Math 1030 Chapter 20

20.1 Basic properties of inner products

Definition 20.1. Given two vectors v and w in R™, we define

(20.1)

It is called the inner product of R™. The vector space R™ together with the op-
eration (—, —) is called an inner product space. If we regard v and w as m x 1

matrices, then we can write:
(v,w) = viw.

Example 20.2. We have:

([ [i)=rxsezeamn

and:

1 4
<2 , 5>:1><4+2><5+3><6:32.
3

6

Proposition 20.3. For any v,w,u € R™ and o € R. We have

Proof. Proposition 20.3

(20.2)



1. We compute

(v+w,u)

Or we can use (20.2)):
v+w,u)=(v+wlru= (v +wu
=viu+w'u= (v,u) + (w,u).

2. We compute

(v, w)

Or we can use (20.2)):

(av,w) = (av)'w = aviw = a (v, w).

3. We compute

4. We compute
(v,v) =i+ V3 + -+ V], > 0.

Noting that (v,v) = 0 if and only if [v]; = 0 for all 1 < i < n, we see that
v=20

]

Proposition 20.4. Let o, 5 € R and v, w,u € R™. We have
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~

(av + pw,u) = a(v,u) + 5 (w,u).

2. (u,av + fw) = a(u,v) + 5 (u,w).

3. (0,v) = (v,0) =0.

4. If (v,x) = 0forall x € R™, then v = 0.

5. If (v, x) = (W, x) forall x € R™, then v = w.
Proof. Proposition 20.4

1. By Proposition 20.3|item 1, we have:

(av + pw,u) = (av,u) + (fw,u) .
By Proposition 20.3|item 2,
(av,u) + (fw,u) = a(v,u) + [ (w,u).

Or we can also use (20.2)):

{av + Bw,u) = (av + fw)'u

=a(v)'u+B(w)u=a{v,u)+ 8 (w,u).

2. By the previous part and Proposition Proposition 20.3 item 3, we have

(u,av + pw) = (av + fw, u)

=a(v,u)+ B (w,u) = a(u,v) + 5 (u,w).
Or we can also use (20.2)) (fill the detail).
3. We compute
(0,v) =0[v]y+---+0[v],=0
and

(v,0) = [v]i0 4 - - + [v]n0 = 0.

4. Suppose (v,x) = 0 for all x € R™. Let x = v. Then (v,v) = 0. By
Proposition Proposition 20.3 item 4, v = 0.
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5. Suppose (v,x) = (w,x), then 0 = (v,x) — (w,x) = (v — w,x) for all
x € V. By the previous part v —w = 0. Sov = w.

]

Definition 20.5 (Norm). The norm (or length) of v € R" is defined to be ||v|| =
(v,v). Note that (v, v) > 0. So the symbol y/(v, v) is meaningful.

Example 20.6. Let VV = R3 with the standard inner product. Let
1 1
v=|2],w= |0
3 1

Then

IVl = VvV =VE+ 2+ 3 =V

and

Iwll = V(w,w) = VI2+ 02+ 12 = V2.
Proposition 20.7. Let o € R and v € R™.
1. ||v]| = 0 if and only if v = 0.
2. Jlav]| = [alllv]
3. Suppose that v # 0 and let o« = ﬁ Then ||av|| = 1.

Proof. Proposition 20.7

l. |v] =0 < 0= |v|]* = (v, v). By Proposition ( Proposition 20.3),
item 4, the above is true if and only if v = 0.

2. |lav] = V{av,av) = Ja(v,av) = (/a2 (v,v) = |a]\/(v,v) =
e llv].
3. By the previous part

1
lav]l = [allv]l = vl = L.
vl


https://www.math.cuhk.edu.hk/~pschan/cranach-carousel/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec20.xml&slide=5&item=20.3

Definition 20.8 (unit vector). A vector v € R™ is said to be a unit vector if
|lv] = 1.A non-zero vector v can be normalized to a unit vector vy (see the
previous proposition item 3).

Example 20.9. In Example 4, the vectors v and w can be normalized to:

<
=k
S
\
el

and

Il
.

respectively.

20.2 Orthogonal sets

Definition 20.10. Two vectors v and w in R" are said orthogonal or perpendic-
ular if (v, w) = 0. In this case we write v 1 w.

Example 20.11. 1. Let V = R3. Then

1 ~1
2| L [-1],
3 1

as

17 -1
< 2|, -1 >:1><(—1)+2><(—1)+3><1:0.
3] |1

2. LetV =R". Thene; L e;ifi# j.

Definition 20.12. A subset S = {vy,...,v,} of R™ is said to be orthogonal if
the following conditions hold:

1.0¢ S,ie.v;#0fori=1,... k.

