
Math 1030 Chapter 5

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

Reference.

• Beezer, Ver 3.5 Section Matrix Operations, Section Matrix Multiplication.

• Strang, Sect 1.4 and Sect 1.6.

Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf (Replace C by R)Section MO (p52-56), all. Section
MM (p57-60), all except T12 and T35.

5.1 Matrix Equality, Addition, Scalar Multiplication
Recall Mmn is the set of m×n matrices with real entries. Throughout the section,
unless otherwise stated,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

 , B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bm1 bm2 · · · bmn


Definition 5.1 (Matrix Equality). The m×n matrices A and B are equal, written
A = B provided: [A]ij = [B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, that is:

aij = bij for all i, j.

Definition 5.2 (Matrix Addition). Given m×n matrices A and B, define the sum
of A and B as an m× n matrix, written A+B, according to

[A+B]ij = [A]ij + [B]ij
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i.e.,

A+B =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
...

am1 + bm1 am2 + bm2 · · · amn + bmn


Example 5.3. If

A =

[
2 −3 4
1 0 −7

]
B =

[
6 2 −4
3 5 2

]
then:

A+B =

[
2 −3 4
1 0 −7

]
+

[
6 2 −4
3 5 2

]
=

[
2 + 6 −3 + 2 4 + (−4)
1 + 3 0 + 5 −7 + 2

]
=

[
8 −1 0
4 5 −5

]
Definition 5.4 (Matrix Scalar Multiplication). Given m×n matrix A and a scalar
λ ∈ R, the scalar multiple of A by λ is the m× n matrix, written λA, defined as
follows:

[λA]ij = λ [A]ij ,

i.e.,

λA =


λa11 λa12 · · · λa1n
λa21 λa22 · · · λa2n

...
...

...
...

λam1 λam2 · · · λamn

 .
Computationally, scalar matrix multiplication is very easy.

Example 5.5. If

A =

 2 8
−3 5
0 1


and λ = 7, then

λA = 7

 2 8
−3 5
0 1

 =

 7(2) 7(8)
7(−3) 7(5)
7(0) 7(1)

 =

 14 56
−21 35
0 7

 .

2



Definition 5.6 (Zero Matrix). The m × n zero matrix is written as O = Om×n
and defined by [O]ij = 0, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, i.e.

O = Om×n =


0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0

 .
Definition 5.7 (Additive Inverse). The additive inverse of a matrix A ∈ Mmn,
denoted by −A is defined by −A = (−1)A, i.e.

−A =


−a11 −a12 · · · −a1n
−a21 −a22 · · · −a2n

...
...

...
...

−am1 −am2 · · · −amn

 .
Below are some obvious properties satisfied by the addition and scalar multi-

plication of matrices:

1. Associativity of Matrix Addition For all A, B, C ∈Mmn, we have:

A+ (B + C) = (A+B) + C.

2. Commutativity of Matrix Addition For all A, B ∈Mmn, we have:

A+B = B + A.

3. Additive Identity of Matrix Addition A+O = A for all A ∈Mmn.

4. Existence of Additive Inverse For any m× n matrix A, we have:

A+ (−A) = Om×n.

5. Associativity of Scalar Multiplication For all α, β ∈ R and A ∈ Mmn,
we have:

α(βA) = (αβ)A.

6. Distributivity across Matrix Addition For all α ∈ R and A, B ∈ Mmn,
we have:

α(A+B) = αA+ αB.

7. Distributivity across Scalar Addition For all α, β ∈ R and A ∈Mmn, we
have:

(α + β)A = αA+ βA.
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8. Scalar Multiplication by 1 ∈ R For all A ∈Mmn, we have 1A = A.

Example 5.8. As an example, we prove here property 7, (α + β)A = αA + βA.
We need to establish the equality of two matrices.

For any i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[(α + β)A]ij = (α + β) [A]ij

= α [A]ij + β [A]ij

= [αA]ij + [βA]ij

= [αA+ βA]ij .

Hence by the definition of equality of matrices, (α + β)A = αA+ βA.

