
MATH 2010 Chapter 9

9.1 Application of Chain Rule

9.1.1 Level Sets
Let

f : Ω ⊆ Rn → R, c ∈ R

Recall that the level set of f corresponding to c ∈ R is:

Lc = f−1(c) = {x ∈ Ω : f(x) = c}

Example 9.1. Some level sets of f(x, y) = x2 + y2:

f−1(1) = {x2 + y2 = 1}

f−1(4) = {x2 + y2 = 4}

IFRAME
IFRAME

Theorem 9.2. Let f : Ω ⊆ Rn → R,Ω is open,
Let c ∈ R, S = f−1(c) and a ∈ S.
Suppose f is differentiable at a, and ∇f(a) 6= 0. Then,∇f(a)⊥S at a.

Example 9.3.
f(x, y) = x2 + y2 ∇f = (2x, 2y)

Let S = f−1(25), then (4, 3) ∈ S
∇f(4, 3) = (8, 6)
IFRAME

Example 9.4. f(x, y) = x2 − y2 ∇f(x, y) = (2x,−2y)
IFRAME
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Example 9.5.
S : x2 + 4y2 + 9z2 = 22 (Ellipsoid)

Find equation of tangent plane of S at (3, 1, 1)
IFRAME

Solution. Let f(x, y, z) = x2 + 4y2 + 9z2, S = f−1(22)
Also f(3, 1, 1) = 22 , so (3, 1, 1) ∈ S
∇f = (2x, 8y, 18z)
∇f(3, 1, 1) = (6, 8, 18)⊥S at (3, 1, 1)
∴ (6, 8, 18) is a normal vector for the tangent plane. Equation of the tangent

plane:

[(x, y, z)− (3, 1, 1)] · (6, 8, 18) = 0

6(x− 3) + 8(y − 1) + 18(z − 1) = 0

3x+ 4y + 9z = 22

Proof of Example 9.5. Let r(t) be a curve on S , r(0) = a.
Then r(t) on S = f−1(c)

⇒ f(r(t)) = c is a constant

By the chain rule,

∇f(r(t)) · r′(t) =
df

dt
= 0

Put t = 0 , then∇f(a) · r′(0) = 0
∴ ∇f(a)⊥ any curve on S at a .
∴ ∇f(a)⊥S at a .

9.1.2 Implicit Differentiation
Consider the curve:

C : x2 + y2 = 1

Find dy
dx

at (3
5
,−4

5
). Locally near (3

5
,−4

5
), we have:

y2 = 1− x2, y < 0⇒ y = −
√

1− x2

∴ y is a function of x near (3
5
,−4

5
).

To find dy
dx

at (3
5
,−4

5
),

Method 1: Compute:
d

dx

(
−
√

1− x2
)
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Method 2: Implicit Differentiation (chain rule)

x2 + y2 = 1

(
Regard x as a variable
y as a function of x

)
Differentiating both sides:

d

dx
: 2x+ 2y

dy

dx
= 0

Evaluating at (x, y) = (3
5
,−4

5
), we have:

2(
3

5
) + 2(−4

5
)
dy

dx
= 0

∴ dy
dx

∣∣
( 3
5
,− 4

5
)

= 3
4

Example 9.6. Consider

S : x3 + z2 + yexz + z cos y = 0 ~

Given that z can be regarded as a function z = z(x, y) of independent variables
x, y locally near (0, 0, 0) .

Find ∂z
∂x
, ∂z
∂y

at (0, 0, 0) .

Remark. It is not easy to express z in terms of x, y .

Solution. Take ∂
∂x

to ~ ,

3x2 + 2z
∂z

∂x
+ yexz(z + x

∂z

∂x
) +

∂z

∂x
cos y = 0

Substitute (x, y, z) = (0, 0, 0) ,

0 + 0 + 0 +
∂z

∂x
(1) = 0⇒ ∂z

∂x
(0, 0) = 0

Similarly, take ∂
∂y

to ~

0 + 2z
∂z

∂y
+ exz + yexz(x

∂z

∂y
) +

∂z

∂y
cos y − z sin y = 0

Substitute (x, y, z) = (0, 0, 0) , then

0 + 0 + 1 + 0 +
∂z

∂y
(1)− 0 = 0⇒ ∂z

∂y
(0, 0) = −1

Remark. From computations above, we have:

∂z

∂x
= − 3x2 + yzexz

2z + xyexz + cos y
∂z

∂y
=

z sin y − exz

2z + xyexz + cos y

whenever the denominator is non-zero.
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9.2 Finding Extrema (Maximum or Minimum)
Definition 9.7. Let:

f : A ⊆ Rn → R, a ∈ A.

