
Math 1030 Chapter 13

Reference.

• Beezer, Ver 3.5 Section LDS (print version p105 - p113)

• Strang, Sect 2.3

Exercise

• Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf Section LI (p.48-51) (Replace C by R in the fol-
lowing questions) C20, C40, C50, C51, C52, C55, C70, M10, T40.

• Strang, Sect 2.3

13.1 Linearly Dependent Sets and Spans
If we use a linearly dependent set to construct a span, then we can always create
the same infinite set by starting with a set that is one vector smaller in size. We
will illustrate this behaviour in Example 13.2. However, this will not be possible
if we build a span from a linearly independent set. So, in a certain sense, using a
linearly independent set to formulate a span is the best possible way – there are
no any extra vectors being used to build up all the necessary linear combinations.
OK, here is the theorem, and then the example.

Theorem 13.1 (Dependency in Linearly Dependent Sets). Suppose that S =
{u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly dependent set if
and only if there is an index t, 1 ≤ t ≤ n, such that ut is a linear combination of
the vectors u1, u2, u3, . . . , ut−1, ut+1, . . . , un.

Proof. (⇒) Suppose that S is linearly dependent. Then there exists a nontrivial
relation of linear dependence (Lecture 12 Definition 1). That is, there are scalars,
αi, 1 ≤ i ≤ n, not all of which are zero, such that

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.
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Suppose that αt is nonzero. Then,

ut =
−1
αt

(−αtut)

=
−1
αt

(α1u1 + · · ·+ αt−1ut−1 + αt+1ut+1 + · · ·+ αnun)

=
−α1

αt
u1 + · · ·+

−αt−1
αt

ut−1 +
−αt+1

αt
ut+1 + · · ·+

−αn
αt

un.

Since αi

αt
is again a scalar, we have expressed ut as a linear combination of the

other elements of S.
(⇐) Assume that the vector ut is a linear combination of the other vectors in

S. Write such a linear combination as

ut = β1u1 + β2u2 + · · ·+ βt−1ut−1 + βt+1ut+1 + · · ·+ βnun.

Then we have

β1u1 + · · ·+ βt−1ut−1 + (−1)ut + βt+1ut+1 + · · ·+ βnun

= ut + (−1)ut
= (1 + (−1))ut
= 0ut

= 0.

So the scalars β1, β2, β3, . . . , βt−1, βt = −1, βt+1, . . . , βn provide a nontrivial
relation of linear dependence of the vectors in S, thus establishing that S is a
linearly dependent set.

This theorem can be used, sometimes repeatedly, to whittle down the size of
a set of vectors used in a span construction. In the next example we will examine
some of the subtleties.

Example 13.2. Reducing the generating set of a span in R5

Consider the following set of n = 4 vectors in R5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,

2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,

4
1
2
1
6


 .

Define V = 〈R〉.
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We form a 5 × 4 matrix, D, and row-reduce it to understand the solutions to
the homogeneous system LS(D,0):

D =


1 2 0 4
2 1 −7 1
−1 3 6 2
3 1 −11 1
2 2 −2 6

 RREF−−−→


1 0 0 4

0 1 0 0

0 0 1 1
0 0 0 0
0 0 0 0

 .

We can find infinitely many solutions to the system LS(D,0), most of which are
nontrivial. Choose any nontrivial solution to build a nontrivial relation of linear
dependence on R. Let us begin with x4 = 1, to find the solution

−4
0
−1
1

 .
The corresponding relation of linear dependence is

(−4)v1 + 0v2 + (−1)v3 + 1v4 = 0.

The theorem above guarantees that we can solve this relation of linear dependence
for some vector in R, but the choice of which one is up to us. Notice however that
v2 has a zero coefficient. In this case, we cannot choose to solve for v2. Maybe
some other relation of linear dependence would produce a nonzero coefficient for
v2 if we just had to solve for this vector. Unfortunately, this example has been
engineered to always produce a zero coefficient here, as you can see from solving
the homogeneous system. Every solution has x2 = 0!

OK, if we are convinced that we cannot solve for v2, let us instead solve for
v3:

v3 = (−4)v1 + 0v2 + 1v4 = (−4)v1 + 1v4

We claim that this particular equation will allow us to write

V = 〈R〉 = 〈{v1, v2, v3, v4}〉 = 〈{v1, v2, v4}〉 ,

in essence declaring v3 as surplus for the task of building V as a span of R. This
claim is an equality of two sets. Let R′ = {v1, v2, v4} and V ′ = 〈R′〉. We want
to show that V = V ′.

