
Math 1030 Chapter 19

Reference.
Beezer, Ver 3.5 Subsection EEM (print version p283-285), Subsection CEE

and ECEE (print version p289-297)
Exercise.
Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-

3.50-solution-manual.pdf
(Replace C by R)Section EE, p103-108, all except C22, M60. Note that for

the questions regarding diagonalizability, use our method instead of the method in
the solution manual.

19.1 Eigenvalues and Eigenvectors of a Matrix
Definition 19.1 (Eigenvalues and Eigenvectors of a Matrix). Suppose that A is a
square matrix of size n, x a non-zero vector in Rn, and λ a scalar in R. We say x
is an eigenvector of A with eigenvalue λ if

Ax = λx.

Example 19.2. Let

A =

2 1 1
1 2 1
1 1 2


and let

u =

11
1

 , v =

 1
−1
0

 , w =

 1
0
−1

 .
Then

Au =

44
4

 = 4u, Av =

 1
−1
0

 = 1v, Aw =

 1
0
−1

 = 1w.
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So u is an eigenvector of A with eigenvalue 4, v is an eigenvector of A with
eigenvalue 1, and w is an eigenvector A with eigenvalue 1. Now let x = 100u.
Then

Ax = 100Au = 400u = 4x.

So x is an eigenvector of A with eigenvalue 4.Next let y = v +w, then

Ay = Av + Aw = v +w = 1y.

So y is an eigenvector of A with eigenvalue 1. Finally, let z = u + v =

20
1

.

Then

Az = 4u+ v =

53
4


is not a scalar multiple of z. So z is not an eigenvector. This shows that sum of
eigenvectors need not be an eigenvector.

Example 19.3. Consider the matrix

A =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28


and the vectors

x =


1
−1
2
5

y =


−3
4
−10
4

 z =


−3
7
0
8

w =


1
−1
4
0

 .
Then

Ax =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
2
5

 =


4
−4
8
20

 = 4


1
−1
2
5

 = 4x

so that x is an eigenvector of A with eigenvalue λ = 4.
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Also,

Ay =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
4
−10
4

 =


0
0
0
0

 = 0


−3
4
−10
4

 = 0y

so that y is an eigenvector of A with eigenvalue λ = 0.
Also,

Az =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
7
0
8

 =


−6
14
0
16

 = 2


−3
7
0
8

 = 2z

so that z is an eigenvector of A with eigenvalue λ = 2.
Finally,

Aw =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
4
0

 =


2
−2
8
0

 = 2


1
−1
4
0

 = 2w

so that w is an eigenvector of A with eigenvalue λ = 2.
We have demonstrated four eigenvectors of A. Are there more? Yes, any

nonzero scalar multiple of an eigenvector is again an eigenvector. In this example,
setting u = 30x, we have

Au = A(30x) = 30Ax = 30(4x) = 4(30x) = 4u

so that u is also an eigenvector of A with the same eigenvalue, λ = 4.
The vectors z and w are both eigenvectors ofA for the same eigenvalue λ = 2,

yet this is not as simple as the two vectors just being scalar multiples of each
other (they are not). Look what happens when we add them together, forming
v = z+w, which we then multiply by A:

Av = A(z+w) = Az+ Aw

= 2z+ 2w = 2(z+w) = 2v.

Hence, v is also an eigenvector of A with eigenvalue λ = 2. It would appear that
the set of eigenvectors that are associated with a fixed eigenvalue is closed under
the vector space operations of Rn.

The vector y is an eigenvector ofA for the eigenvalue λ = 0, soAy = 0y = 0.
But this also means that y ∈ N (A). There would appear to be a connection here
also.
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Definition 19.4 (Eigenspace of a Matrix). Suppose A is a square matrix and λ is
an eigenvalue of A. Then the eigenspace of A for λ, denoted by EA (λ), is the set
of all eigenvectors of A with eigenvalue λ, together with the zero vector.

Theorem 19.5 (Eigenspace of a Matrix is a Null Space). Suppose that A is a
square matrix of size n and λ is an eigenvalue of A. Then

EA (λ) = N (A− λIn) .

In particular, EA (λ) is a subspace of Rn.

Proof. Eigenspace of a Matrix is a Null Space First, notice that 0 ∈ EA (λ) (by
definition) and 0 ∈ N (A− λIn).

For any nonzero vector x ∈ Rn, x ∈ EA (λ) ⇐⇒ Ax = λx ⇐⇒ Ax −
λx = 0 ⇐⇒ Ax− λInx = 0 ⇐⇒ (A− λIn)x = 0 ⇐⇒ x ∈ N (A− λIn).

This completes the proof.

19.2 Existence of Eigenvalues and Eigenvectors
Definition 19.6 (Characteristic Polynomial). Suppose that A is a square matrix of
size n. Then the characteristic polynomial ofA is the polynomial pA (x) defined
by:

pA (x) = det (A− xIn)

Theorem 19.7 (Degree of the Characteristic Polynomial). Suppose that A is a
square matrix of size n. Then the characteristic polynomial pA (x) has degree n.