1. The function f is said to have global (absolute) maximum at a if:

f(x) ≤ f(a)

for all x ∈ A.

2. The function f is said to have local (relative) maximum at a if:

f(x) ≤ f(a)

for all x ∈ A near a, (i.e. There exists ε > 0 such that f(x) ≤ f(a) for all
x ∈ A ∩Bε(a).)

3. Global (absolute) minimum and local (relative) minimum are defined
similarly.

Remark. Any global extremum (max/min) is also a local extremum.

A function does not necessarily have a global maximum/minimum.

Example 9.8. Let f(x) = ex: on R

lim
x→−∞

f(x) = 0.

lim
x→∞

f(x) =∞.

But f(x) > 0 for all x ∈ R. Hence, f has neither global maximum nor global
minimum.

Example 9.9. Let f(x) = x on (−1, 1] (Domain is not closed).
Then f attains its global maximum at x = 1, but it has no global minimum.

Example 9.10. Let:
f : [−1, 1]→ R

f(x) =


1− x if x ∈ (0, 1]

0 if x = 0
−1− x if x ∈ [−1, 0)

The function f has neither global maximum nor global minimum.
( f is not continuous)
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Question: When must a function have global extremum?

Theorem 9.11 (Extreme Value Theorem EVT). Let A be closed and bounded
subset of Rn. Let f : A→ R be a continuous function.

Then f has a global maximum and a global minimum.

Remark. 1. A closed and bounded subset of Rn is said to be compact.

2. The theorem provides a sufficient, but not necessary, condition for the exis-
tence of global extrema.

Example 9.12. Let:
f : A = [0, 4]→ R,

IFRAME
Observe that A is closed and bounded, and f is continuous.
Hence, by Extreme Value Theorem (EVT), the function f has a global maxi-

mum and a global minimum on A.

Recall that in one-variable calculus: local extrema can only occur at:

1. Critical points (i.e. points a in the interior of the domain where f ′(a) = 0
or DNE.)

2. The boundary points of the domain.

Definition 9.13. Let:
f : A→ R, a ∈ Int(A).

Then, a is called a critical point of f if either of the following conditions holds:

1. ∇f(a) DNE (i.e. ∂f
∂xi

(a) DNE for some i)

2. ∇f(a) = ~0 (i.e. ∂f
∂xi

(a) = 0 for all i )

Theorem 9.14. Suppose f : A ⊆ Rn → R attains a local extremum at a ∈
Int(A), then a is a critical point of f .

Proof of Theorem 9.14. Suppose f has a local extremum at a ∈ Int(A).
If ∇f(a) DNE, then a is a critical point.
If ∇f(a) exists, then all ∂f

∂xi
(a) exist.

For any i = 1, · · · , n, let:

gi(t) = f(a+ tei)

Note that a ∈ Int(A) implies that gi(t) is defined for t near 0.
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By assumption, g′i(0) = ∂f
∂xi

(a) exists.
Hence, f has a local extremum at a.
This implies that gi has a local extremum at 0.
This in turn implies that g′i(0) = 0 since by assumption g′i(0) exists.
We conclude that:

∂f

∂xi
(a) = 0 (for all i = 1, 2, · · · , n).

Hence,∇f(a) = ~0. So, a is a critical point.

9.2.1 Finding Extrema on a Bounded Region
Strategy for finding extrema:

Given:
f : A ⊆ Rn → R.

To find the extrema of f :

1. Find critical points of f in Int(A).

2. Consider the restriction of f to the boundary ∂A of A.

Find maximum/minimum of f on ∂A

3. Comparing values of f at points found in 1. and 2.

Example 9.15. Find global maximum/minimum of

f(x, y) = x2 + 2y2 − x+ 3

on the region:
A = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

Remark. The region A is is closed and bounded.
Moreover, since f is polynomial, it is continuous.
So, by Extreme Value Theorem (EVT), the function f has global maximum

and minimum on A.

Solution. We follow the strategy above:
Step 1 Consider the critical points of f in Int(A):
First, notice that∇f = (2x− 1, 4y) exists everywhere. Moreover:

∇f = ~0 ⇔
{

2x− 1 = 0
4y = 0

⇔ (x, y) =

(
1

2
, 0

)
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Also, (1
2
, 0) lies in Int(A) = {(x, y) ∈ R2 : x2 + y2 < 1}.