First show that V ′ ⊆ V . Since every vector of R′ is in R, any vector we can
construct in V ′ as a linear combination of vectors from R′ can also be constructed

3



as a vector in V by the same linear combination of the same vectors in R. That
was easy, now turn it around.

Next show that V ⊆ V ′. Choose any v from V . So there are scalars α1, α2, α3, α4

such that

v = α1v1 + α2v2 + α3v3 + α4v4

= α1v1 + α2v2 + α3 ((−4)v1 + 1v4) + α4v4

= α1v1 + α2v2 + ((−4α3)v1 + α3v4) + α4v4

= (α1 − 4α3)v1 + α2v2 + (α3 + α4)v4.

This equation says that v can be written as a linear combination of the vectors in
R′ and hence qualifies for membership in V ′. So V ⊆ V ′ and we have established
that V = V ′.

If R′ was also linearly dependent (in fact, it is not), we could reduce the set R′

even further. Notice that we could have chosen to eliminate any one of v1, v3 or
v4, but somehow v2 is essential to the creation of V since it cannot be replaced by
any linear combination of v1, v3 or v4.

13.2 Casting Out Vectors
In Example 13.2 we used four vectors to create a span. With a relation of linear
dependence in hand, we were able to toss out one of these four vectors and create
the same span from a subset of just three of the original set of four vectors. We did
have to take some care as to just which vector we tossed out. In the next example,
we will be more methodical about just how we choose to eliminate vectors from
a linearly dependent set while preserving a span. In Rm, for i = 1, 2, . . . ,m, let:

~e1 =


1
0
0
...
0

 , ~e2 =

0
1
0
...
0

 , · · · , ~em =


0
0
0
...
1

 .
That is:

[~em]j =

{
1 if j = m;

0 otherwise.

Observe that every vector ~v =


v1
v2
...
vm

 ∈ Rm lies in the span of {~e1, ~e2, . . . , ~em},

since:
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
v1
v2
...
vm

 = v1


1
0
0
...
0

+ v2


0
1
0
...
0

+ · · ·+ vm


0
0
0
...
1

 .
Moreover, for any positive integer r < n, and any vector ~v ∈ Rm of the form:

~v =



v1
v2
...
vr
0
0
...
0


,

we have:
~v ∈ 〈{~e1, ~e2, . . . , ~er}〉 .

Exercise. Notice also that the vectors: ~e1, ~e2, . . . , ~er are linearly independent.

Example 13.3. Casting out vectors Consider now the following set S of n = 7
vectors in R4:

S =




1
2
0
−1

 ,


4
8
0
−4

 ,


0
−1
2
2

 ,

−1
3
−3
4

 ,


0
9
−4
8

 ,


7
−13
12
−31

 ,

−9
7
−8
37


 .

By More Vectors than Size implies Linear Dependence, the set S is obviously
linearly dependent, since we have n = 7 vectors in R4. So, we can slim down S
some and express the subspace 〈S〉 as the span of a smaller set of vectors.

We would like to know:
What’s the smallest subset S ′ of S such that 〈S ′〉 = 〈S〉?
Consider the matrix A whose columns consist of the vectors in S:

A = [A1|A2|A3| . . . |A7] =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
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The matrix A is row-equivalent to the RREF matrix:

B =


1 4 0 0 2 1 −3
0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0

 .
In this case, the rank (i.e. the number of non-zero rows) of B is r = 3. The pivot
columns of B are B1,B3,B4.

1. A1,A3,A4 are linearly independent. The pivot columns of B are pre-
cisely the vectors:

B1 = ~e1, B3 = ~e2, B4 = ~e3.

In particular, they are linearly independent.

We claim that the corresponding columns of A (namely A1,A3,A4) are
also linearly independent. The reason is as follows:

The augmented matrix:

B′ = [B1|B3|B4] =


1 0 0
0 1 0
0 0 1
0 0 0


is an RREF matrix which is row-equivalent to the augmented matrix:

A′ = [A1|A3|A4].

It now follows from Linearly Independent Vectors, r and n that the columns
of A′ are linearly independent.

2. The span of S is equal to 〈{A1,A3,A4}〉 . First, notice that every column
ofB is a vector in R4. Moreover, since the rank ofB is r = 3, the 4-th entry
of each such column vector is zero.