2. v; Lvjfori#j,ie., (v;,v;) =0fori # j.
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Example 20.13. 1. S = { {1} , {_12] } is orthogonal.

2
1 1 1
2. 8= 11,1-11,11 is orthogonal.
1 0 -2

3. For any k < m, the set S = {ey, es, ..., e} C R™ is orthogonal.

Proposition 20.14. Let S = {vy, Vo, - , vy} be an orthogonal subset of R™. Let

V:Oé1V1+"'+Oéka,

w = B1vi+ -+ Bevi.
Then, for o, B; € R, i =1,...k, we have
(v, w) = arBif[val* + - + anBellvill*.
Proof. Proposition 20.14 First for 1 < ¢ < k, we compute

(v,vi) = (v + -+ + Vg, V4)

=y (Vi, Vi) + -+ ag (Vi, Vi)

= Oy <Vz‘,Vz‘> = Oéz‘HVz'HQ-

The last step follows from the fact that (v;, v;) = 0 for j # i. But then

<V7W> = <Va ﬁlvl + -+ ﬂkvk>
= [ <V,V1> + o4 B (V,Vk>
= a1Vl + - - + Bl viel .

]

Theorem 20.15. Let S = {vy, Vs, -, vy} be an orthogonal subset of R™. Then
S'is linearly independent.

Proof. Theorem 20.15 Suppose that we have a relation of linear dependence:
a1vy+ -+ aivep = 0.
For 1 < ¢ < k we have

(a1vy + -+ vy, vi) = (0,v;) = 0.



e forl <i <k,

(v,vi) = (a1v1 + -+ + Vg, V4)
= (v, Vi) + -+ g (Vi, Vi)

= ajl[vil]* = 0.
So for 1 < ¢ < k we have
a; = 0.

Therefore the relation of linear dependence is trivial. Hence S is linearly indepen-
dent. 0

Theorem 20.16. Let S = {v1, vy, -+, Vi } be an orthogonal subset of R™. Sup-
pose that v € (S). Write

V=01V + -+ Vi,

forsome o; € R, i =1,..., k. Then

ie.

Proof. Theorem 20.16 Suppose that v = a1vy +- - -+ axVvg. Then, for 1 <1 < k,
we compute

(v,vi) = (a1vy + -+ + Vg, V4)
=y (V1, Vi) + -+ g (Vi, Vi)

= Q4 (Vz‘,Vi> = Olz‘||Vi||2-

Hence

<V7Vi>
hals

7; =

]

Remark. The advantage of using the above method is that we don’t have to solve
linear equations to find the linear combination.
In order to use the theorem, we need to ensure that v € (S).
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Example 20.17. We use Example 4,item2. LetS = vy = |1| ,vo = [—1| ,v3 =
1

Given that

<
I
W N =

is in (S), we find the following linear combinations:

(v,vi) 6

1 = = =
w3

[va|* 2 2
) =3
Vsl 6 2
Hence
1 1
V = 2V1 — §V2 — §V3.

Definition 20.18. Let V' be a subspace of R™. A subset S of V' is said to be an
orthogonal basis for V if S is a basis of V and S is orthogonal.

If S is an orthogonal subset of V, then by Theorem Theorem 20.15, it is au-
tomatically linearly independent. So in order to check if S is an orthogonal basis,
we need only check that (S) = V. So we have the following result.

Theorem 20.19. Let V be a subspace of R™. Suppose that S is an orthogonal
subset of V. Then S is an orthogonal basis if and only if (S) = V.

Corollary 20.20. Suppose that S is an orthogonal subset of R™. Then S is a basis
of (S).

Corollary 20.21. Let V be a subspace of R™. Suppose that S = {vy,...,v,} is
an orthogonal basis of V. Then for any v € V, we have

Vv,V V,V,
i) )
[Val|

vV = Vi
[[vf?
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Proof. Corollary 20.21 This follows from Theorem Theorem 20.16. [

Example 20.22. 1. Theset .S = { E} , {_12} } an orthogonal basis of R™.
1 1 1
2. Theset S = 11,1-1],]1 is an orthogonal basis of R®. Indeed,
1 0 -2

dim V' = 3 and S, with 3 vectors, is linearly independent.