Proof. Degree of the Characteristic Polynomial You can skip the proof. The fol-
lowing briefly explains why the theorem is true. It is not a rigorous proof.We
have

pA (x) =

∣∣∣∣∣∣∣∣∣
a11 − x a12 · · · a1n
a21 a22 − x · · · a2n

...
...

...
...

an1 an2 · · · ann − x

∣∣∣∣∣∣∣∣∣ .
The determinant is a sum of products of entries of A− xIn, and all such products
have degree at most n− 1, except the product of the diagonal entries,

(a11 − x)(a22 − x) · · · (ann − x),

which has degree n.
Remark: We can also see that the leading coefficient is (−1)n.
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Theorem 19.8 (Eigenvalues of a Matrix are Roots of Characteristic Polynomials).
Suppose that A is a square matrix. Then λ is an eigenvalue of A if and only if
pA (λ) = 0.

Proof. Eigenvalues of a Matrix are Roots of Characteristic Polynomials A number
λ is an eigenvalue of A if and only if EA (λ) = N (A− λIn) is not the zero vector
space {0}.
⇐⇒ A− λIn is singular
⇐⇒ 0 = det (A− λIn) = pA (λ).

Example 19.9. Consider

F =

−13 −8 −412 7 4
24 16 7

 .
We compute

pF (x) = det (F − xI3)

=

∣∣∣∣∣∣
−13− x −8 −4

12 7− x 4
24 16 7− x

∣∣∣∣∣∣
= (−13− x)

∣∣∣∣7− x 4
16 7− x

∣∣∣∣+ (−8)(−1)
∣∣∣∣12 4
24 7− x

∣∣∣∣+ (−4)
∣∣∣∣12 7− x
24 16

∣∣∣∣
= (−13− x)((7− x)(7− x)− 4(16))

+(−8)(−1)(12(7− x)− 4(24)) + (−4)(12(16)− (7− x)(24))

= 3 + 5x+ x2 − x3

= −(x− 3)(x+ 1)2.

Example 19.10. In Example 19.9, we found the characteristic polynomial of

F =

−13 −8 −412 7 4
24 16 7


5
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to be pF (x) = −(x− 3)(x+ 1)2. Being written in factored form, we can simply
read off its roots; they are x = 3 and x = −1. By the previous theorem, λ = 3
and λ = −1 are both eigenvalues of F . Moreover, these are the only eigenvalues
of F .

Example 19.11. Example 19.9 and Example 19.10 describe the characteristic
polynomial and eigenvalues of the 3× 3 matrix

F =

−13 −8 −412 7 4
24 16 7

 .
We will now take each eigenvalue in turn and compute its eigenspace. To do this,
we row-reduce the matrix F−λI3 in order to find all solutions to the homogeneous
system F − λI3x = 0. We then express the eigenspace EF (λ) as the nullspace of
F − λI3. Then we can write the nullspace as the span of a basis.

λ = 3 : F − 3I3 =

−16 −8 −412 4 4
24 16 4

 RREF−−−→

 1 0 1
2

0 1 −1
2

0 0 0



EF (3) = N (F − 3I3) =

〈
−1

2
1
2

1


〉

=

〈
−11

2


〉

λ = −1 : F + 1I3 =

−12 −8 −412 8 4
24 16 8

 RREF−−−→

 1 2
3

1
3

0 0 0
0 0 0



EF (−1) = N (F + 1I3) =

〈
−2

3

1
0

 ,
−1

3

0
1


〉

=

〈
−23

0

 ,
−10

3


〉

Eigenspaces in hand, we can easily compute eigenvectors by forming nontrivial
linear combinations of the basis vectors describing each eigenspace. In particular,
notice that we can pretty up our basis vectors by using scalar multiples to clear
out fractions.
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19.3 Examples of Computing Eigenvalues and Eigen-
vectors

Example 19.12. Consider the matrix

B =


−2 1 −2 −4
12 1 4 9
6 5 −2 −4
3 −4 5 10

 .
Then

pB (x) = 8− 20x+ 18x2 − 7x3 + x4 = (x− 1)(x− 2)3.

So the eigenvalues are λ = 1, 2. Computing eigenvectors, we find

λ = 1 : B − 1I4 =


−3 1 −2 −4
12 0 4 9
6 5 −3 −4
3 −4 5 9

 RREF−−−→


1 0 1

3
0

0 1 −1 0

0 0 0 1
0 0 0 0



EB (1) = N (B − 1I4) =

〈

−1

3

1
1
0



〉

=

〈

−1
3
3
0



〉

λ = 2 : B − 2I4 =


−4 1 −2 −4
12 −1 4 9
6 5 −4 −4
3 −4 5 8

 RREF−−−→


1 0 0 1/2

0 1 0 −1
0 0 1 1/2
0 0 0 0



EB (2) = N (B − 2I4) =

〈

−1

2

1
−1

2

1



〉

=

〈

−1
2
−1
2



〉

Example 19.13. Consider the matrix

C =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 .
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Then

pC (x) = −3 + 4x+ 2x2 − 4x3 + x4 = (x− 3)(x− 1)2(x+ 1).

