
Math 1030 Chapter 10

Reference.
Beezer, Ver 3.5 Section LC (print version p65 - p81)Strang: Section 2.3
Exercise.
Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-

3.50-solution-manual.pdf
Section LC (p.32-33) C40, C41, M10, M11

10.1 Linear Combinations
Definition 10.1 (Linear Combination of Column Vectors). Given n vectors u1, u2, u3, . . . , un

in Rm and n scalars α1, α2, α3, . . . , αn, their linear combination is the vector:

α1u1 + α2u2 + α3u3 + · · ·+ αnun

in Rm.

Example 10.2. Two linear combinations in R6

Suppose that:

α1 = 1 α2 = −4 α3 = 2 α4 = −1

and

u1 =


2
4
−3
1
2
9

 u2 =


6
3
0
−2
1
4

 u3 =


−5
2
1
1
−3
0

 u4 =


3
2
−5
7
1
3

 .

The resulting linear combination is:
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α1u1 + α2u2 + α3u3 + α4u4

= (1)


2
4
−3
1
2
9

+ (−4)


6
3
0
−2
1
4

+ (2)


−5
2
1
1
−3
0

+ (−1)


3
2
−5
7
1
3



=


2
4
−3
1
2
9

+


−24
−12
0
8
−4
−16

+


−10
4
2
2
−6
0

+


−3
−2
5
−7
−1
−3

=

−35
−6
4
4
−9
−10


A different linear combination, but with the same set of vectors, can be formed

with different scalars. Taking

β1 = 3 β2 = 0 β3 = 5 β4 = −1

we can form the linear combination:

β1u1 + β2u2 + β3u3 + β4u4

= (3)


2
4
−3
1
2
9

+ (0)


6
3
0
−2
1
4

+ (5)


−5
2
1
1
−3
0

+ (−1)


3
2
−5
7
1
3



=


6
12
−9
3
6
27

+


0
0
0
0
0
0

+


−25
10
5
5
−15
0

+


−3
−2
5
−7
−1
−3

=

−22
20
1
1
−10
24

 .

Notice how we could keep our set of vectors fixed but use a different set of
scalars to construct different vectors. Can you create the following vector w with
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a suitable choice of four scalars?

w =


13
15
5
−17
2
25


Going further, can you create any possible vector from R6 by choosing the proper
scalars?

Example 10.3. The system of linear equation:

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

or equivalently −7x1 − 6x2 − 12x3
5x1 + 5x2 + 7x3

x1 + 4x3

 =

−3324
5

 ,
can be rewritten as:

−7x15x1
x1

+

−6x25x2
0x2

+

−12x37x3
4x3

 =

−3324
5


or:

x1

−75
1

+ x2

−65
0

+ x3

−127
4

 =

−3324
5

 .
The solution is:

x1 = −3 x2 = 5 x3 = 2.

So, in the context of this example, we can express the fact that these values of the
variables are a solution by writing a linear combination:

(−3)

−75
1

+ (5)

−65
0

+ (2)

−127
4

 =

−3324
5


3



Furthermore, these are the only three scalars that will accomplish this equality,
since they come from a unique solution.

Notice how the three vectors in this example are the columns of the coefficient
matrix of the system of equations. This is our first hint of the important interplay
between the vectors that form the columns of a matrix, and the matrix itself.

Example 10.4. The system of linear equations

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

can be written as:

x1 − x2 + 2x3
2x1 + x2 + x3

x1 + x2

 =

18
5

 .
This vector equation is equivalent to:

x1

12
1

+ x2

−11
1

+ x3

21
0

 =

18
5

 .
Row-reducing the augmented matrix for the system leads to the conclusion

that the system is consistent and has free variables, hence infinitely many solu-
tions. So for example, the two solutions:

x1 = 2 x2 = 3 x3 = 1

x1 = 3 x2 = 2 x3 = 0

can be used together to say that:

(2)

12
1

+ (3)

−11
1

+ (1)

21
0

 =

18
5

 = (3)

12
1

+ (2)

−11
1

+ (0)

21
0

 .
Ignore the middle of this equation, and move all the terms to the left-hand side:

(2)

12
1

+ (3)

−11
1

+ (1)

21
0

+ (−3)