5.2 Transposes and Symmetric Matrices
We now describe one more common operation which can be performed on ma-
trices. Informally, to transpose a matrix is to build a new matrix by swapping its
rows and columns.

Definition 5.9 (Transpose of a Matrix). Given an m × n matrix A, its transpose
is the n×m matrix At given by[

At
]
ij
= [A]ji , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

i.e.

At =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
...

...
an1 an2 an3 . . . anm


t

=


a11 a21 a31 . . . am1

a12 a22 a32 . . . am2
...

...
...

...
...

a1n a2n a3n . . . amn

 .
Example 5.10. Suppose:

D =

 3 7 2 −3
−1 4 2 8
0 3 −2 5

 .
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Then,

Dt =


3 −1 0
7 4 3
2 2 −2
−3 8 5

 .
Definition 5.11 (Symmetric Matrix). A matrix A is said to be symmetric if A =
At, i.e.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann


with

aij = aji for all i, j.

Example 5.12. The matrix:

E =


2 3 −9 5 7
3 1 6 −2 −3
−9 6 0 −1 9
5 −2 −1 4 −8
7 −3 9 −8 −3


is symmetric.

Theorem 5.13 (Symmetric Matrices are Square). Suppose that A is a symmetric
matrix. Then A is square.

Proof. Suppose A is a n ×m matrix. Then At is a m × n matrix. In order for A
and At to be equal, they must have the same dimension. Hence n = m.

Definition 5.14. A matrix A is said to be skew-symmetric (or antisymmetric)
if:

At = −A

Example 5.15.

A =


0 −5 7 11
5 0 8 −2
−7 −8 0 15
−11 2 −15 0


Remark. Notice that if A is skew-symmetric, then:
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• It must be square.

• It’s diagonal entries must all be equal to zero.

Theorem 5.16 (Transpose and Matrix Addition). Suppose thatA andB arem×n
matrices. Then (A+B)t = At +Bt.

Proof. For 1 ≤ i ≤ n, 1 ≤ j ≤ m,[
(A+B)t

]
ij
= [A+B]ji

= [A]ji + [B]ji

=
[
At
]
ij
+
[
Bt
]
ij

=
[
At +Bt

]
ij

Since the matrices (A+B)t andAt+Bt agree at each entry, they are equal.

Theorem 5.17 (Transpose and Matrix Scalar Multiplication). Suppose that α ∈ R
and A is an m× n matrix. Then (αA)t = αAt.

Proof. For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[
(αA)t

]
ji
= [αA]ij

= α [A]ij

= α
[
At
]
ji

=
[
αAt

]
ji
.

Since the matrices (αA)t and αAt agree at each entry, they are equal.

Theorem 5.18 (Transpose of a Transpose). Suppose that A is an m × n matrix.
Then (At)

t
= A.

Proof. For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[(
At
)t]

ij
=
[
At
]
ji

= [A]ij .

Since the matrices (At)
t and A agree at each entry, they are equal.
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5.3 Matrix-Vector Product
Definition 5.19 (Matrix-Vector Product). Suppose that A is an m×n matrix with
columns A1, A2, A3, . . . , An and u is a vector of size n. Then the matrix-
vector product of A with u is the linear combination

Au = [u]1A1 + [u]2A2 + [u]3A3 + · · ·+ [u]nAn

Note that an m × n matrix A times a vector of size n will create a column
vector of size m.

In particular, if A is (non-square) rectangular, then the size of the vector
changes.

Example 5.20. Consider:

A =

 1 4 2 3 4
−3 2 0 1 −2
1 6 −3 −1 5

 , u =


2
1
−2
3
−1


Then:

Au = 2

 1
−3
1

+ 1

42
6

+ (−2)

 2
0
−3

+ 3

 3
1
−1

+ (−1)

 4
−2
5


=

71
6

 .
5.3.1 Matrix Notation for Systems of Linear Equations
Theorem 5.21 (Systems of Linear Equations as Matrix Multiplication). The so-
lution set to the linear system LS(A,b) is equal to the set of solutions x to the
vector equation Ax = b.