So the eigenvalues are λ = 3, 1, −1. Computing eigenvectors, we find

λ = 3 : C − 3I4 =


−2 0 1 1
0 −2 1 1
1 1 −2 0
1 1 0 −2

 RREF−−−→


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0



EC (3) = N (C − 3I4) =

〈

1
1
1
1



〉

λ = 1 : C − 1I4 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 RREF−−−→


1 1 0 0

0 0 1 1
0 0 0 0
0 0 0 0



EC (1) = N (C − 1I4) =

〈

−1
1
0
0

 ,


0
0
−1
1



〉

λ = −1 : C + 1I4 =


2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

 RREF−−−→


1 0 0 1

0 1 0 1

0 0 1 −1
0 0 0 0



EC (−1) = N (C + 1I4) =

〈

−1
−1
1
1



〉
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Example 19.14. Consider the matrix

E =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8
7 4 3 1 −3

 .
Then

pE (x) = −16 + 16x+ 8x2 − 16x3 + 7x4 − x5 = −(x− 2)4(x+ 1).

So the eigenvalues are λ = 2, −1. Computing eigenvectors, we find

λ = 2 :

E − 2I5 =


27 14 2 6 −9
−47 −24 −1 −11 13
19 10 3 4 −8
−19 −10 −3 −4 8
7 4 3 1 −5

 RREF−−−→


1 0 0 1 0

0 1 0 −3
2
−1

2

0 0 1 0 −1
0 0 0 0 0
0 0 0 0 0



EE (2) = N (E − 2I5) =

〈


−1
3
2

0
1
0

 ,

0
1
2

1
0
1



〉

=

〈


−2
3
0
2
0

 ,

0
1
2
0
2



〉

λ = −1 :

E + 1I5 =


30 14 2 6 −9
−47 −21 −1 −11 13
19 10 6 4 −8
−19 −10 −3 −1 8
7 4 3 1 −2

 RREF−−−→


1 0 0 2 0

0 1 0 −4 0

0 0 1 1 0

0 0 0 0 1
0 0 0 0 0



EE (−1) = N (E + 1I5) =

〈


−2
4
−1
1
0



〉
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Example 19.15. Consider the matrix

H =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10

 .
Then

pH (x) = −6x+ x2 + 7x3 − x4 − x5 = x(x− 2)(x− 1)(x+ 1)(x+ 3).

So the eigenvalues are λ = 2, 1, 0, −1, −3.
Computing eigenvectors, we find

λ = 2 :

H − 2I5 =


13 18 −8 6 −5
5 1 1 −1 −3
0 −4 3 −4 −2
−43 −46 17 −16 15
26 30 −12 8 −12

 RREF−−−→


1 0 0 0 −1
0 1 0 0 1

0 0 1 0 2

0 0 0 1 1
0 0 0 0 0



EH (2) = N (H − 2I5) =

〈


1
−1
−2
−1
1



〉

λ = 1 :

H − 1I5 =


14 18 −8 6 −5
5 2 1 −1 −3
0 −4 4 −4 −2
−43 −46 17 −15 15
26 30 −12 8 −11

 RREF−−−→


1 0 0 0 −1

2

0 1 0 0 0

0 0 1 0 1
2

0 0 0 1 1
0 0 0 0 0



EH (1) = N (H − 1I5) =

〈


1
2

0
−1

2

−1
1



〉

=

〈


1
0
−1
−2
2



〉
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λ = 0 :

H − 0I5 =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10

 RREF−−−→


1 0 0 0 1

0 1 0 0 −2
0 0 1 0 −2
0 0 0 1 0
0 0 0 0 0



EH (0) = N (H − 0I5) =

〈


−1
2
2
0
1



〉

λ = −1 :

H + 1I5 =


16 18 −8 6 −5
5 4 1 −1 −3
0 −4 6 −4 −2
−43 −46 17 −13 15
26 30 −12 8 −9

 RREF−−−→


1 0 0 0 −1/2
0 1 0 0 0

0 0 1 0 0

0 0 0 1 1/2
0 0 0 0 0



EH (−1) = N (H + 1I5) =

〈


1
2

0
0
−1

2

1



〉

=

〈


1
0
0
−1
2



〉

λ = −3 :

H + 3I5 =


18 18 −8 6 −5
5 6 1 −1 −3
0 −4 8 −4 −2
−43 −46 17 −11 15
26 30 −12 8 −7

 RREF−−−→


1 0 0 0 −1
0 1 0 0 1

2

0 0 1 0 1

0 0 0 1 2
0 0 0 0 0



EH (−3) = N (H + 3I5) =

〈


1
−1

2

−1
−2
1



〉

=

〈


−2
1
2
4
−2



〉
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19.4 Similar Matrices
Definition 19.16 (Similar Matrices). Suppose that A and B are square matrices
of size n. Then A and B are similar if there exists a nonsingular matrix of size n,
S, such that A = S−1BS. We will also say A is similar to B via S. Finally, we
will refer to S−1BS as a similarity transformation when we want to emphasize
the way that S changes B.

