Math 1030 Chapter 6

Reference.

Beezer, Ver 3.5 Subsection RREF (print version p21 - p33) You can skip the
proof of Thm REMEF on p.22 and Thm RREFU on p.24-27

Exercise.

Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf Section SSLE (p.1-6) C30-34, C50, M30, T20. Sect
RREF (p.6-13) C10-19, C31-33, M40 Part 1, T10, T11, T12.

6.1 Reduced Row Echelon Form

Terminology :
» Zero row: A row consisting only of 0’s.
* Leftmost nonzero entry of a row: The first nonzero entry of a row.

* Index of the leftmost nonzero entry of a row: The column index of the
first nonzero entry in the row.

Notation : Denote by d; the index of leftmost nonzero entry of row .

Example 6.1. The underlined entries are the leftmost nonzero entry for each row.

O O OO
o O O
o O O
O~ O O
O W N

The index of the leftmost nonzero entry of row 1 is d; = 2. The index of the
leftmost nonzero entry of row 2 is d; = 5. The index of the leftmost nonzero
entry of row 3 is d3 = 4. row 4 is a zero row.



Example 6.2. The underlined entries are the leftmost nonzero entry for each row.

2 0 1 2 34
01 1 —-10 3
00 0 0 10
0 =10 0 01

The index of the leftmost nonzero entry of row 1 is d; = 1. The index of the
leftmost nonzero entry of row 2 is do = 2. The index of the leftmost nonzero

entry of row 3 is d3 = 5. The index of the leftmost nonzero entry of row 3 is
dy = 2.

A matrix is said to be in reduced row echelon form if it looks like this ( * means
an arbitary number)

o O =
O O ¥
- O = O
O ¥ ¥
_ o O
* X KX

More precisely:
1. It looks like an inverted staircase.
2. Each new step down (i.e. up) gives a leading 1. Above it are 0’s.
3. The column that is at the edge a new step is call a pivot column.

Definition 6.3 (Reduced Row-Echelon Form). A matrix is in reduced row-echelon
form if it meets all of the following conditions:

1. If there is a row where every entry is zero, then this row lies below any other
row that contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. If i < j and both row ¢ and row j are not zero rows, then d; < d;, i.e.
dy,ds, ... are in ascending order.

In particular, all matrix entries below a leftmost nonzero entry must be equal
to zero.



Terminology. A row of only zero entries is called a zero row.

In the case of a matrix in reduced row-echelon form, the leftmost nonzero
entry of a nonzero row is a leading 1.

A column containing a leading 1 will be called a pivot column.

The number of nonzero rows will be denoted by 7, which is also equal to the
number of leading 1’s and the number of pivot columns.

The set of column indices for the pivot columns will be denoted by:

D= {dla d2a d3a sy dr}7

where:
dy < dg <dz<---<d,.

The columns that are not pivot columns will be denoted as:

F = {fla f27 f37 ) fn—?“}7

where:
i< fo<fzs<- < foo

Example 6.4. The matrix below are in reduced row echelon from

1.

130010
001340
000O0O0T1
000O0O0O0

Column 1, 3, 6 are pivot columns, r = 3, D = {1,3,6}, d; = 1,dy =
3,d3 :6,F: {2,4,5}, fl :2,f2 :4,f5 :5

2.
1 05 3 00 5
01 3 6 006
000O01O0T7
00 0O0O0T13
Column 1, 2, 5, 6 are pivot columns, r = 4, D = {1,2,5,6},d; = 1,dy =
2,d3=5,dy =6, F ={3,4,7}, fi=3,fa =4, f3=T1.
3.
1 00
010
0 0 1

Column 1, 2, 3 are pivot columns, » = 3, D = {1,2,3}, d; = 1,dy =
2,d3 = 3, F = () (an empty set).