12
1

+ (−2)

−11
1

+ (−0)

21
0

 =

00
0

 .
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Regrouping gives:

(−1)

12
1

+ (1)

−11
1

+ (1)

21
0

 =

00
0

 .
Notice that the three vectors on the left hand side are the columns of the coef-

ficient matrix for the system of equations. This equality says that there is a linear
combination of those columns that equals the vector of all zeros. Give it some
thought, but this says that:

x1 = −1 x2 = 1 x3 = 1

is a nontrivial solution to the homogeneous system of equations with the coef-
ficient matrix of the original system. In particular, this demonstrates that this
coefficient matrix is singular.

Theorem 10.5 (Solutions to Linear Systems are Linear Combinations). Denote
the columns of them×nmatrixA as vectors A1, A2, A3, . . . , An. Then x ∈ Rn

is a solution to the linear system of equations LS(A,b) if and only if b is equal
to the linear combination of the columns of A formed with the entries of x,

[x]1A1 + [x]2A2 + [x]3A3 + · · ·+ [x]nAn = b

Proof. If x ∈ Rn is a solution of LS(A,b), then

b = Ax = [x]1A1 + [x]2A2 + [x]3A3 + · · ·+ [x]nAn.

Hence b is a linear combination of the columns of A.
Conversely, if b is a linear combinations of the columns of A, say:

b = [x]1A1 + [x]2A2 + [x]3A3 + · · ·+ [x]nAn,

then

b = Ax.

So x is a solution of LS(A,b).

Computational question: Determine if u is a linear combination of v1, . . . ,vn.
That is, determine whether or not the system of linear equations:

x1v1 + · · ·+ xnvn = u

has a solution. The augmented matrix is:

[v1| · · · |vn|u].

Then we can solve the system of linear questions by the technique you learned.
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Example 10.6. Let

u =

11
3

 , v1 =

12
3

 ,v2 =

−11
0

 ,v3 =

21
3

 ,v4 =

−10
1

 .
1. Determine if u is a linear combination of {v1,v2,v3}. If yes, find the linear

combination.

2. Determine if u is a linear combination of {v1,v2,v3,v4}. If yes, find the
linear combination.

Solution. 1. To determine if u is a linear combination of {v1,v2,v3}, we need
to solve

x1v1 + x2v2 + x3v3 = u,

i.e.

x1 − x2 + 2x3 = 1

2x1 + x+ 2 + x3 = 1

3x1 + 3x3 = 3.

The augmented matrix is 1 −1 2 1
2 1 1 1
3 0 3 3

 RREF−−−→

 1 0 1 0
0 1 −1 0
0 0 0 1

 .
Because the last column of the RREF is a pivot column, the system of
linear equations is not solvable. Hence u is not a linear combination of
{v1,v2,v3}.

2. To determine if u is a linear combination of {v1,v2,v3,v4}, we need to
solve

x1v1 + x2v2 + x3v3 + x4v4 = u.

The augmented matrix is:

[v1|v2|v3|v4|u] =

 1 −1 2 −1 1
2 1 1 0 1
3 0 3 1 3

 .
Using the standard method, we find one solution (there are infinitely many):

x1 =
5

6
x2 = −

2

3
x3 = 0 x4 =

1

2
i.e.

u =
5

6
v1 −

2

3
v2 +

1

2
v4.
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10.2 Vector Form of Solution Sets
Example 10.7. Consider the linear system

2x1 + x2 + 7x3 − 7x4 = 8

−3x1 + 4x2 − 5x3 − 6x4 = −12
x1 + x2 + 4x3 − 5x4 = 4.

Row-reducing the augmented matrix yields 1 0 3 −2 4

0 1 1 −3 0
0 0 0 0 0


from which we see that there are r = 2 pivot columns. Also, D = {1, 2}, so
that the dependent variables are x1 and x2, and F = {3, 4, 5}, so that the free
variables are x3 and x4. We will express a generic solution for the system by two
slightly different methods, though both arrive at the same conclusion.

Rearranging each equation represented in the row-reduced form of the aug-
mented matrix by solving for the dependent variable in each row yields the vector
equality, 

x1
x2
x3
x4

 =


4− 3x3 + 2x4
−x3 + 3x4

x3
x4



=


4
0
0
0

+


−3x3
−x3
x3
0

+


2x4
3x4
0
x4



=


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1

 .
We will develop the same linear combination a bit quicker, using three steps.