Example 19.17. Define

B =

[
−5 −7
4 6

]
S =

[
1 2
2 3

]
.

Check that S is nonsingular and then compute

A = S−1BS

=

[
−3 2
2 −1

] [
−5 −7
4 6

] [
1 2
2 3

]
=

[
89 145
−54 −88

]
.

It follows that A and B are similar.

Example 19.18. Define

B =


−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4



S =


1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1

 .
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Check that S is nonsingular and then compute

A = S−1BS

=


10 1 0 2 −5
−1 0 1 0 0
3 0 2 1 −3
0 0 −1 0 1
−4 −1 1 −1 1



−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4




1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1



=


−10 −27 −29 −80 −25
−2 6 6 10 −2
−3 11 −9 −14 −9
−1 −13 0 −10 −1
11 35 6 49 19

 .
This shows that A and B are similar.

Example 19.19. Define

B =

−13 −8 −412 7 4
24 16 7


S =

 1 1 2
−2 −1 −3
1 −2 0

 .
Check that S is nonsingular and then compute

A = S−1BS

=

−6 −4 −1−3 −2 −1
5 3 1

−13 −8 −412 7 4
24 16 7

 1 1 2
−2 −1 −3
1 −2 0


=

−1 0 0
0 3 0
0 0 −1

 .
Theorem 19.20 (Similarity is an Equivalence Relation). Suppose that A, B and
C are square matrices of size n. Then

1. (Reflexive) A is similar to A.

2. (Symmetric) If A is similar to B, then B is similar to A.

13



3. (Transitive) If A is similar to B and B is similar to C, then A is similar to
C.

Proof. Similarity is an Equivalence Relation To see thatA is similar toA, we need
only demonstrate a nonsingular matrix that effects a similarity transformation of
A to A. We can take In, which is nonsingular and satisfies I−1

n AIn = InAIn = A.
If we assume that A is similar to B, then we know there exists is a nonsin-

gular matrix S so that A = S−1BS. But then S−1 is invertible and therefore
nonsingular. So

(S−1)−1A(S−1) = SAS−1 = SS−1BSS−1

=
(
SS−1

)
B
(
SS−1

)
= InBIn = B

and we see that B is similar to A.
Assume that A is similar to B and that B is similar to C. This gives us the

existence of nonsingular matrices, S and R, such that A = S−1BS and B =
R−1CR. Since S and R are invertible, so too is RS, which has inverse S−1R−1.
Then we compute

(RS)−1C(RS) = S−1R−1CRS = S−1
(
R−1CR

)
S

= S−1BS = A

so A is similar to C via the nonsingular matrix RS.

Theorem 19.21 (Similar Matrices have Equal Eigenvalues). Suppose that A and
B are similar matrices. Then the characteristic polynomials ofA andB are equal,
that is, pA (x) = pB (x).

Proof. Similar Matrices have Equal Eigenvalues Let n denote the size of A and
B. Since A and B are similar, there exists a nonsingular matrix S, such that
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A = S−1BS. Then

pA (x) = det (A− xIn)
= det

(
S−1BS − xIn

)
= det

(
S−1BS − xS−1InS

)
= det

(
S−1BS − S−1xInS

)
= det

(
S−1 (B − xIn)S

)
= det

(
S−1

)
det (B − xIn) det (S)

= det
(
S−1

)
det (S) det (B − xIn)

= det
(
S−1S

)
det (B − xIn)

= det (In) det (B − xIn)
= 1 det (B − xIn)
= pB (x) .

Example 19.22. We claim that the matrices

A =

[
1 2
3 4

]
, B =

[
1 2
0 4

]
are not similar.

To show this, we compute

pA (x) =

∣∣∣∣1− x 2
3 4− x

∣∣∣∣ = (1− x)(4− x)− 6 = x2 − 5x− 2

and

pB (x) =

∣∣∣∣1− x 2
0 4− x

∣∣∣∣ = (1− x)(4− x) = x2 − 5x+ 4.

Because pA (x) 6= pB (x), we conclude that A and B are not similar.

Example 19.23. Same characteristic polynomial, but not similar
Define

A =

[
1 1
0 1

]
B =

[
1 0
0 1

]
.

We have

pA (x) = pB (x) = 1− 2x+ x2 = (x− 1)2,
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so thatA andB have equal characteristic polynomials. If the converse of the above
theorem were true, then A and B would be similar. Suppose this is the case. More
precisely, suppose there exists is a nonsingular matrix S so that A = S−1BS.
Then

A = S−1BS = S−1I2S = S−1S = I2

Clearly A 6= I2. This contradiction tells us that the converse of the above theorem
is false.

19.5 Diagonalizability
Good things happen when a matrix is similar to a diagonal matrix. For example,
the eigenvalues of the matrix are the entries on the diagonal of the diagonal matrix.
It is also much simpler matter to compute high powers of the matrix. Diagonaliz-
able matrices are also of interest in more abstract settings. Here are the relevant
definitions, then our main theorem for this section.

Definition 19.24 (Diagonal Matrix). Suppose that A is a square matrix of size n.
Then A is a diagonal matrix if [A]ij = 0 whenever i 6= j, i.e.