By the observations made earlier, we have:

Bi ∈

〈
B1︸︷︷︸
~e1

, B3︸︷︷︸
~e2

, B4︸︷︷︸
~e3

〉

for i = 1, 2, . . . , 7.
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In other words, for any 1 ≤ i ≤ 7, the vector equation:

[B1|B3|B4]~x = Bi

has a solution ~x ∈ R3.

On the other hand, the augmented matrix [B1|B3|B4|Bi] is row-equivalent
to [A1|A3|A4|Ai], which implies that any solution to [B1|B3|B4]~x = Bi is
also a solution to [A1|A3|A4]~x = Ai.

For example, we have:

[B1|B3|B4]

21
2

 = 2B1 +B3 + 2B4 =


2
1
2
0

 = B5

which implies that:

~x =

21
2


is a solution to [B1|B3|B4]~x = B5 and hence also a solution to [A1|A3|A4]~x =
A5. Indeed:

[A1|A3|A4]

21
2

 = 2A1 +A3 + 2A4 =


0
9
−4
8

 = A5

In particular, A5 lies in the span of A1,A3,A4.

It now follows, since every Bi is in the span of the B1,B3,B4, that every
Ai lies in the span of A1,A3,A4.

Hence, the span of S is equal to the span of the vectors:

A1,A3,A4.

The previous example motivates the following fundamental theorem:

Theorem 13.4 (Basis of a Span). Suppose that S = {v1, v2, v3, . . . , vn} is a
set of column vectors. Define W = 〈S〉 and let A be the matrix whose columns
are the vectors from S. Let B be the reduced row-echelon form of A, with D =
{d1, d2, d3, . . . , dr} the set of indices for the pivot columns of B. Then

1. T = {vd1 , vd2 , vd3 , . . . vdr} is a linearly independent set.
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2. W = 〈T 〉.

Proof. Try to understand the example and skip the proof for now
To prove that T is linearly independent, begin with a relation of linear depen-

dence on T ,

0 = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr .

We will try to conclude that the only possibility for the scalars αi is that they are all
zero. Denote the non-pivot columns of B by F = {f1, f2, f3, . . . , fn−r}. Then
we can preserve the equality by adding a big fat zero to the linear combination:

0 = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr + 0vf1 + 0vf2 + 0vf3 + . . .+ 0vfn−r .

The scalars in this linear combination (suitably reordered) are a solution to the
homogeneous systemLS(A,0). Notice that this is the solution obtained by setting
each free variable to zero. In the case of a homogeneous system, we see that if all
of the free variables are set to zero, then the resulting solution vector is trivial (all
zeros). So it must be that αi = 0, 1 ≤ i ≤ r. This implies, by the definition of
linear independence, that T is a linearly independent set.

The second conclusion of this theorem is an equality of sets. Since T is a
subset of S, any linear combination of elements of the set T can also be viewed
as a linear combination of elements of the set S. So 〈T 〉 ⊆ 〈S〉 = W . It remains
to prove that W = 〈S〉 ⊆ 〈T 〉.

For each k, 1 ≤ k ≤ n− r, form a solution x to LS(A,0) by setting the free
variables as follows:

xf1 = 0 xf2 = 0 xf3 = 0 . . .xfk = 1 . . . xfn−r = 0.

The remainder of this solution vector is given by

xd1 = − [B]1,fk xd2 = − [B]2,fk xd3 = − [B]3,fk . . .xdr = − [B]r,fk .

From this solution, we obtain a relation of linear dependence on the columns of
A,

− [B]1,fk vd1 − [B]2,fk vd2 − [B]3,fk vd3 − . . .− [B]r,fk vdr + 1vfk = 0,

which can be arranged to the equality

vfk = [B]1,fk vd1 + [B]2,fk vd2 + [B]3,fk vd3 + . . .+ [B]r,fk vdr .

Now, suppose we take an arbitrary element w of W = 〈S〉 and write it as a linear
combination of the elements of S, but with the terms organized according to the
indices in D and F :

w = α1vd1 + α2vd2 + . . .+ αrvdr + β1vf1 + β2vf2 + . . .+ βn−rvfn−r
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From the above, we can replace each vfj by a linear combination of the vdi:

w = α1vd1 + α2vd2 + . . .+ αrvdr+

β1

(
[B]1,f1 vd1 + [B]2,f1 vd2 + [B]3,f1 vd3 + . . .+ [B]r,f1 vdr

)
+

β2

(
[B]1,f2 vd1 + [B]2,f2 vd2 + [B]3,f2 vd3 + . . .+ [B]r,f2 vdr

)
+

...