So, we conclude that f has only one critical point
(
1
2
, 0
)

in Int(A), with:

f

(
1

2
, 0

)
=

(
1

2

)2

+ 0− 1

2
+ 3 =

11

4

Step 2 Consider f on ∂A = {(x, y) ∈ R2 : x2 + y2 = 1}.
Parametrize ∂A as follows:

(x, y) = (cos θ, sin θ), θ ∈ [0, 2π]

f(cos θ, sin θ) = cos2 θ + 2 sin2 θ − cos θ + 3

= cos2 θ + 2(1− cos2 θ)− cos θ + 3

= − cos2 θ − cos θ + 5

= −(cos θ +
1

2
)2 +

1

4
+ 5

=
21

4
− (cos θ +

1

2
)2

Maximum value of f on ∂A is 21
4

. It is attained when:

x = cos θ = −1

2
i.e. (x, y) = (−1

2
,±
√

3

2
)

Minimum value of f on ∂A is 3. It is attained when:

x = cos θ = 1, i.e. (x, y) = (1, 0)

Step 3 Reviewing the values of f at the points obtained in Steps 1 and 2, we have:

f

(
1

2
, 0

)
=

11

4
(minimum)

f

(
−1

2
,±
√

3

2

)
=

21

4
(maximum)

f(1, 0) = 3

Hence, the maximum value of f is 21
4

. It is attained at
(
−1

2
,±
√
3
2

)
The minimum value of f is 11

4
. It is attained at

(
1
2
, 0
)
.

Example 9.16. Find the global extrema of

f(x, y) =
√
x2 + y4 − y

on R = {(x, y) ∈ R2 : −1 ≤ x, y ≤ 1}
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IFRAME

Solution. R is the square [−1, 1]× [−1, 1] ⊆ R2

R is closed and bounded.
Also, f is continuous.
By Extreme Value Theorem (EVT), the function f has a global maximum and

a global minimum.
First, observe that: Int(R) = {(x, y) ∈ R2,−1 < x, y < 1}
Exercise : Show that ∂f

∂x
(0, 0) DNE. (Hint: (f(x, 0)) = |x|).)

For(x, y) 6= (0, 0), the gradient∇f exists, with:

∇f =

(
∂f

∂x
,
∂f

∂y

)
=

(
x√

x2 + y4
,

2y3√
x2 + y4

− 1

)

Hence:

∇f = (0, 0)⇔


x√

x2+y4
= 0

2y3√
x2+y4

− 1 = 0

Hence,∇f(x, y) = ~0 if and only if: x = 0, and

2y3

y2
− 1 = 0,

which holds if and only if y = 1
2
.

Therefore, f has two critical points in Int(R):

(0, 0)︸ ︷︷ ︸
∇f DNE

,

(
0,

1

2

)
︸ ︷︷ ︸
∇f=~0

Note that:

f(0, 0) = 0, f

(
0,

1

2

)
= −1

4

Consider f on ∂R:

f(x, y) =
√
x2 + y4 − y

∂R = {(x, y) : |x| = 1,−1 ≤ y ≤ 1} ∪ {(x, y) : |y| = 1,−1 ≤ x ≤ 1}

Consider different parts of ∂R:
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1. y = 1,−1 ≤ x ≤ 1

f(x, 1) =
√
x2 + 1− 1⇒ 0 ≤ f ≤

√
2− 1

2. y = −1,−1 ≤ x ≤ 1

f(x,−1) =
√
x2 + 1 + 1⇒ 2 ≤ f ≤

√
2 + 1

3. |x| = 1,−1 ≤ y ≤ 1

f(x, y) =
√

1 + y4 − y.

If −1 ≤ y ≤ 1, then 1 ≤
√

1 + y4 ≤
√

2, and −1 ≤ −y ≤ 1. Hence:

0 = 1− 1 ≤
√

1 + y4 − y ≤
√

2 + 1.

Restricted to C = {(x, y)| |x| = 1,−1 ≤ y ≤ 1}, the maximum value of
f(x, y) is therefore f(±1,−1) =

√
2 + 1.

Since we already know that f(0, 1) = 0, which is less than all possible
values of f restricted to C. The exact minimum of f on C is of little interest
to us.

Hence, on ∂R, the function f has a minimum value of 0 at (0, 1), and a maximum
value of

√
2 + 1 at (±1,−1).

Comparing values of f at points obtained in Steps 1 and 2:

f(0, 0) = 0

f(0,
1

2
) = −1

4
(minimum)

f(0, 1) = 0

f(±1,−1) =
√

2 + 1 (maximum)

f(±1, 1) =
√

2− 1,

we conclude that the maximum value of f is
√

2 + 1, attained at (±1,−1), and
the minimum value is −1

4
, attained at (0, 1

2
).

9.2.2 Finding Extrema on an Unbounded Region
Example 9.17. Find the global extrema of

f(x, y) = x2 + y2 − 4x+ 6y + 7

on R2.
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Remark. R2 is not bounded. So f might not have global extrema. Observe that:

lim
(x,y)→∞︸ ︷︷ ︸ f(x, y) = +∞

"(x, y) are far away from origin."