A =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
... . . . 0

0 0 0 · · · λn

 .

We will often denote such a matrix A by diag(λ1, λ2, . . . , λn).

Definition 19.25 (Diagonalizable Matrix). Suppose that A is a square matrix.
Then A is diagonalizable if A is similar to a diagonal matrix, i.e, there exists
an invertible matrix S and real numbers λ1, λ2, . . . , λn such that

S−1AS = diag(λ1, λ2, . . . , λn).

Example 19.26. Let

B =

−7 −6 −125 5 7
1 0 4

 .
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This matrix is similar to a diagonal matrix, as can be seen by the following com-
putation with the nonsingular matrix S:

S−1BS =

−5 −3 −23 2 1
1 1 1

−1 −7 −6 −125 5 7
1 0 4

−5 −3 −23 2 1
1 1 1



=

−1 −1 −12 3 1
−1 −2 1

−7 −6 −125 5 7
1 0 4

−5 −3 −23 2 1
1 1 1

 =

−1 0 0
0 1 0
0 0 2

 .
Theorem 19.27 (Diagonalization Characterization). Suppose that A is a square
matrix of size n. Then A is diagonalizable if and only if there exists a linearly
independent set T that contains n eigenvectors of A.

Proof. Diagonalization Characterization
(⇒) Suppose that A is diagonalizable. Then there exists an invertible matrix

S and real numbers λ1, . . . , λn such that

S−1AS = diag(λ1, . . . , λn).

Let Si be column i of S. Let T be the columns of S. Because S is invertible
(nonsingular), the columns of S are linearly independent. Also

S−1AS = diag(λ1, . . . , λn).

So

AS = S diag(λ1, . . . , λn)

or equivalently

[AS1|AS2| · · · |ASn] = [λ1S1|λ2S2| · · · |λnSn].

Hence, for 1 ≤ i ≤ n, we have:

ASi = λiSi.

Obviously Si 6= 0, because S is nonsingular. So Si is an eigenvector with eigen-
value λi. Hence T is a linearly independent set consisting of eigenvectors of A.

(⇐) Suppose that T = {v1, . . . ,vn} is a linearly independent set consisting of
eigenvectors of A with eigenvalues λ1, . . . , λn, i.e. Avi = λivi for i = 1, . . . , n.
Let D = diag(λ1, . . . , λn). Let

S = [v1|v2| · · · |vn].
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Because T is linearly independent, S is invertible. Similarly to the above compu-
tation, we compute:

AS = [Av1|Av2| · · · |Avn] = [λ1v1|λ2v2| · · · |λnvn] = SD.

So

S−1AS = S−1SD = D.

Therefore A is diagonalizable.

Remark. Notice that the proof is constructive. To diagonalize a matrix, we need
only locate n linearly independent eigenvectors. Then we can construct a nonsin-
gular matrix S, using the eigenvectors as columns, with the property that S−1AS
is a diagonal matrix (D). The entries on the diagonal of D will be the eigenvalues
of the eigenvectors used to create S, in the same order as the eigenvectors appear
in S. We illustrate this by diagonalizing some matrices.

Example 19.28. Consider the matrix

F =

−13 −8 −412 7 4
24 16 7


from previous examples. The eigenvalues and eigenspaces of F ’s are

λ = 3 EF (3) =

〈
−1

2
1
2

1


〉

λ = −1 EF (−1) =

〈
−2

3

1
0

 ,
−1

3

0
1


〉

Define the matrix S to be the 3 × 3 matrix whose columns are the three basis
vectors in the eigenspaces for F :

S =

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


Check that S is nonsingular (row-reduces to the identity matrix, or has a nonzero
determinant).

Remark : After we introduce Theorem Theorem 19.29, you don’t need to
check that S is nonsingular. See examples below).
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The three columns of S are a linearly independent set. By Theorem Diago-
nalization Characterization we now know that F is diagonalizable. Furthermore,
the construction in the proof of Theorem Diagonalization Characterization tells us
that S−1FS = diag(3,−1,−1). Let us check this directly:

S−1FS =

−1
2
−2

3
−1

3
1
2

1 0
1 0 1

−1 −13 −8 −412 7 4
24 16 7

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


=

 6 4 2
−3 −1 −1
−6 −4 −1

−13 −8 −412 7 4
24 16 7

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


=

3 0 0
0 −1 0
0 0 −1

 .
Theorem 19.29. Suppose that A is a square matrix of size n. Suppose that
λ1, . . . , λk are all of the distinct eigenvalues of A. Then A is diagonalizable if
and only if

k∑
i=1

dim EA (λi) = dim EA (λ1) + · · ·+ dim EA (λk) = n. (19.1)

Suppose that the above condition is satisfied byA and let Ti = {vi1, vi2, vi3, . . . , vidi}
be a basis for the eigenspace of λi, EA (λi), for each 1 ≤ i ≤ k and let di =
dim EA (λi). Then

T = T1 ∪ T2 ∪ T3 ∪ · · · ∪ Tk

is a set of linearly independent eigenvectors for A with size n. By Theorem Diag-
onalization Characterization, let S be a square matrix whose i-th column is the
i-th vector of the set T , i.e.