While the method above is instructive, the method below will be our preferred
approach.
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Step 1. Write the vector of variables as a fixed vector plus a linear combination
of n− r vectors, using the free variables as the scalars:

x =


x1
x2
x3
x4

 =

 + x3

 + x4

 
Step 2. Use 0’s and 1’s to ensure equality for the entries of the vectors with

indices in F (corresponding to the free variables):

x =


x1
x2
x3
x4

 =

0
0

+ x3

1
0

+ x4

0
1

 .
Step 3. For each dependent variable, use the augmented matrix to formulate an

equation expressing the dependent variable as a constant plus a linear combination
of the free variables. Convert this equation into entries of the vectors that ensure
equality for each dependent variable, one at a time.

x1 = 4− 3x3 + 2x4 ⇒ x =


x1
x2
x3
x4

 =


4

0
0

+ x3


−3

1
0

+ x4


2

0
1



x2 = 0− 1x3 + 3x4 ⇒ x =


x1
x2
x3
x4

 =


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1


While this form is useful for quickly creating solutions, it is even better be-

cause it tells us exactly what every solution looks like. We know the solution set
is infinite, which is pretty big, but now we can say that a solution is some multiple

of


−3
−1
1
0

 plus a multiple of


2
3
0
1

 plus the fixed vector


4
0
0
0

. Period. So it only

takes us three vectors to describe the entire infinite solution set, provided we also
agree on how to combine the three vectors into a linear combination.

Example 10.8. Consider a linear system of m = 5 equations in n = 7 variables,
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having the augmented matrix

A =


2 1 −1 −2 2 1 5 21
1 1 −3 1 1 1 2 −5
1 2 −8 5 1 1 −6 −15
3 3 −9 3 6 5 2 −24
−2 −1 1 2 1 1 −9 −30

 .
Row-reducing we obtain the matrix

B =


1 0 2 −3 0 0 9 15

0 1 −5 4 0 0 −8 −10
0 0 0 0 1 0 −6 11

0 0 0 0 0 1 7 −21
0 0 0 0 0 0 0 0


and we see that there are r = 4 pivot columns. Also, D = {1, 2, 5, 6} so the

dependent variables are x1, x2, x5, and x6. Similarly, F = {3, 4, 7, 8} and the
n− r = 3 free variables are x3, x4 and x7. We will express a generic solution for
the system by two different methods: both a decomposition and a construction.

Rearranging each equation represented in the row-reduced echelon form of
the augmented matrix by solving for the dependent variable in each row yields the
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vector equality

x1
x2
x3
x4
x5
x6
x7


=



15− 2x3 + 3x4 − 9x7
−10 + 5x3 − 4x4 + 8x7

x3
x4

11 + 6x7
−21− 7x7

x7


.

=



15
−10
0
0
11
−21
0


+



−2x3
5x3
x3
0
0
0
0


+



3x4
−4x4
0
x4
0
0
0


+



−9x7
8x7
0
0
6x7
−7x7
x7



=



15
−10
0
0
11
−21
0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1


.

We will now develop the same linear combination a bit quicker, using three
steps. While the method above is instructive, the method below will be our pre-
ferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combina-
tion of n− r vectors, using the free variables as the scalars:

x =



x1
x2
x3
x4
x5
x6
x7


=



+ x3



+ x4



+ x7




Step 2. Use 0’s and 1’s to ensure equality for the entries of the vectors with
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indices in F (corresponding to the free variables):

x =



x1
x2
x3
x4
x5
x6
x7


=


0
0

0


+ x3


1
0

0


+ x4


0
1

0


+ x7


0
0

1


Step 3. For each dependent variable, use the augmented matrix to formulate

an equation expressing the dependent variable as a constant plus multiples of the
free variables. Convert this equation into entries of the vectors that ensure equality
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for each dependent variable, one at a time.