Proof.
x is a solution to LS(A,b)

⇐⇒ [x]1A1 + [x]2A2 + [x]3A3 + · · ·+ [x]nAn = b

⇐⇒ x is a solution to Ax = b
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Example 5.22. Consider the system of linear equations

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9

3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3
has coefficient matrix and vector of constants

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2

 b =

 9
0
−3


and so will be described compactly by the vector equation Ax = b.

Theorem 5.23 (Equality of Matrices and Matrix-Vector Products). IfA andB are
m× n matrices such that Ax = Bx for every x ∈ Rn, then A = B.

Proof. Suppose Ax = Bx for all x ∈ Rn. Then, in particular this equality holds
for the standard unit vectors, defined as follows:

For 1 ≤ j ≤ n, we define the standard unit vector ej to be the column
vector in Rn with the j-th entry equal 1 and all other entries equal to zero. For any
1 ≤ i ≤ m and 1 ≤ j ≤ n, we have:

[A]ij = [Aej]i

= [Bej]i
= [B]ij

Hence A = B.

Remark. You might notice from studying the proof that the hypotheses of this
theorem could be weakened i.e., made less restrictive). We need only suppose
the equality of the matrix-vector products for the standard unit vectors or any
other spanning set of Rn. However, in practice, when we apply this theorem the
stronger hypothesis will be in effect so this version of the theorem suffices for our
purposes. (If we changed the statement of the theorem to have the less restrictive
hypothesis, then we would call the theorem stronger.)

5.4 Matrix Multiplication
Definition 5.24 (Matrix Multiplication). Suppose A is an m × n matrix and
B1, B2, B3, . . . , Bp are the columns of an n × p matrix B. Then the matrix
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product of A with B is the m × p matrix whose ith column is the matrix-vector
product ABi. Symbolically,

AB = A [B1|B2|B3| . . . |Bp] = [AB1|AB2|AB3| . . . |ABp] .

Example 5.25. Let:

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 , B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0

 .
Then:

AB =

A


1
−1
1
6
1


∣∣∣∣∣∣∣∣∣∣
A


6
4
1
4
−2


∣∣∣∣∣∣∣∣∣∣
A


2
3
2
−1
3


∣∣∣∣∣∣∣∣∣∣
A


1
2
3
2
0




=

 28 17 20 10
20 −13 −3 −1
−18 −44 12 −3

 .
Remark. Is this the definition of matrix multiplication you expected? Perhaps
our previous operations for matrices caused you to think that we might multiply
two matrices of the same size, entry-by-entry? Notice that our current definition
uses matrices of different sizes (though the number of columns in the first must
equal the number of rows in the second), and the result is of a third size. No-
tice too that in the previous example we cannot even consider the product BA,
since the sizes of the two matrices in this order are not compatible. But it gets
weirder than that. Many of your old ideas about multiplication will not apply to
matrix multiplication, but some still will. So make no assumptions, and do not do
anything until you have a theorem that says you can. Even if the sizes are right,
matrix multiplication is not commutative – order matters.

Example 5.26. This example demonstrates that matrix multiplication is in general
not commutative.

Let:

A =

[
1 3
−1 2

]
, B =

[
4 0
5 1

]
.
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Then:

AB =

[
19 3
6 2

]
, BA =

[
4 12
4 17

]
So, AB 6= BA.

It should not be hard for you to construct other pairs of matrices that do not
commute (try a couple of 3 × 3’s). Can you find a pair of non-identical matrices
that do commute?

Theorem 5.27 (Entries of Matrix Products). Suppose A is an m × n matrix and
B is an n × p matrix. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p, the individual entries of
AB are given by:

[AB]ij = [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj

=
n∑

k=1

[A]ik [B]kj

Remark. In most books, this is used as the definition of AB.

Proof. View the columns of A as column vectors and denote them from left to
right by: A1, A2, A3, . . . , An. Similarly, denote the columns ofB by: B1, B2, B3, . . . , Bp.