Hence,

1. f has no global maximum on R2

2. Strategy for finding global minimum

Find a closed and bounded region A such that f is ”large enough” outside
R. Then, the minimum of f on A is equal to the minimum of f of R.

min on R = min on R2

Solution. Find the critical points of f .

∇f = (
∂f

∂x
,
∂f

∂y
) = (2x− 4, 2y + 6)

is defined everywhere on R2.

∇f = (0, 0)⇔
{

2x− 4 = 0
2y + 6 = 0

⇔ (x, y) = (2,−3)

Hence, the function f has only one critical point (2,−3), with f(2,−3) = −6.
We want to show that f has a global minimum at (2,−3):
For (x, y) ∈ R2, let r =

√
x2 + y2

Then f(x, y) = x2 + y2 − 4x+ 6y + 7

≥ r2 − 4r − 6r + 7

= r(r − 10) + 7.

This is because:
r =

√
x2 + y2 ≥ |x|, |y|,

which implies: {
x ≤ r ⇒ −4x ≥ −4r
−y ≤ r ⇒ 6y ≥ −6r
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Hence, if
√
x2 + y2 = r ≥ 10, then f(x, y) ≥ 7 > f(2,−3).

Let A = B10(0, 0). Let f |R denote the restriction of f on R.
By Extreme Value Theorem (EVT) , the function f |R has global a minimum.
In Int(R), the point (2,−3) is the only critical point, with:

f(2,−3) = −6

On ∂A, we have f(x, y) ≥ 7 > f(2,−3). Hence, f |R has a global minimum at
(2,−3).

For (x, y) /∈ R, we have f(x, y) ≥ 7 > f(2,−3). Hence, f has no global
maximum, but it has a global minimum value of −6 at (2,−3).

Remark. 1. It is in fact easier to solve this problem using elementary algebra:

Since

f(x, y) = x2 + y2 − 4x+ 6y + 7

= (x− 2)2 + (y + 3)2 − 6,

it is quite clear what the global minimum of f is.

2. A function can have neither global maximum nor global minimum.

For example, let g(x, y) = x2 − y2 − 4x+ 6y + 7

Along the line x = 0, we have g(0, y) = −y2 + 6y + 7. So:

lim
y→±∞

g(0, y) = −∞⇒ no global minimum.

Along y = 0, we have g(x, 0) = x2 − 4x+ 7. So:

lim
x→±∞

g(x, 0) =∞⇒ no global maximum.

Another example of extrema on unbounded region.

Example 9.18. Make a box (without top) with volume = 16
Cost:
Base $2/unit area
Side $0.5/unit area
Question :
How to minimize cost?

Solution. Want to minimize

C(x, y) = 2xy + (
16

xy
x+

16

xy
y)(2)(0.5)

= 2xy +
16

x
+

16

y

on the domain Ω = {(x, y) ∈ R2 : x, y > 0}
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• Ω is neither closed nor bounded. Hence, Extreme Value Theorem (EVT)
cannot be applied directly.

• C is large if x or y is small or large.

Strategy: Find a rectangle R such that the values of C|R2\R are all greater than the
minimum of C|R.

Step 1
Find critical points

∇C = (2y − 16

x2
, 2x− 16

y2
) exists everywhere

∇C = ~0⇔
{

2y − 16
x2 = 0

2x− 16
y2

= 0

Hence, y = 8
x2 , x = 8

y2
= 8

64
x4

= x4

8
, x > 0⇒ x3 = 8, x = 2, y = 2 Hence, Only

one critical point (2, 2), C(2, 2) = 24.
Step 2
Choose R s.t. C > 24 on ∂R and outside R.

C(x, y) = 2xy +
16

x
+

16

y

One possible choice: R = [0.1, 1000]× [0.1, 1000]

• If x ≤ 0.1 or y ≤ 0.1 ,

then C >
16

x
+

16

y
>

16

0.1
= 160 > 24

• If (x ≥ 0.1, y ≥ 1000) or (y ≥ 0.1, x ≥ 1000) ,

then C > 2(0.1)(1000) = 200 > 24

Step 3
Analysis

• R is closed and bounded, C is continuous.

By Extreme Value Theorem (EVT), C|R has minimum.

• C has only one critical point (2, 2) ∈ Ω (2, 2) ∈ Int(R), C(2, 2) = 24
C > 24 on ∂R⇒ C|R has minimum value 24 at (2, 2)

• C > 24 outside R

Hence, C has the minimum value of 24 at (2, 2) on Ω.
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