S = [v11| · · · |v1d1|v21| · · · |v2d2 | · · · |vk1| · · · |vkdk ]

Then

S−1AS = diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, λ2, . . . , λ2︸ ︷︷ ︸
d2

, . . . , λk, . . . , λk︸ ︷︷ ︸
dk

).

Proof. Theorem 19.29 See Beezer’s textbook.
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Remark. Equation (19.1) may be rewritten as:
k∑
i=1

n (A− λiIn) = n (A− λ1In) + · · ·+ n (A− λkIn) = n,

where on the left-hand side n(M) denotes the nullity of a matrix M . or
k∑
i=1

(n− r (A− λiIn)) = (n− r (A− λ1In)) + · · ·+ (n− r (A− λkIn)) = n,

where r(M) denotes the rank of a matrix M .

Corollary 19.30 (Distinct Eigenvalues implies Diagonalizable). Suppose that A
is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

Proof. Distinct Eigenvalues implies Diagonalizable You can skip the proof. See
the textbook.

Example 19.31. Determine if the matrix B in Example 19.12 is diagonalizable.
The characteristic polynomial is

pB (x) = det (B − xI4) = (x− 1)(x− 2)3.

We conclude that λ1 = 1 and λ2 = 2 are all of the distinct eigenvalues of B.
In Example 19.12, we compute the RREF of B − I4 and B − 2I4. By the

RREFs, we have r (B − I4) = 3, r (B − 2I4) = 3. Therefore

dim EB (1) = n (B − I4) = 4− r (B − I4) = 1

and

dim EB (2) = n (B − 2I4) = 4− r (B − 2I4) = 4− 3 = 1.

Now

dim EB (1) + dim EB (2) = 1 + 1 = 2 6= 4.

By Theorem Theorem 19.29, B is not diagonalizable.

Example 19.32. Determine if the matrixC in Example 19.13 is diagonalizable.Because

pC (x) = −3 + 4x+ 2x2 − 4x3 + x4 = (x− 3)(x− 1)2(x+ 1),

all the distinct eigenvalues are λ1 = 3, λ2 = 1 and λ3 = −1. We have
3∑
i=1

dim EC (λi) =
3∑
i=1

(4− r (C − λiI4))

= (4− 3) + (4− 2) + (4− 3) = 4.

By Theorem Theorem 19.29, C is diagonalizable.
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Example 19.33. Determine if the matrixE in Example 19.14 is diagonalizable.The
characteristic polynomial is pE (x) = −(x − 2)4(x + 1). The eigenvalues are
λ1 = 2 and λ2 = −1 and we have

dim EE (λ1) + dim EE (λ2) = (5− r (E − 2I4)) + (5− r (E + I5))

= (5− 3) + (5− 4) = 2 + 1 = 3 6= 5.

So E is not diagonalizable.

Example 19.34. Determine if the matrixH in Example 9 is diagonalizable.Because
pH (x) = x(x − 2)(x − 1)(x + 1)(x + 3), has 5 distinct eigenvalues, Theorem
Distinct Eigenvalues implies Diagonalizable implies that H is diagonalizable.

Example 19.35. Diagonalize C in Example 19.13 (see also Example 18). By the
computation in Example 18, C is diagonalizable. By the computation in Example

19.13, we have that



1
1
1
1


 is a basis for EC (3),



−1
1
0
0

 ,


0
0
−1
1


 is a basis

for EC (1),



−1
−1
1
1


 is a basis for EC (−1). By Theorem Theorem 19.29,

S =


1 −1 0 −1
1 1 0 −1
1 0 −1 1
1 0 1 1

 .
Then S−1CS = diag(3, 1, 1,−1).

Remark : Note that the invertibility of S is guaranteed by Theorem Theorem
19.29.

Example 19.36. Diagonalize H in Example 9 (see also Example 21).By the dis-
cussion of Example 21, H is diagonalizable. By the computation in Example 9,

1
−1
−2
−1
1

,


1
0
−1
−2
2

,


−1
2
2
0
1

,


1
0
0
−1
2

 and


−2
1
2
4
−2

 are bases for EH (2) , EH (1) , EH (0) , EH (−1)

21

https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=11&item=19.14
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=25&item=19.30
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=10&item=19.13
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=10&item=19.13
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=10&item=19.13
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=24&item=19.29
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=24&item=19.29
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec19.xml&slide=24&item=19.29


and EH (−3) respectively. By Theorem Theorem 19.29, let

S =


1 1 −1 1 −2
−1 0 2 0 1
−2 −1 2 0 2
−1 −2 0 −1 4
1 2 1 2 −2

 .
Then

S−1HS = diag(2, 1, 0,−1,−3).

Example 19.37. Determine if

J =

2 1 1
1 2 1
1 1 2


is diagonalizable. If it is diagonalizable, find S such that S−1JS is diagonal.