Then, for 1 ≤ i ≤ m, 1 ≤ j ≤ p, we have:

[AB]ij = [ABj]i =
[
[Bj]1A1 + [Bj]2A2 + · · ·+ [Bj]nAn

]
i

=
[
[Bj]1A1

]
i
+
[
[Bj]2A2

]
i
+ · · ·+

[
[Bj]nAn

]
i

= [Bj]1 [A1]i + [Bj]2 [A2]i + · · ·+ [Bj]n [An]i
= [B]1j [A]i1 + [B]2j [A]i2 + · · ·+ [B]nj [A]in

= [A]i1 [B]1j + [A]i2 [B]2j + · · ·+ [A]in [B]nj

=
n∑

k=1

[A]ik [B]kj

Example 5.28 (Product of Two Matrices Entry-by-Entry). Consider the matrices:

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 , B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0


10



Suppose we just wanted the entry of AB in the second row, third column:

[AB]23 = [A]21 [B]13 + [A]22 [B]23 + [A]23 [B]33 + [A]24 [B]43 + [A]25 [B]53
=(0)(2) + (−4)(3) + (1)(2) + (2)(−1) + (3)(3) = −3

Notice how there are 5 terms in the sum, since 5 is the common dimension of
the two matrices (column count for A, row count for B). In the conclusion of
the above theorem, it would be the index k that would run from 1 to 5 in this
computation. Here is a bit more practice. The entry of third row, first column:

[AB]31 = [A]31 [B]11 + [A]32 [B]21 + [A]33 [B]31 + [A]34 [B]41 + [A]35 [B]51
=(−5)(1) + (1)(−1) + (2)(1) + (−3)(6) + (4)(1) = −18

Try to compute all the other entries.

How to memorize the formula : To find the (i, j)-th entry ofAB. (1) Find the
i-th row of A (simply called the row below)(2) Find the j-th column of B (simply
called the column below)(3) sum up the product the corresponding entries of the
row and the column, i.e. (entry 1 of the row × entry 1 of the column) + (entry 2
of the row × entry 2 of the column) + · · ·

Example 5.29. Find the (3, 2) entry of AB in the previous example.The 3-rd row
of A is

[
−5 1 2 −3 4

]
.

The 2-nd column of B is


6
4
1
4
−2

.

Let’s do the multiplication:

Row -5 1 2 -3 4
Column 6 4 1 4 -2
Product -30 4 2 -12 -8

The sum is:
−30 + 4 + 2− 12− 8 = −44.

5.4.1 Properties of Matrix Multiplication
In this subsection, we collect properties of matrix multiplication and its interaction
with the zero matrix, the identity matrix, matrix addition, scalar matrix multipli-
cation and the transpose.
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Theorem 5.30 (Matrix Multiplication and the Zero Matrix). SupposeA is anm×
n matrix. Then

1. AOn×p = Om×p

2. Op×mA = Op×n

Proof. We will prove (1) and leave (2) to you. Using the entry-by-entry definition
of matrix multiplication, for 1 ≤ i ≤ m, 1 ≤ j ≤ p, we comoute

[AOn×p]ij =
n∑

k=1

[A]ik [On×p]kj

=
n∑

k=1

[A]ik 0

=
n∑

k=1

0

= 0

= [Om×p]ij

So the matrices AOn×p and Om×p are equal.

Definition 5.31. The identity matrix Im is the m×m square matrix whose diag-
onal entries are all equal to 1, and all off-diagonal entries are equal to zero. That
is:

[Im]ij =

{
1, if i = j;

0, if i 6= j.

For example:

I2 =

(
1 0
0 1

)
, I5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Theorem 5.32 (Matrix Multiplication and Identity Matrix). Suppose that A is an
m× n matrix. Then

1. AIn = A

2. ImA = A
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Proof. Again, we will prove (1) and leave (2) to you. Using the entry-by-entry
definition of matrix multiplication, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we compute

[AIn]ij =
n∑

k=1

[A]ik [In]kj

= [A]ij [In]jj +
n∑

k=1
k 6=j

[A]ik [In]kj

= [A]ij (1) +
n∑

k=1,k 6=j

[A]ik (0)

= [A]ij +
n∑

k=1,k 6=j

0

= [A]ij .