3. The set S = {ej,es,...,€,} is an orthogonal basis of R™. It is called the
standard basis for V.

Definition 20.23. A subset S = {vy,..., vy} of R™ is said to be orthonormal if
it is orthogonal and every vector in S is a unit vector, i.e.

(Vi v;) = 1 ifi =7,
1y Y3/ T P .
0 ifi##j.

Let V' be a subspace of R™. The subset .S is said to be an orthonormal basis for
V if it is orthonormal and is a basis of V.

Because an orthonormal set S is orthogonal, the above theorems regarding
orthogonal sets are also true for orthonormal sets. In particular we have the fol-
lowing result.

Theorem 20.24. Let S = {vy,..., vy} be an orthonormal subset of R™ and let
v € (S). Then

v=(v,vi) Vi + -+ (V,Vg) Vp.

Proof. Theorem 20.24 By Theorem Theorem 20.16/and ||v;|| = 1for: =1,... k.

If S = {vy,..., vy} is an orthogonal subset of R™, then { Vi ok } is

[vall?
an orthonormal subset. The process is called normalization.

2 1
Normalizing it, we obtain an orthonormal basis

{5

Example 20.25. 1. Theset S = { {1} , {_ } } is an orthogonal basis of R,
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1 1] [1
2. The set S = 11,1—-1],]1 is an orthogonal basis of R®. Nor-
1 0 | —2
malizing it, we obtain an orthonormal basis
I N Y T Y B
V31 V2| VB |y

20.3 Gram-Schmidt Orthogonalization process

Let S = {vy,..., vy} be an orthogonal subset of R™. If w € (S), then

W,V W,V
e e
vl [Vl

But what if w is not in (S)? Let’s compare the difference. We have the following
theorem.

Theorem 20.26. Let S = {vi,..., vy} be an orthogonal subset of R™ and let

w € R™. Then, for eachi = 1,...,k, the vector
V:W_L@VI_..._MW
Nl [Vl

is perpendicular to v;.

Proof. Theorem 20.26 For 1 < i < k, we compute
(W, v1) (W, vi)

<V7 VZ) = <W7 V’L> - <V17 VZ) - <Vk7 VZ)

[[v[[? [vel[?

Because (v;, v;) is 0 unless j = i, the above becomes

(W, v;)

(W, v;) — (vi,vi) = (W, v;) — (v, v;) = 0.

[[vil|>
Hencev L v;fort=1,... k. O

Theorem 20.27 (Gram-Schmidt Orthogonalization Process). Let S = {wy, Wa, ..., W}
be a linearly independent subset of V. Let vi = wy and set

V)= Wy — <W€’v21>vl B — va—l for2 </(<k.
vl [veall
Then S" = {vy,..., vy} isan orthogonal set. Moreover, ({w1, ..., w;}) = ({vi,...,Vi})

for t = 1,... k. In particular (S) = (S"). The process of obtaining S’ by the
above procedure is called the Gram-Schmidt Orthogonalization process.
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Proof. Gram-Schmidt Orthogonalization Process We have ({w;}) = ({vi}).
We are going to add one vector at a time. Suppose that ({vq,...,v, 1}) =
({w1,...,w,_1})and thatthe set {vy,..., v, 1} isorthogonal. Thus ({vy,...,v,}) =
({w1,...,we_1,ve}) = {wi,...,wy_1,w,}). By Theorem Theorem 20.26,
vy L vy,...,vp_1. Thus {vy,..., v} is orthogonal. We repeat the process by
increasing ¢ until £ = k. ]

Corollary 20.28. Suppose that V is a subspace of R™. Then there exists an or-
thogonal (orthonormal basis) of V.

Proof. Corollary 20.28 By Lecture 18 Theorem 8, there exists a basis S = {wy, ..., wy}
for V. Applying Gram-Schmidt orthogonalization process to S, we obtain an or-
thogonal set S’ = {vy,...,v;}. By Theorem Gram-Schmidt Orthogonalization
Process, (S") = (S) = V. By Theorem Theorem 20.19, S’ is an orthogonal basis.
Normalizing S’, we can also obtain an orthonormal basis. L]

The above proof actually describes a method to find orthogonal (orthonormal)
basis of V.