011001096
000011088
000O0O0OO0T134
0000O0OO0OO0OO0OO

Column 2, 5, 7 are pivot columns. Note that column 3 is not a pivot column.
r=3,D={257})d = 2dy, =5d; =7 F = {1,3,4,6,8,9},
fl = 17f2 :37f3:47f4:67f5:87f6:9-

5. The matrix C is in reduced row-echelon form.

1 306 00 -5 9
0o 0o 0010 3 -7
c=10 0 0001 7 3
0 0 000O0 O O
0 0 000O0O O O

This matrix has two zero rows and three pivot columns. So r = 3. Columns
1, 5, and 6 are the pivot columns, so D = {1, 5, 6}, d, = 1,dy = 5,d35 = 6,
F= {27 37 47 77 8}’f1 :27f2 :37f3 :47f4 = 77f5 = 3.

Example 6.5. The following matrices are not RREF, explain why.

1.
101010
01010 2
000O0O0O0
000010
000O0O0O0

It fails condition 1: row 3 is a zero row but row 4, which is under row 3, is
not a Zero row.

2. The underline entries are the leftmost nonzero entry for each row.

o OO O
[N oNel )
S OO W N
S oOlw oo

It fails condition 2: the leftmost nonzero entry of row 3 is not 1.



3. The underline entries are the leftmost nonzero entry for each row.

o O OO
o O O
o o= O
o O OO
Ol O =
S W =N

It fails condition 3: For row 3, the column consists the left most nonzero
entry (i.e. column 5) has more than 1 nonzero entries.

4. The underline entries are the leftmost nonzero entry for each row.

O OO O
O Ol OO
oo o= o
S OO O
SO W N

It fails condition 4: The index of the leftmost nonzero entry of row 1 is
dy = 1. The index of the leftmost nonzero entry of row 2 is do = 3. The
index of the leftmost nonzero entry of row 3 is d, = 2. 2 < 3 but dy > d3.

Theorem 6.6 (Row-Equivalent Matrix in Echelon Form). Suppose A is a matrix.
Then there is a matrix B such that:

1. A and B are row-equivalent.
2. B is in reduced row-echelon form.

Proof. Suppose that A has m rows and n columns. We will describe a process for
converting A into B via row operations. This procedure is known as Gaussian
elimination or sometimes called Gauss-Jordan elimination. Tracing through
this procedure will be easier if you recognize that ¢ refers to a row that is being
converted, j refers to a column that is being converted, and r keeps track of the
number of nonzero rows.

1. Setj =0andr = 0.
2. Increase j by 1. If j now equals n + 1, then stop.

3. Examine the entries of A in column j located in rows r + 1 through m. If
all of these entries are zero, then go to Step 2.

4. Choose a row from rows 7 + 1 through m with a nonzero entry in column
7. Let ¢ denote the index for this row.

5



5. Increase r by 1.
6. Use the first row operation to swap rows ¢ and r.

7. Use the second row operation to convert the entry in row r and column j to
al.

8. Use the third row operation with row r to convert every other entry of col-
umn j to zero.

9. Go to Step 2.

The result of this procedure is that the matrix A is converted to a matrix in re-
duced row-echelon form, which we will refer to as B. he matrix is only converted
through row operations (Steps 6, 7, 8), so A and B are row-equivalent. We need
to now prove this claim by showing that the converted matrix has the requisite
properties of Theorem Reduced Row-Echelon Form. We will skip the proof for
now. See Beezer, Ver 3.5 (print version p23). [

We will now run through some examples of using these definitions and theo-
rems to solve some systems of equations. From now on, when we have a matrix
in reduced row-echelon form, we will mark the leading 1’s with a small box.

Example 6.7. Using the Gaussian elimination, find the RREF of

4
3
8

O = OO
N — OO
S G
© e
—

9

Set r» = 0. Consider column 1 (set j = 1), find a nonzero entry (underline below)
in the column.

0011 4
0011 3
1124 8
2259 19

Move the nonzero entry to row 1 by swapping rows 1%y < RR;.

If the entry at row 1, column 1 is nonzero, you don’t have to swap rows. But
you can consider swap it with entry = 1 or —1.