So the matrices A and AIn are equal entrywise. By the definition of matrix equal-
ity, they are equal matrices.

Remark. It is the previous theorem that gives the identity matrix its name. It is
a matrix that behaves with matrix multiplication like the scalar 1 does with scalar
multiplication. To multiply by the identity matrix is to have no effect on the other
matrix.

Theorem 5.33 (Matrix Multiplication Distributes Across Addition). Suppose that
A is an m × n matrix and B and C are n × p matrices and D is a p × s matrix.
Then:

1. A(B + C) = AB + AC

2. (B + C)D = BD + CD

13



Proof. We will do (1), you do (2). Entry-by-entry, for 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[A(B + C)]ij =
n∑

k=1

[A]ik [B + C]kj

=
n∑

k=1

[A]ik ([B]kj + [C]kj)

=
n∑

k=1

[A]ik [B]kj + [A]ik [C]kj

=
n∑

k=1

[A]ik [B]kj +
n∑

k=1

[A]ik [C]kj

= [AB]ij + [AC]ij

= [AB + AC]ij

So the matrices A(B+C) and AB+AC are equal, entry-by-entry. Hence by the
definition of matrix equality, we can say they are equal matrices.

Theorem 5.34 (Matrix Multiplication and Scalar Matrix Multiplication). Suppose
A is an m×n matrix and B is an n× p matrix. Let α be a scalar. Then α(AB) =
(αA)B = A(αB).

Proof. These are equalities of matrices. We will do the first one, the second is
similar and will be good practice for you. For 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[α(AB)]ij = α [AB]ij

= α

n∑
k=1

[A]ik [B]kj

=
n∑

k=1

α [A]ik [B]kj

=
n∑

k=1

[αA]ik [B]kj

= [(αA)B]ij

So the matrices α(AB) and (αA)B are equal, entry-by-entry, and by the definition
of matrix equality we can say they are equal matrices.
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Theorem 5.35 (Matrix Multiplication is Associative). Suppose A is an m × n
matrix, B is an n× p matrix and D is a p× s matrix. Then A(BD) = (AB)D.

Proof. A matrix equality, so we will go entry-by-entry, no surprise there. For
1 ≤ i ≤ m, 1 ≤ j ≤ s,

[A(BD)]ij =
n∑

k=1

[A]ik [BD]kj

=
n∑

k=1

[A]ik

(
p∑

`=1

[B]k` [D]`j

)

=
n∑

k=1

p∑
`=1

[A]ik [B]k` [D]`j

We can switch the order of the summation since these are finite sums.

=

p∑
`=1

n∑
k=1

[A]ik [B]k` [D]`j

As [D]`j does not depend on the index k, we can use distributivity to move it
outside of the inner sum.

=

p∑
`=1

[D]`j

(
n∑

k=1

[A]ik [B]k`

)

=

p∑
`=1

[D]`j [AB]i`

=

p∑
`=1

[AB]i` [D]`j

= [(AB)D]ij

Hence, (AB)D = A(BD).

Alternatively,
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Proof. Write:
A = (A1|A2| · · · |An)

B = (B1|B2| · · · |Bp)

D = (D1|D2| · · · |Ds)

Then, for any 1 ≤ j ≤ s, the j-th column of A(BD) is the j-th column of:

A (BD1|BD2| · · · |BDs) ,

which is equal to:
A(BDj).

The j-th column of (AB)D is:
(AB)Dj.

Hence, it suffices to show that:

A(BDj) = (AB)Dj

for any 1 ≤ j ≤ s.
Given any 1 ≤ j ≤ s, to simplify the notation, let ~v = Dj . We have:

A(B~v) = A(v1B1 + · · ·+ vpBp) = v1(AB1) + · · ·+ vp(ABp)

= (AB1| · · · |ABp)~v

= (AB)~v.