βn−r

(
[B]1,fn−r

vd1 + [B]2,fn−r
vd2 + [B]3,fn−r

vd3 + . . .+ [B]r,fn−r
vdr

)
=
(
α1 + β1 [B]1,f1 + β2 [B]1,f2 + β3 [B]1,f3 + . . .+ βn−r [B]1,fn−r

)
vd1+(

α2 + β1 [B]2,f1 + β2 [B]2,f2 + β3 [B]2,f3 + . . .+ βn−r [B]2,fn−r

)
vd2+

...(
αr + β1 [B]r,f1 + β2 [B]r,f2 + β3 [B]r,f3 + . . .+ βn−r [B]r,fn−r

)
vdr .

This mess expresses the vector w as a linear combination of the vectors in

T = {vd1 , vd2 , vd3 , . . . vdr} ,

thus saying that w ∈ 〈T 〉. Therefore, W = 〈S〉 ⊆ 〈T 〉.

Here is a straightforward application of Theorem Basis of a Span.

Example 13.5. Reducing the generating set of a span in R4

Begin with a set of five vectors in R4,

S =



1
1
2
1

 ,

2
2
4
2

 ,


2
0
−1
1

 ,


7
1
−1
4

 ,

0
2
5
1




and let W = 〈S〉.
To arrive at a (smaller) linearly independent set, follow the procedure de-

scribed in Theorem Basis of a Span. Place the vectors from S into a matrix as
columns, and row-reduce:

1 2 2 7 0
1 2 0 1 2
2 4 −1 −1 5
1 2 1 4 1

 RREF−−−→


1 2 0 1 2

0 0 1 3 −1
0 0 0 0 0
0 0 0 0 0

 .
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Columns 1 and 3 are the pivot columns (D = {1, 3}). So the set

T =



1
1
2
1

 ,


2
0
−1
1




is linearly independent and 〈T 〉 = 〈S〉 = W . Boom!
Since the reduced row-echelon form of a matrix is unique, the procedure of

Theorem Basis of a Span leads us to a unique set T . However, there is a wide
variety of possibilities for sets T that are linearly independent and which can be
employed in a span to create W . Without proof, we list two other possibilities:

T ′ =



2
2
4
2

 ,


2
0
−1
1




T ∗ =



3
1
1
2

 ,

−1
1
3
0


 .

Can you prove that T ′ and T ∗ are linearly independent sets and that W = 〈S〉 =
〈T ′〉 = 〈T ∗〉?
Example 13.6. Reworking elements of a span

Begin with a set of five vectors in R4

R =



2
1
3
2

 ,

−1
1
0
1

 ,

−8
−1
−9
−4

 ,


3
1
−1
−2

 ,

−10
−1
−1
4


 .

It is easy to create elements of X = 〈R〉 – we will create one at random,

y = 6


2
1
3
2

+ (−7)


−1
1
0
1

+ 1


−8
−1
−9
−4

+ 6


3
1
−1
−2

+ 2


−10
−1
−1
4

 =


9
2
1
−3

 .
We know we can replace R by a smaller set, that will create the same span. Here
goes: 

2 −1 −8 3 −10
1 1 −1 1 −1
3 0 −9 −1 −1
2 1 −4 −2 4

 RREF−−−→


1 0 −3 0 −1
0 1 2 0 2

0 0 0 1 −2
0 0 0 0 0

 .
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So, if we collect the first, second and fourth vectors from R,

P =



2
1
3
2

 ,

−1
1
0
1

 ,


3
1
−1
−2




then P is linearly independent and 〈P 〉 = 〈R〉 = X by Theorem Basis of a Span.
Since we built y as an element of 〈R〉 it must also be an element of 〈P 〉. Can
we write y as a linear combination of just the three vectors in P ? The answer
is, of course, yes. But let us compute an explicit linear combination just for fun.
We can get such a linear combination by solving a system of equations with the
column vectors of R as the columns of a coefficient matrix, and y as the vector of
constants.

We employ an augmented matrix to solve this system:
2 −1 3 9
1 1 1 2
3 0 −1 1
2 1 −2 −3

 RREF−−−→


1 0 0 1

0 1 0 −1
0 0 1 2
0 0 0 0

 .
So we see, as expected, that

1


2
1
3
2

+ (−1)


−1
1
0
1

+ 2


3
1
−1
−2

 =


9
2
1
−3

 = y.

