.5 Subspaces
Definition 9.21. Let V be vector space. A subset W of V is said to be a subspace
of V if

1. W is nonempty.

2. For v,w ∈ W , then v +w ∈ W .

3. For α ∈ R, v ∈ W , then αv ∈ W .

We will prove several theorem first before we give examples.

Proposition 9.22. Let V be a vector space and W a subspace of V . Then 0 is in
W .

Proof. By Definition 9.21, Condition 1, W is nonempty. Let w ∈ W . By Defi-
nition 9.21, Condition 3, with α = 0, 0w ∈ W . On the other hand, by Theorem
9.20, 0w = 0. Hence, the zero vector 0 lies in W .

Theorem 9.23. Let V be a vector space and W a subset of V , then W is a sub-
space if and only if

1. W is nonempty.

2. For any α ∈ R, v,w ∈ W , αv +w ∈ W .

14

https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=11&item=9.19
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=11&item=9.19
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=11&item=9.19
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=11&item=9.19
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=12&item=9.21
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=12&item=9.21
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=12&item=9.21
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=11&item=9.20
https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec9.xml&slide=11&item=9.20


Proof. (⇒) By Definition 9.21, Condition 1, W is nonempty. Next, for α ∈ R,
v,w ∈ W . By Definition 9.21, Condition 3, αv ∈ W . By Definition 9.21,
Condition 2, αv +w ∈ W .

(⇐) By Condition 1, Definition 9.21, Condition 1 is true. Because W is
nonempty, let x ∈ W . Let v = w = x and α = −1. Then by condition 2,
(−1)w +w = 0 ∈ W.

Now we want to check Definition 9.21 Condition 2, suppose v,w ∈ W . In
condition 2, let α = 1, then v +w = αv +w ∈ W .

Next we want to check Definition 9.21 Condition 3, suppose v ∈ W , α ∈ R.
Let w = 0, then αv = αv +w ∈ W .

9.6 Examples
Example 9.24. Let V = R3. Let:

W =


w1

0
w3

 ∣∣∣∣∣∣ w1, w3 ∈ R

 .

We now show that W is a subspace of V :

1. Clearly,

00
0

 lies in W , hence W is nonempty.

2. Given any ~v and ~w in W , by definition of W we have:

~v =

v10
v3

 , ~w =

w1

0
w3

 , v1, v2, w1, w3 ∈ R.

Hence,

~v + ~w =

v1 + w1

0 + 0
v3 + w3

 =

v1 + w1

0
v3 + w3

 ∈ W.
3. Given any α ∈ R and ~w in W , by definition of W we have:

~w =

w1

0
w3

 , w1, w3 ∈ R.

Hence,

α~w =

αw1

α · 0
αw3

 =

αw1

0
αw3

 ∈ W.
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Example 9.25. V = R3.

W =


xy
z

 ∈ R3

∣∣∣∣∣∣ x+ 2y + 3z = 0


Theorem 9.26. Let A ∈Mmn, then W = N (A) is a subspace of Rn.

Proof. Because 0 ∈ N (A), so W is nonempty.
For α ∈ R, v,w ∈ W . Then

Av = 0, Aw = 0.

Then
A(αv +w) = αAv + Aw = α0+ 0 = 0.

So
αv +w ∈ N (A).

Thus by Theorem 9.23, W = N (A) is a subspace.

Example 9.27. Skip for now, until you learn the definition of column space.
Let A ∈Mmn, then C(A) is a subspace of Rm.

Proof. C(A) = 〈{A1, . . . ,An}〉. So by the previous theorem, C(A) is a subspace
of Rm. Alternate proof: Suppose For α ∈ R, v,w ∈ W = C(A). Recall

C(A) = {Ax |x ∈ Rm}.

Then there exist x,y such that Ax = v, Ay = w.

αv +w = αAx+ Ay = A(αx+ y) ∈ C(A) .

Thus by Theorem 9.23, W is a subspace.

Example 9.28. For math majors only
Let Sn be the set of symmetric matrices of Mnn. Then Sn is a subspace of

Mnn. Check that W = Sn is a subspace: Because O ∈ W , so W is nonempty.
Suppose α ∈ R, A,B ∈ W . Then At = A, Bt = B.

(αA+B)t = αAt +Bt = αA+B.

Thus αA+B ∈ Sn. Hence Sn is a subspace by Theorem 9.23.
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Example 9.29. For math majors only
Let

F = {f(x) ∈ Pn | f(1) = 0}.

Then F is a subspace of Pn Because 0 ∈ E, so E is nonempty. Suppose α ∈ R,
f(x), g(x) ∈ E. Then f(1) = g(1) = 0. Let h = αf + g. Then

h(1) = αf(1) + g(1) = α0 + 0 = 0.

So h ∈ F . Hence F is a subspace by Theorem 9.23.

Example 9.30. For math majors only
Let

E = {f(x) ∈ Pn | f(x) = f(−x)}.

Then E is a subspace of Pn: Because 0 ∈ E, so E is nonempty. Suppose α ∈ R,
f(x), g(x) ∈ E. Then f(x) = f(−x), g(x) = g(−x). Let h = αf + g. Then

h(−x) = αf(−x) + g(−x) = αf(x) + g(x) = h(x).

So h ∈ E. Hence E is a subspace.

9.7 Non-Examples
To show that W is not a subspace of V , it suffices to show that it violates Defini-
tion 9.21 condition 1 or condition 2. This can be done by finding counter examples
to either condition. Usually before checking those conditions, we quickly check
if 0V ∈ W (see Proposition 9.22).

Example 9.31. V = Rm, W = {v ∈ V | [v]1 = 1}.
Method 1 Obviously 0 is not in W . So by Proposition 9.22, W is not a

subspace.
Method 2 For Suppose v,w ∈ W . Then [v + w]1 = [v]1 + [w]1 = 2. So

v+w 6∈ W . So W violates Definition 9.21 condition 1 and hence not a subspace.

Example 9.32. V = Rm, W = {v ∈ V |
∑n

i=1[v]i = 1}.
Method 1 (the easiest method) Obviously 0 is not in W . So by Proposition

9.22, W is not a subspace.
Method 2 We will find an explicit counter example, let

v = w =


1
0
...
0

 .
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Then both v and w are in W .

v +w =


2
0
...
0

 .
Obvious v+w /∈ W . ThereforeW violates Definition 9.21 condition 1 and hence
not a subspace.

Example 9.33. V = Rn, W = {v ∈ V | [v]1 ≥ 0}. Let α = −1 and

v =

[
1
0

]
.

Then [αv]1 = α[v]1 = α = −1 < 0. So αv /∈ W . Thus W violates Definition
9.21 condition 3 and hence not a subspace.

Example 9.34. V = R2, W = {
[
v1
v2

]
∈ V | v1v2 ≥ 0}. Let v =

[
1
0

]
, w =[

0
−1

]
∈ W . v+w =

[
1
−1

]
. Because 1× (−1) = −1 < 0. So v+w /∈ W . Thus

W violates Definition 9.21 condition 2 and hence not a subspace. In fact, we can
show that W satisfies Definition 9.21 condition 3 but fails condition 2.

Example 9.35. For math majors only
Let V = Pn. Let G be the set of polynomial with degree exactly equal to n.

Let f(x) = xn, g(x) = −xn + 1. Both f and g have degree exactly equal to n.
But

f(x) + g(x) = 1

is a polynomial with degree 0. So f + g is not in G. Thus W violates Definition
9.21 condition 2 and hence not a subspace.
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