x1 = 15− 2x3 + 3x4 − 9x7 ⇒

x =



x1
x2
x3
x4
x5
x6
x7


=



15

0
0

0


+ x3



−2

1
0

0


+ x4



3

0
1

0


+ x7



−9

0
0

1


x2 = −10 + 5x3 − 4x4 + 8x7 ⇒

x =



x1
x2
x3
x4
x5
x6
x7


=



15
−10
0
0

0


+ x3



−2
5
1
0

0


+ x4



3
−4
0
1

0


+ x7



−9
8
0
0

1


x5 = 11 + 6x7 ⇒

x =



x1
x2
x3
x4
x5
x6
x7


=



15
−10
0
0
11

0


+ x3



−2
5
1
0
0

0


+ x4



3
−4
0
1
0

0


+ x7



−9
8
0
0
6

1


x6 = −21− 7x7 ⇒

x =



x1
x2
x3
x4
x5
x6
x7


=



15
−10
0
0
11
−21
0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1


This final form of a typical solution is especially pleasing and useful. For

example, we can build solutions quickly by choosing values for our free variables,

12



and then compute a linear combination. For example

x3 = 2, x4 = −4, x7 = 3 ⇒

x =



x1
x2
x3
x4
x5
x6
x7


=



15
−10
0
0
11
−21
0


+ (2)



−2
5
1
0
0
0
0


+ (−4)



3
−4
0
1
0
0
0


+ (3)



−9
8
0
0
6
−7
1


=



−28
40
2
−4
29
−42
3


or perhaps,

x3 = 5, x4 = 2, x7 = 1 ⇒

x =



x1
x2
x3
x4
x5
x6
x7


=



15
−10
0
0
11
−21
0


+ (5)



−2
5
1
0
0
0
0


+ (2)



3
−4
0
1
0
0
0


+ (1)



−9
8
0
0
6
−7
1


=



2
15
5
2
17
−28
1


or even,

x3 = 0, x4 = 0, x7 = 0 ⇒

x =



x1
x2
x3
x4
x5
x6
x7


=



15
−10
0
0
11
−21
0


+ (0)



−2
5
1
0
0
0
0


+ (0)



3
−4
0
1
0
0
0


+ (0)



−9
8
0
0
6
−7
1


=



15
−10
0
0
11
−21
0


.

So we can compactly express all of the solutions to this linear system with just
4 fixed vectors, provided we agree how to combine them in a linear combinations
to create solution vectors.

Suppose you were told that the vector w below was a solution to this system of
equations. Could you turn the problem around and write w as a linear combination
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of the four vectors c, u1, u2, u3?

w =



100
−75
7
9
−37
35
−8


c =



15
−10
0
0
11
−21
0


u1 =



−2
5
1
0
0
0
0


u2 =



3
−4
0
1
0
0
0


u3 =



−9
8
0
0
6
−7
1


Theorem 10.9 (Vector Form of Solutions to Linear Systems). Suppose that [A|b]
is the augmented matrix for a consistent linear system LS(A,b) of m equa-
tions in n variables. Let B be a row-equivalent m × (n + 1) matrix in re-
duced row-echelon form. Suppose that B has r pivot columns, with indices D =
{d1, d2, d3, . . . , dr}, while the n − r non-pivot columns have indices in F =
{f1, f2, f3, . . . , fn−r, n+ 1}. Define vectors c, uj , 1 ≤ j ≤ n− r of size n by

[c]i =

{
0 if i ∈ F
[B]k,n+1 if i ∈ D, i = dk

[uj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

.

Then the set of solutions to the system of equations LS(A,b) is

S = {c+ α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r | α1, α2, α3, . . . , αn−r ∈ R.}

Proof. You can skip this proof for now, as long as you understand the exam-
ples First, the equation LS(A,b) is equivalent to the linear system of equations
that has the matrix B as its augmented matrix. So we need only show that S is
the solution set for the system with B as its augmented matrix. The conclusion of
this theorem is that the solution set is equal to the set S.

We begin by showing that every element of S is indeed a solution to the sys-
tem. Let α1, α2, α3, . . . , αn−r be one choice of the scalars used to describe ele-
ments of S. So an arbitrary element of S, which we will consider as a proposed
solution, is

x = c+ α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r.