Example 20.29. Let V = R* with the standard inner product. Let

1 1 0
0 1 1
W1 = 1 , Wo = 1 , W3 = 2
0 1 1
Then {w1, wy, w3} is linearly independent. We can apply Gram-Schmidt orthog-
1
onalization process to this set of vectors. Take vi = w; = (1) . Then
0
1 1 0
Ve —w (wo,vi) 1| 20| _ |1
U wallr Tt 2 (1] |0
1 0 1
Also
0 1 0 -1
Va = Wa — <W37V1> N <W37V2> 1 B 2 0 B 2 ]- o 0
U W T el TP |2 2|1 20 1
1 0 1 0
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The set {vy, Vg, v3} is an orthogonal basis of ({w;, ws, ws}). To obtain an or-
thonormal basis of ({w;, ws, w3}), we can normalized the vectors

1 0 —1
Vi 110 Vo 1 |1 u V3 1 0

W === Uy = T = —= U3 = —— = —=
vill V2 (1) [vall V2 (1) Ivsll - v2 é

Example 20.30. Let V = A ([1 1 1 1]). Find an orthonormal basis of V.
The set

-1 -1 —1
1 0 0
S = Wi = 0 , Wo = 1 y W3 = 0
0 0 1
is a basis of V. We apply Gram-Schmidt orthogonalization process to the set S
—1
Vi =W = 1
1= 1 — 0
0
-1 -1 —1/2
Vo — Wo — <W27V1> 0 _1 1 . —]_/2
S 7V R U S BN N N
0 0 0
-1 -1 -1/2 -1/3
e W V) (wgave) L0 LD =12 -1)3
T vl T e P j o 2|0 31| =13
1 0 0 1
So
-1 —1/2 —1/3
1 —1/2 —1/3
o' 1 |"|-1/3
0 0 1

is an orthogonal basis of V. Normalizing it, we can obtain an orthonormal basis
of V:
-1 -1 -1
1

1
VEl0|'VE |2V |
0



The above process will be easier if we start with another basis:

1 0 0
—1 0 1
S: W1 = 0 , Wo = 1 , W3 = -1
0 -1 0

Now the first two vectors are perpendicular. Apply Gram-Schmidt orthogonaliza-
tion process to it:

1
Vi = W1 = -1
1 — 1 — 0
0
0
Wa, 0
VQ_W2—< 2V21> 1_W2—0V1:W2:
[ vl 1
—1
1/2
<W37V1> <W37V2> 1/2
V3 = W3 — Vi — Vo =
U Wl T el T |12
~1/2
So
1 0 1/2
~1| |0 1/2
o |1 [-1/2
ol [-1| [-1/2

is an orthogonal basis of V. Normalizing it, we obtain an orthonormal basis

1 0 1/2
A= Lo 1/2
20 Vel |12

0 ~1| |-1/2

20.4 Cauchy-Schwarz Inequality

Can be skipped, will not appear in final exam
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Theorem 20.31 (Cauchy-Schwarz Inequality). For v,w € R™,
| (v, w) [ < [lv[[[wl].

Proof. Cauchy-Schwarz Inequality The statement is trivial if w = 0. Suppose
w # 0. Lett € R, then

0<||[v—tw|?=(v—tw,v—tw) = (v,v—tw) —t (w,v — tw)

= (v,v) —t{v,w) —t({w,v) + > (w,w) = (v,v) — 2t (v, w) + t* (W, W)

Substituting

(v, w)

t =

(w, w)

into the above, we obtain
[ (v, w) |? | (v, w)|
0< <V7V> - HV”2 - 2
;W) [[w]

Hence

| (Vo w) [ < VIVIPw]? = [[v][][w]-
O

Remark. The ¢ above is obtained by minimizing the quadratic equation (v, v) —
2t (v, w) + 12 (w, w).

Following the proof, the equality occurs if (i) v = 0 or (ii)) w = 0 or (iii)
v —tw = 0 & v and w are parallel, i.e., v = aw for some scalar a € R.

Theorem 20.32 (Triangle Inequality). For any v,w € R", we have:
v+ wi <[[v]l + [lw].
Proof. Triangle Inequality
V4wl = (v, v) + (v, w) + (w,v) + (w, w) = [v][* + 2 (v, w) + [ w]|*
By the Cauchy-Schwarz inequality
| (v, w) [ < [Ivlll[wl],
thus
v+ wi* < Ivl* + 2l viliwl + Twl* = (vl + Twl])*.

The result follows by taking square roots on both sides. [
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Example 20.33. Let v, w € R™ with the standard inner product. Let

Cauchy-Schwarz inequality:

]vlw1+--~+vmwm]§\/U%+~~~+U,2n\/w%+~~+w3n.

Triangle inequality:

\/(v1+w1)2+---+(vm+wm)2§\/v%+--~—|—v,2n—|—\/w%+---+w%1.
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