In this example, for column 1, 3rd entry and 4th entry are nonzero, so we can
use Ry < Rz or Ry < Ry.

There is nothing wrong about 2y <+ R, but it is better to swap with the row
with leading entry equal to 1 or —1.


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec6.xml&slide=6&item=6.3

So we use Ry < Rs.

Ol — = N
Nol e
= W o

19

Also, at this point we increase r to r = 1, since we now know we have at least
ONe NONZero row.

If the boxed number is 1, we are good to go.

If the boxed number is not equal to 1, say it is a, use %Rl to convert it to 1.

Then use the boxed number to eliminate the nonzero entries above and below
itby aR; + R;.

In our example, the boxed number is 1, so we don’t have to do anything. Use
—2R; + R, and to remove the nonzero entries below it and above it. Since we are
at the first row, so there is nothing above it).

[E T )
— = s
W = W o

Now we go back to Step 1 in the proof of Row-Equivalent Matrix in Echelon
Form, with column index j increased to 2 and r = 1.

In fact, we may as well ignore row 1 and column 1, and essentially apply the
previous steps to the remaining 3 x 4 matrix:

G
oo Io *
— = = %
— = = %
W B W ¥

The entries of column 2 are underlined.
None of them are nonzero, so we move to next column.

¥ ¥ X ¥
O O DO *
= = = %
—_ = %
B~ o ¥

1 3

Consider column 3. That is, set 7 = 3. (Note that the number of nonzero rows is
still » = 1.)


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec6.xml&slide=9&item=6.6
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec6.xml&slide=9&item=6.6

All the entries of column 3 are equal to 1. So, we don’t need to do any swap-
ping.

Also, now we know there are at least 2 nonzero rows, so r = 2. Use the boxed
number (the pivot) to eliminate the nonzero entries above and below it by a Ry +
R;.
—2Rs + Ry,
—1R; + Rs,

11
—1Ry + Ry |0 o
00

S
O =N
— W N

00 0 0O

Now, we may ignore rows 2 and 3, and columns 1 through 3. With » = 2, and the
column index increased to j = 4, we repeat the whole process.

x % ok x %
x % ok x %
* x x 0 1
*x x % 0 0

All the underlined entries are zeros, so we move to the next row.

Xk k% X
Xk k% %
x % x 0 1
x x x 0 0

We can then use the boxed number to eliminate all the nonzero entries above it
and below it and get the RREF.

1102 2
0011 3
000 0 [1]
0000 0

11020

—2Rz+Ri, —3Rs+R; [0 0 1 1 0

100 0 0 1
00000



Example 6.8. Using the Gaussian elimination, find the RREF of

NN W N
|
—

Set r = 0. We first consider column 1 (set 7 = 1).
Find a nonzero entry (underline below) in the column.

o0 2 2 6 2 3
24 1 3 7 3 -1
12 2 3 8 2 1
12 -10 -1 2 -1

Move the nonzero entry to row 1 by swapping rows R; <> R;.

If the entry at row 1, column 1 is nonzero, you don’t have to swap rows. But
you can consider swap it with entry = 1 or —1.

In this example, for column 1, 2nd entry, 3rd entry and 4th entry are nonzeros,
so we can use Ry <> Ry, Ry <+ Ry or R; < Ry.

There is nothing wrong about R, <+ R, but it is better to swap with the row
with entry equal to 1 or —1.

So we use Ry < R;s.

Ry <—>R3 2
—

0
1

(IR N
(LIS
O oW W
o -1 ®
VU
|
—_

-1 -1
If the boxed number is 1, we are good to go.

If the boxed number is not equal to 1, say it is a, use %Rl to convert it to 1.

Then use the boxed number to eliminate the nonzero entries above and below
itby aR; + R;.

In our example, the boxed number is 1, so we don’t have to do anything. Use
—2R; + Ry and —1R; + R4 to remove the nonzero entries below it and above it.
Since we are at the first row, so there is nothing above it.