When r+1 ≤ ` ≤ m, row ` of the matrix B is a zero row, so the equation rep-
resented by that row is always true, no matter which solution vector we propose.
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So concentrate on rows representing equations 1 ≤ ` ≤ r. We evaluate equation
` of the system represented by B with the proposed solution vector x and refer to
the value of the left-hand side of the equation as β`:

β` = [B]`1 [x]1 + [B]`2 [x]2 + [B]`3 [x]3 + · · ·+ [B]`n [x]n

Since [B]`di = 0 for all 1 ≤ i ≤ r, except that [B]`d` = 1, we see that β`
simplifies to

β` = [x]d` + [B]`f1 [x]f1 + [B]`f2 [x]f2 + [B]`f3 [x]f3 + · · ·+ [B]`fn−r
[x]fn−r

.

Notice that for 1 ≤ i ≤ n− r

[x]fi = [c]fi + α1 [u1]fi + α2 [u2]fi + · · ·+ αi [ui]fi + · · ·+ αn−r [un−r]fi
= 0 + α1(0) + α2(0) + · · ·+ αi(1) + · · ·+ αn−r(0)

= αi.

So β` simplifies further, and we expand the first term

β` = [x]d` + [B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r
αn−r

= [c+ α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r]d` +

[B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r
αn−r

= [c]d` + α1 [u1]d` + α2 [u2]d` + α3 [u3]d` + · · ·+ αn−r [un−r]d` +

[B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r
αn−r

= [B]`,n+1+

α1(− [B]`f1) + α2(− [B]`f2) + α3(− [B]`f3) + · · ·+ αn−r(− [B]`fn−r
)+

[B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r
αn−r

= [B]`,n+1 .

So β` began as the left-hand side of equation ` of the system represented by
B and we now know it equals [B]`,n+1, the constant term for equation ` of this
system. So the arbitrarily chosen vector from S makes every equation of the
system true, and therefore is a solution to the system. So all the elements of S are
solutions to the system.

For the second half of the proof, assume that x is a solution vector for the
system having B as its augmented matrix. For convenience and clarity, denote the
entries of x by xi. In other words, xi = [x]i. We desire to show that this solution
vector is also an element of the set S. Begin with the observation that the entries
of a solution vector make equation ` of the system true for all 1 ≤ ` ≤ m:
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[B]`,1 x1 + [B]`,2 x2 + [B]`,3 x3 + · · ·+ [B]`,n xn = [B]`,n+1

When ` ≤ r, the pivot columns of B have zero entries in row ` with the
exception of column d`, which will contain a 1. So for 1 ≤ ` ≤ r, equation `
simplifies to

1xd` + [B]`,f1 xf1 + [B]`,f2 xf2 + [B]`,f3 xf3 + · · ·+ [B]`,fn−r
xfn−r = [B]`,n+1 .

This allows us to write,

[x]d` = xd`

= [B]`,n+1 − [B]`,f1 xf1 − [B]`,f2 xf2 − [B]`,f3 xf3 − · · · − [B]`,fn−r
xfn−r

= [c]d` + xf1 [u1]d` + xf2 [u2]d` + xf3 [u3]d` + · · ·+ xfn−r [un−r]d`
=
[
c+ xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−run−r

]
d`
.

This tells us that the entries of the solution vector x corresponding to depen-
dent variables (indices in D) are equal to those of a vector in the set S. We still
need to check the other entries of the solution vector x corresponding to the free
variables (indices in F ) to see if they are equal to the entries of the same vector in
the set S. To this end, suppose i ∈ F and i = fj . Then

[x]i = xi = xfj
= 0 + 0xf1 + 0xf2 + 0xf3 + · · ·+ 0xfj−1

+ 1xfj + 0xfj+1
+ · · ·+ 0xfn−r

= [c]i + xf1 [u1]i + xf2 [u2]i + xf3 [u3]i + · · ·+ xfj [uj]i + · · ·+ xfn−r [un−r]i

=
[
c+ xf1u1 + xf2u2 + · · ·+ xfn−run−r

]
i
.

So entries of x and c+xf1u1+xf2u2+· · ·+xfn−run−r are equal and therefore
they are equal vectors. Since xf1 , xf2 , xf3 , . . . , xfn−r are scalars, this shows us
that x qualifies for membership in S. So the set S contains all of the solutions to
the system.
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