Step 1: pJ (x) = −x3 + 6x2 − 9x + 4 = −(x − 4)(x − 1)2. All the distinct
eigenvalues of J is λ1 = 4, λ2 = 1.

Step 2 :

J − 4I3
RREF−−−→

1 0 −1
0 1 −1
0 0 0

 .
dim EJ (4) = 3− r (J − 4I3) = 3− 2 = 1.

J − I3
RREF−−−→

1 1 1
0 0 0
0 0 0



dim EJ (1) = 3− r (J − I3) = 3− 1 = 2.

Now

dim EJ (4) + dim EJ (1) = 1 + 2 = 3.

By Theorem Theorem 19.29, J is diagonalizable.
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Step 3 :


11
1

 is a basis for EJ (4).


−11

0

 ,
−10

1

 is a basis for EJ (1).

By Theorem Theorem 19.29, we can take

S =

1 −1 −11 1 0
1 0 1

 .
Then

S−1JS = diag(4, 1, 1).

Example 19.38. Determine if

K =


−4 −4 0 −11 −2 −5
138 87 −6 248 44 122
−24 −16 2 −44 −8 −20
−62 −39 2 −110 −20 −54
−63 −39 3 −114 −19 −57
56 35 −2 101 18 51


is diagonalizable and if it is diagonalizable, find S such that S−1KS is diagonal.

Step 1: The characteristic polynomial is

pK (x) = det (K − xI6) = (x+ 1)(x− 1)2(x− 2)3.

The eigenvalues are λ1 = −1, λ2 = 1 and λ3 = 2.
Step 2 :

K + I4
RREF−−−→


1 0 0 0 0 1

9

0 1 0 0 0 −22
9

0 0 1 0 0 4
9

0 0 0 1 0 10
9

0 0 0 0 1 10
9

0 0 0 0 0 0

 ,

dim EK (−1) = n (K + I4) = 6− r (K + I4) = 6− 5 = 1.

A− I6
RREF−−−→


1 0 0 0 1

18
1
6

0 1 0 0 5
18
−13

6

0 0 1 0 2
9

2
3

0 0 0 1 1
18

7
6

0 0 0 0 0 0
0 0 0 0 0 0

 .
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dim EK (1) = n (K − I6) = 6− r (K − I6) = 6− 4 = 2.

K − 2I6
RREF−−−→


1 0 0 1

2
−1 −1

2

0 1 0 2 2 2
0 0 1 −3

2
−2 −7

2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


dim EK (2) = n (K − 2I6) = 6− r (K − 2I6) = 6− 3 = 3.

Because

dim EK (−1) + dim EK (1) + dim EK (2) = 1 + 2 + 3 = 6.

By Theorem Theorem 19.29, K is diagonalizable.
Step 3 : A basis for EK (−1) = N (K + I6) is


−1
22
−4
−10
−10
9




(we use the method in Lecture 8 Example 19.12 and multiply the result by 9 to
clear the denominator.) A basis for EK (1) = N (K − I6) is


−1
−5
−4
−1
18
0

 ,

−1
13
−4
−7
0
6




(Again, we use the method in Lecture 8 Example 19.12 and multiply the first
vector by 18 and the second vector by 6 to clear the denominators.)


−1
−4
3
2
0
0

 ,


1
−2
2
0
1
0

 ,


1
−4
7
0
0
2




.
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(Again, we use the method in Lecture 8 Example 19.12 and multiply the first and
the third vector by 2 to clear the denominators.) So we can take

S =


−1 −1 −1 1 1 −1
22 13 −5 −4 −2 −4
−4 −4 −4 7 2 3
−10 −7 −1 0 0 2
−10 0 18 0 1 0
9 6 0 2 0 0

 .
Then

S−1AS = diag(−1, 1, 1, 2, 2, 2).
Example 19.39. Determine if

J =

2 1 1
1 2 1
1 1 2

 , L =

−8 6 6
−9 7 6
−9 6 7


are similar. If they are similar, Find R such that R−1JR = L.

The characteristic polynomials

pJ (x) = −(−4 + x)(−1 + x)2 = pL (x) .

(If the characteristic polynomials are different, J and L are not similar, end of the
story.)

In Example 19.37, we know that J is diagonalizable. Following the same
procedure as before, we can show that L is diagonalizable (Exercise).

We have:

Q =

1 2 2
1 3 0
1 0 3


Q−1LQ = diag(4, 1, 1).

So L is similar to diag(4, 1, 1) which in turns similar to J . So J is similar to L
(Theorem Similarity is an Equivalence Relation). In fact:

S−1JS = Q−1LQ

(SQ−1)−1J(SQ−1) = L.

So we can take

R = SQ−1 =

−5 3 3
−2 5

3
4
3

−2 4
3

5
3

 .
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19.6 Powers of Matrices
Suppose s is a positive integer. Recall the notation

As = A · · ·A︸ ︷︷ ︸
s

Powers of a diagonal matrix are easy to compute. The case of a diagonalizable
matrix is only slightly more difficult. Suppose that A is similar to a diagonal
matrix D = diag(λ1, . . . , λn). Let S be an invertible matrix such that

S−1AS = D.