This completes the proof.

Remark. The above result says matrix multiplication is associative; it means we
do not have to be careful about how we parenthesize an expression with just sev-
eral matrices multiplied together. So this is where we draw the line on explaining
every last detail in a proof. We will frequently add, remove, or rearrange paren-
theses with no comment.

Theorem 5.36 (Matrix Multiplication and Transposes). Suppose A is an m × n
matrix and B is an n× p matrix. Then (AB)t = BtAt.

Proof. Here we go again, entry-by-entry. For 1 ≤ i ≤ m, 1 ≤ j ≤ p,
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[
(AB)t

]
ji
= [AB]ij

=
n∑

k=1

[A]ik [B]kj

=
n∑

k=1

[B]kj [A]ik

=
n∑

k=1

[
Bt
]
jk

[
At
]
ki

=
[
BtAt

]
ji

So, (AB)t = BtAt.

5.5 Row Operations and Matrix Multiplication
In this section, we will discuss the relation between elementary row operations
and matrix multiplication.

Recall the definition of Row Operations on matrices.

Theorem 5.37. Let A ∈Mmn. Let B be a matrix obtained by applying one of the
above row operations on A. Let J be a matrix obtained by applying the same row
operation on Im. Then

JA = B.

Proof. Exercise.

Example 5.38. Let:

A =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45


Consider the row operation 3R2 +R3.

A
3R2+R3−−−−→ B =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25

3a21 + a31 3a22 + a32 3a23 + a33 3a24 + a34 3a25 + a35
a41 a42 a43 a44 a45


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I4
3R2+R3−−−−→ J =


1 0 0 0
0 1 0 0
0 3 1 0
0 0 0 1


Verify that:

JA = B.

Definition 5.39. A matrix J which corresponds to an elementary row operation
as in Theorem 5.37 is called an elementary matrix.

5.6 Invertible Matrices
Definition 5.40. An n× n square matrix A is said to be invertible if there exists
an n× n matrix B such that:

AB = BA = In.

We call B an inverse of A.

Theorem 5.41. If A,B,B′ are n× n matrices such that:

AB = BA = In and AB′ = B′A = In,

then B = B′. Hence, the inverse of an invertible matrix A is unique. We denote it
by A−1.

Fact 5.42. Let A be an n× n matrix.

• If A is invertible, so is A−1, with:(
A−1

)−1
= A.

• The matrix A is invertible if and only if it is row-equivalent to In.

• The matrix A is invertible if and only if it is nonsingular, that is:

A~x = ~0

if and only if ~x = ~0.

• If the matrix A is invertible, then so is its transpose At, with:(
At
)−1

=
(
A−1

)t
.
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• If A, B are invertible n× n matrices, then AB is also invertible, with:

(AB)−1 = B−1A−1.

Theorem 5.43. Elementary matrices are invertible.

We may now prove Theorem Row-Equivalent Matrices represent Equivalent
Systems.

Proof. Suppose A = [A′|~a] and B = [B′|~b]. If A and B are row-equivalent, then
there exists a sequence of elementary matrices J1, J2, . . . Jl such that:

[B′|~b] = B = Jl · · · J2J1A = Jl · · · J2J1[A′|~a]

Let J = Jl · · · J2J1. Then, we have:

B′ = JA′ and ~b = J~a.

For any ~v which is a solution to LS(A′,~a), by definition we have:

A′~v = ~a.

So,
B′~v = JA′~v = J~a = ~b,

which implies that ~v is also a solution to LS(B′,~b).
Conversely, by Fact 5.42 the matrix J is invertible, hence,

A′ = J−1B′ and ~a = J−1~b.

It then follows from the same arguments used before that any solution ~v toLS(B′,~b)
is also a solution to LS(A′,~a).

We conclude that LS(A′,~a) and LS(B′,~b) have the same solution set, hence
they are equivalent linear systems.
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