12 2 3 8 2 1
00 -3 -3 -9 -1 -3
o0 2 2 6 2 3
00 -3 -3 -9 0 =2

—2R1+Rg, —1R1+ Ry
7



Ignore the row 1 and col 1. Consider column 2:

*x x % %  x  Xx  k
* 0 -3 -3 -9 -1 -3
« 0 2 2 6 2 3
0 -3 -3 -9 0 -2

None of the entries of column 2 are nonzero.
So, we consider the next column (j = 3, r = 1).

b I S S S S
0 =3 -3 -9 —1 -3
02 2 6 2 3
0 =3 -3 -9 0 -2

O R R

Find a nonzero entry in column 3. In this case, all the entries are nonzero, so
we may increase the number of nonzero rows to r = 2.
There is no entry equal to 1 or —1. We don’t need to so any swapping.

* ok * * * * b

x 0 -3 -9 -1 -3

* 0 2 2 6 2 3

*»0 -3 -3 -9 0 -2

Turn the boxed number into 1 by —%RQ.

12 2 3 8 2 1

~iR [0 0 1 3 L1

o0 2 2 6 2 3
00 -3 -3 -9 0 -2

We then use the boxed number to remove the nonzero entries about it and below
it.

12012 4

—2Rp+Ri1, —2Ro+Rg, 3Ra+Ra_ 0011 3 % 1
100000 3 1

000O0O0T1 1

Now, ignore the first 2 rows and the first 3 columns.

x % ok x % x  k
X % ok x k% kx  k
* x % 0 0 % 1
* x x 00 1 1



Consider the column with index j = 4.
All the entries in column 4 (underlined) are equal to zero. So, we move to the
next column, with index j = 5.

* ok ok x ok ok ok
* ok ok x ok ok k
x % x 0 0 % 1
* x x 0 0 1 1

Again, all the entries in column 5 (underlined) are equal to zero. So, we move to
the next column, with index j = 6.

* ok k  k k ok sk
ook ok ok ok kX
***00%1
***001
We continue the process without detailed explanations:
120123 -1
R;;(—)R400113%1
0000O0OT 1
000003 1
4
——Rs+ R
33+1,
1
—§R3—|—R2,
4 120120 -1
Tt 01150 2
—_—
000O0O0T1 1
000000—%
120120 —%
—3Ry 001130§
0000O0T1 1
0000O0O0 1
7
Ry + R
34—|_17
2
—-Ry + Ry,
3 1201200
—1Ry+R3 1001 1300 B
% s
000O0O0T10Q0
00 0O0O0O0T1

11



The matrix B is the reduced row echelon form of A. We write:

RREF
Sy

A B.

Theorem 6.9 (Reduced Row-Echelon Form is Unique). Suppose that A is an
m X n matrix and that B and C' are m x n matrices that are row-equivalent to A

and in reduced row-echelon form. Then B = C.

Proof. See Beezer, Ver 3.5 (print version p24). We will prove it later. You can

skip the proof for now.

Example 6.10. Find the solutions to the following system of equations,

—Tx1 — 619 — 12253 = —33
5.731 + 51’2 + 71’3 =24
x|+ 41}3 =5

First, form the augmented matrix, is

-7 —6 —12] =33
5 5 7 24
1 0 4 5

and work to reduced row-echelon form, first with j = 1,

1 0 4] 5 1 0 4
fels |55 7 | oq | DBl g 5 13
7 -6 —12|-33 7 -6 —12
TR1+R 0 475
Tutls b0 5 —13] -1
0 —6 16 | 2
Now, with 7 = 2,
SR ; —%3 :51 6R2+Rs3 V %3 51
0 1 5|5 |—1]0 313
0 -6 16| 2 0o o £ |14

%R3+R2
> 0
0

— O
N Ot Ot

OHO

12

5

-1
—-33



11 0 0 |-3
—4R3+ Ry 0 0 5
0

0 [1]] 2

This is now the augmented matrix of a very simple system of equations, namely
1 = —3, x9 = 5, x3 = 2, which has an obvious solution. Furthermore, we can
see that this is the only solution to this system, so we have determined the entire
solution set,