Then

A = SDS−1.

As = SDS−1SDS−1 · · ·SDS−1︸ ︷︷ ︸
s

= S D · · ·D︸ ︷︷ ︸
s

S−1 = SDsS−1

= S diag(λs1, . . . , λ
s
n)S

−1.

Example 19.40. Let s be a positive integer and

A =

[
1 3
4 2

]
.

We want to find a closed formula for As. The characteristic polynomial of A is

pA (x) = det (A− xI2) = (1− x)(2− x)− 12 = x2 − 3x− 10 = (x+ 2)(x− 5).

For λ = −2

A+ 2I2 =

[
3 3
4 4

]
RREF−−−→

[
1 1
0 0

]
.

So {[
1
−1

]}
is a basis for EA (−2). For λ = 5

A− 5I2 =

[
−4 3
4 −3

]
RREF−−−→

[
1 −3

4

0 0

]
.
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So {[
3
4

]}
is a basis for EA (5). Let

S =

[
1 3
−1 4

]
.

Then

S−1AS = diag(−2, 5)
so that

As = S diag((−2)s, 5s)S−1

=

[
1 3
−1 4

] [
(−2)s 0
0 5s

] [
4
7
−3

7
1
7

1
7

]
=

[
1
7
(−1)s2s+2 + 3×5s

7
1
7
(−3)(−2)s + 3×5s

7

−1
7
(−1)s2s+2 + 4×5s

7
3(−2)s

7
+ 4×5s

7

]
.

Example 19.41. High power of a diagonalizable matrix
Suppose that

A =


19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28

 .
We wish to compute A20. Normally this would require 19 matrix multiplications.
But since A is diagonalizable, we can simplify the computations substantially.

First, we diagonalize A. With

S =


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0

 ,
we find

D = S−1AS

=


−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1




19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28




1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0



=


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1

 .

27



Using this, we compute

A20 = SD20S−1 = S


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1


20

S−1

= S


(−1)20 0 0 0

0 (0)20 0 0
0 0 (2)20 0
0 0 0 (1)20

S−1

=


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0



1 0 0 0
0 0 0 0
0 0 1048576 0
0 0 0 1



−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1



=


6291451 2 2097148 4194297
−9437175 −5 −3145719 −6291441
9437175 −2 3145728 6291453
−12582900 −2 −4194298 −8388596

 .
Generally

As = SDsS−1 =


1− 6(−1)s + 3 2s+1 1 + (−1)s −1− 3(−1)s + 2s+1 −1− 6(−1)s + 2s+2

−3 + 12(−1)s − 9 2s −3− 2(−1)s 3 + 6(−1)s − 3 2s 3 + 12(−1)s − 3 2s+1

−3− 6(−1)s + 9 2s −3 + (−1)s 3− 3(−1)s + 3 2s 3− 6(−1)s + 3 2s+1

12(−1)s − 3 2s+2 −2(−1)s 6(−1)s − 2s+2 12(−1)s − 2s+3

 .

19.7 Summary
In below A always denote a square matrix of size n

1. If x 6= 0 andAx = λx, then x is called an eigenvector ofAwith eigenvalue
λ.

2. pA(x) = det(A− xIn) is called the characteristic function of A.

(a) It is a polynomial of degree n with leading coefficient (−1)n.

(b) λ is an eigenvalue if and only if pA(λ) = 0, i.e., λ is a root of pA(x).

3. EA (λ): eigenspace of A for an eigenvalue λ.

28



(a) It is the set of of all eigenvectors of A for λ, together with the zero
vector, i.e.

Eλ (A) = {x ∈ Rn |Ax = λx} .

(b) Eλ (A) = N (A− λIn).
(c) Eλ (A) is a subspace of Rn.

4. αA (λ): algebraic multiplicity. The power of (x − λ) in the factorization
of pA(x).

5. γA (λ): geometric multiplicity. It is dim EA (λ) = n (A− λIn).

6. Basic properties. Suppose λ is an eigenvalue of A and x is an eigenvector
of A with eigenvalue λ.

(a) A is invertible if and only if λ = 0 is not an eigenvalue.

(b) For positive integer s, x is an eigenvector of As with eigenvalue λs.

(c) If λ 6= 0, x is an eigenvector of A−1 with eigenvalue λ−1.

(d) λ is an eigenvector of At (but x may not be an eigenvector of A)

7. Computational questions

(a) Find all the eigenvalues of A: find all the roots of pA(x).

(b) Find EA (λ): find N (A− λIn), this can be done by finding the RREF
of A− λIn.

(c) Find αA (λ): Find the power of x− λ in the factorization of pA(x).

(d) Find a basis for EA (λ): again, this is same as finding basis ofN (A− λIn).
This can be done by A− λIn

RREF−−−→ B and use the standard method in
finding basis (see Lecture 8 Theorem 4, Example 19.12).

(e) Find γA (λ): same as finding n (A− λIn) = n−r (A− λIn). Suppose
A−λIn

RREF−−−→ B. Then γA (λ) = n−r (B) = n− number of pivot columns of B.
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