A key feature of this example is that the linear combination that expresses y as
a linear combination of the vectors in P is unique. This is a consequence of the
linear independence of P . The linearly independent set P is smaller than R, but
still just (barely) big enough to create elements of the set X = 〈R〉. There are
many, many ways to write y as a linear combination of the five vectors in R (the
appropriate system of equations to verify this claim yields two free variables in
the description of the solution set), yet there is precisely one way to write y as a
linear combination of the three vectors in P .

13.3 Uniqueness of RREF
Math Major only. You can skip this section. Similar concept appears in the
classworks.
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Example 13.7. Entries of RREF B gives relationship of columns of A
Let

A =

1 2 1 8 1 17
1 2 2 13 3 37
1 2 0 3 −2 −10

 .
Then A can be row reduced to

B =

1 2 0 3 0 4
0 0 1 5 0 6
0 0 0 0 1 7

 .
Let Ai (resp. Bi) be the i-th column of A (resp. B) for i = 1, . . . , 6. By the
equivalence of system of linear equation LS(A,0) and LS(B,0), we have

x1A1 + x2A2 + · · ·+ x6A6 = 0 (13.1)

if and only if

x1B1 + x2B2 + · · ·+ x6B6 = 0. (13.2)

Step 1 First of all, if (x1, x2, x3, x4, x5, x6) = (x1, 0, 0, 0, 0, 0) is a solution of
(13.2), then

x1B1 = 0.

So x1 is zero. This is equivalent to

x1A1 = 0.

It has only the trivial solution, i.e. {A1} is linearly independent. Hence d1 = 1 is
a pivot column.

Step 2 Let’s move to x2. Suppose that (x1, x2, x3, x4, x5, x6) = (x1, x2, 0, 0, 0, 0).
Then

x1B1 + x2B1 = 0

has nontrivial solution. Say (x1, x2) = (−2, 1).
These can also be seen as

−2A1 +A2 = 0

12



or equivalently

A2 = 2A1.

Step 3 Consider x3. Let (x1, x2, x3, x4, x5, x6) = (x1, 0, x3, 0, 0, 0). Then

x1B1 + x3B3 = 0

has only trivial solution. Equivalently {A1,A3} is linearly independent.Column
3 of B is a pivot column.

Step 4 Consder

B4 = 3B1 + 5B3,

or equivalently

A4 = 3A1 + 5A3.

The relation of columns of A gives the entries of the column 4 of B.
Step 5 B5 is not in span of B1 and B3. Equivalently A5 is not in span of A1

and A3. Column 5 of B is a pivot column.
Step 6 Consider

B6 = 4B1 + 6B3 + 7B5.

Equivalently

A6 = 4A1 + 6A3 + 7A5.

The relation of columns of A gives the entries of the column 6 of B.

Example 13.8. Relationship of columns of A determine entries of B
Row reduce

A =


1 1 3 1 0 0 4
2 1 5 1 1 2 7
1 −1 1 2 1 −3 10
1 3 5 1 −1 1 1


to a RREF B by the above technique. Let Ai (resp. Bi) be the i-th column of A
(resp. B) for i = 1, . . . , 7.

Step 1 A1 is nonzero column. So the index d1 = 1 corresponds to a pivot
column. We have

B1 =


1
0
0
0

 .
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Step 2 A2 is not in 〈{Ad1}〉. So the index d2 = 2 corresponds to a pivot
column. We have

B2 =


0
1
0
0

 .
Step 3 Consider

A3 = 2Ad1 +Ad2 .

So we have

B3 = 2Bd1 +Bd2 =


2
1
0
0

 .
Step 4 A4 is not in 〈{Ad1 ,Ad2}〉.
So the index d3 = 4 corresponds to a pivot column. We have

B4 =


0
0
1
0

 .
Step 5 A5 is not in 〈{Ad1 ,Ad3 ,Ad3}〉.
So the index d4 = 5 corresponds to a pivot column. We have

B5 =


0
0
0
1

 .
Step 6 Consider

A6 = Ad1 +Ad2 − 2Ad3 +Ad4 .

So, we have

B6 = Bd1 +Bd2 − 2Bd3 +Bd4 =


1
1
−2
1


14



Step 7 Consider

A7 = 2Ad1 −Ad2 + 3Ad3 +Ad4 .

So, we have

B7 = Bd1 +Bd2 − 2Bd3 +Bd4 =


2
−1
3
1


Hence the RREF of A is 

1 0 2 0 0 1 2
0 1 1 0 0 1 −1
0 0 0 1 0 −2 3
0 0 0 0 1 1 1

 .
Important remark: from the above computation, the entries ofB are uniquely

determined by A.
So the RREF B is unique.
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