S = 5
2

Example 6.11. Let us find the solutions to the following system of equations,

331—.732—|—2.233:1
21‘1+ZL’2+1‘3:8

.T1+l'2:5

First, form the augmented matrix,

[ N R
—
O =N
vt Co

1 -1 2 [1] -1 2 |1
B o 3 -3(6 | /10 3 -3
11 0|5 0 2 —2/4
Now, with 7 = 2,
. -1 2 |1] 0 113
22500 1 -1 | B0 1 12
0 2 —2[4 0 2 —2/4

0 113
—2R2+R3 0 1

0 0 010

The system of equations represented by this augmented matrix needs to be con-
sidered a bit differently than the previous case. First, the last row of the matrix
is the equation 0 = 0, which is always true, so it imposes no restrictions on our
possible solutions and therefore we can safely ignore it as we analyze the other
two equations. These equations are:

]

13



I1+I3:3
ZEQ—I3:2.

While this system is fairly easy to solve, it also appears to have a multitude of
solutions. For example, choose x5 = 1 and see that then z; = 2 and x5 = 3
will together form a solution. Or choose 3 = 0, and then discover that z; = 3
and o = 2 lead to a solution. Try it yourself: pick any value of x3 you please,
and figure out what x; and x5 should be to make the first and second equations
(respectively) true. We’ll wait while you do that. Because of this behavior, we
say that z3 is a free or independent variable. But why do we vary z3 and not
some other variable? For now, notice that the third column of the augmented
matrix is not a pivot column. With this idea, we can rearrange the two equations,
solving each for the variable whose index is the same as the column index of a
pivot column.
T, = 3 — T3

IE2:2+CL’3

To write the set of solution vectors in set notation, we have:

3—1’3 3 —1
S = 2+ZL’3 xgeR = 2 + x3 1 l'gER
T3 O 1

We will learn more in the next lecture about systems with infinitely many solutions
and how to express their solution sets.

Example 6.12. Let us find the solutions to the following system of equations,

2{L‘1+l’2+7l’3—71’4:2
—3$1+4$2—5I‘3—6$4 =3
T1+ Lo +4x3 —dxrs =2

First, form the augmented matrix,

2 1 7 =7|2
-3 4 -5 613
1 1 4 —-5|2

and work to reduced row-echelon form, first with j = 1,

1 1 4 =52 114 —512
fels |34 5 —g|3 | 2Bt g 7 7 —21]9
29 1 7 —7|2 21 7 —712

14



2hERs b0 7 7 =21 9
0 -1 -1 3 |=2
Now, with 7 = 2,
1 4 512 1 4 -5 |2
Mol g -1 -1 3 |2 | =0 11 3|2
0 7 7 —21|09 0 77 —21|9
03 —21/0 0 3 -2/ 0
SR L0 11 -3 2 | R 1 -3 2
0 7 7 —21|9 000 0|5
And finally, with j = 4,

i [0 3 200 1] o 3 —2|0
2o [1]1 —3l2 | 2 o [1] 1 =3]0
0 0 0 0]1 0 0 0 0 |[1]

The third equation will read 0 = 1. This is patently false, all the time. No choice
of values for our variables will ever make it true. We are done. Since we cannot
even make the last equation true, we have no hope of making all of the equations
simultaneously true. So this system has no solutions, and its solution set is the
empty set, ) = { } Notice that we could have reached this conclusion sooner.
After performing the row operation —7Rs + 73, we can see that the third equation
reads 0 = —5, a false statement. Since the system represented by this matrix has
no solutions, none of the systems represented has any solutions. However, for this
example, we have chosen to bring the matrix all the way to reduced row-echelon
form as practice. The above three examples illustrate the full range of possibilities
for a system of linear equations — no solutions, one solution, or infinitely many
solutions. In the next lecture we will examine these three scenarios more closely.
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