MATH 2010 Chapter 9

9.1 Application of Chain Rule

9.1.1 Level Sets

Let
fQCR" >R, ceR

Recall that the level set of f corresponding to ¢ € R is:
Lo=f¢)={zr€Q: f(z) =}
Example 9.1. Some level sets of f(x,y) = 22 + y*

) ={a"+y* =1}

) = {2” +y* = 4}

IFRAME
IFRAME

Theorem 9.2. Let f : ) C R™ — R, () is open,
LetceR, S = f(c)anda € S.
Suppose f is differentiable at a, and V f(a) # 0. Then, V f(a) LS at a.

Example 9.3.
flzy) =a2* +y* Vf=(22,2y)
Let S = f~1(25), then (4,3) € S
Vf(4,3) = (8,6)
IFRAME

Example 9.4. f(z,y) = 2°> —y*> Vf(z,y) = 2z, —2y)
IFRAME
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Example 9.5.
S a? +4y* + 92> =22 (Ellipsoid)

Find equation of tangent plane of S at (3,1, 1)
IFRAME

Solution. Let f(x,y,z) = 2% + 4y* + 922, 5 = f71(22)

Also f(3,1,1) =22,s0(3,1,1) € S

Vf=(2z,8y,18z2)

Vf(3,1,1) =(6,8,18) LS at (3,1,1)

.. (6,8, 18) is a normal vector for the tangent plane. Equation of the tangent
plane:

[(z,y,2) —(3,1,1)] - (6,8,18) =0
6(r—3)+8y—1)+18(z—1)=0
3v+4y + 9z =22

Proof of Example 9.5. Letr(t) be acurve on S, 7(0) = a.
Then r(t) on S = f~1(c)

= f(r(t)) = cis a constant

By the chain rule,

d,
V() ) = 5 =0
Putt =0, then Vf(a)-7(0) =0
.V f(a)L any curve on S ata .
S.Vf(a)LSata. O

9.1.2 Implicit Differentiation

Consider the curve:
C: 22+4°=1

Find % at (2, —1). Locally near (2, —2), we have:

Y=1-2"y<0=y=—V1-— 212

.y is a function of  near (2, —3).
d 3 4
To find ﬁ at (g7 _5)’
Method 1: Compute:
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Method 2: Implicit Differentiation (chain rule)

9 9 Regard z as a variable
4y =1 )
y as a function of x

Differentiating both sides:

d dy
— 2 2y—= =0
dz v Vi
Evaluating at (z,y) = (£, —32), we have:
3 4 dy
2(2) +2(—=)=2 =0
(5)+2(=¢)7
. dy =3
Cdx (%77%) T4

Example 9.6. Consider
S:aP+ 224 ye” 4 zcosy=0 ®
Given that z can be regarded as a function z = z(z,y) of independent variables

x,y locally near (0,0,0) .
Find &2 % at (0,0,0) .

Remark. It is not easy to express z in terms of x, ¥ .
Solution. Take ~to®,

9] 0 9]
3x2+228—;+ye” (z+:1:a—z)+a—;cosy—0

Substitute (z,y, z) = (0,0,0),
0z 0z

(1) =
0+0+0+ax() 0:»8

(0,0)=0

Similarly, take to ®

0z 0z
(v dy o)t 8y

0z
O+228—+e“—|—ye“ cosy — zsiny =0
)

Substitute (z,y, z) = (0,0,0) , then

0z 0z
0+04+14+0+—(1)-0=0=|=—(0,0) =—-1
+0+140+7-(1) 5,00
Remark. From computations above, we have:
0z 3% + yze™
Or 22+ wye™ +cosy
0z  zsiny—e*

8_y 224 Tyerr 4+ cosy
whenever the denominator is non-zero.



9.2 Finding Extrema (Maximum or Minimum)

Definition 9.7. Let:
frACR" >R, acA

1. The function f is said to have global (absolute) maximum at q if:
f(z) < f(a)
for all x € A.
2. The function f is said to have local (relative) maximum at ¢ if:
f(z) < f(a)

for all x € A near a, (i.e. There exists ¢ > 0 such that f(x) < f(a) for all
x € AN B.(a).)

3. Global (absolute) minimum and local (relative) minimum are defined
similarly.

Remark. Any global extremum (max/min) is also a local extremum.
A function does not necessarily have a global maximum/minimum.

Example 9.8. Let f(z) = e*: on R

EIE] f(z) =0.
h_)m f(z) = 0.

But f(x) > 0 for all x € R. Hence, f has neither global maximum nor global
minimum.

Example 9.9. Let f(z) = x on (—1, 1] (Domain is not closed).
Then f attains its global maximum at x = 1, but it has no global minimum.

Example 9.10. Let:

f-L1]-R
l—a if ze(0,1]
flz) = 0 if z=0

1z if ze[-1,0)

The function f has neither global maximum nor global minimum.
( f is not continuous)



Question: When must a function have global extremum?

Theorem 9.11 (Extreme Value Theorem EVT). Let A be closed and bounded
subset of R". Let f : A — R be a continuous function.
Then f has a global maximum and a global minimum.

Remark. 1. A closed and bounded subset of R" is said to be compact.

2. The theorem provides a sufficient, but not necessary, condition for the exis-
tence of global extrema.

Example 9.12. Let:
f:A=10,4 — R,

IFRAME

Observe that A is closed and bounded, and f is continuous.

Hence, by Extreme Value Theorem (EVT), the function f has a global maxi-
mum and a global minimum on A.

Recall that in one-variable calculus: local extrema can only occur at:

1. Critical points (i.e. points a in the interior of the domain where f'(a) = 0
or DNE.)

2. The boundary points of the domain.

Definition 9.13. Let:
f:A—=R, aeclnt(A).

Then, a is called a critical point of f if either of the following conditions holds:

1. Vf(a) DNE (i.e. 52 (a) DNE for some i)

2. Vf(a)=0(.e §L(a)=0foralli)

Theorem 9.14. Suppose f : A C R" — R attains a local extremum at a €
Int(A), then a is a critical point of f.

Proof of Theorem 9.14. Suppose f has a local extremum at a € Int(A).
If V f(a) DNE, then « is a critical point.
If V f(a) exists, then all %(a) exist.
Forany:=1,.---  n,let:

Note that a € Int(A) implies that g;(¢) is defined for ¢ near 0.

5


https://www.desmos.com/calculator/nlhtedbzb3?embed
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=content/math2010//chap9.xml&slide=14&item=9.11

By assumption, g}(0) = %(a) exists.

Hence, f has a local extremum at a.
This implies that g; has a local extremum at 0.

This in turn implies that g;(0) = 0 since by assumption g;(0) exists.

We conclude that:

of
8$i

(@) =0 (foralli=1,2,--- n).

Hence, V f(a) = 0. So, a is a critical point.

9.2.1 Finding Extrema on a Bounded Region

Strategy for finding extrema:
Given:
frACR" - R

To find the extrema of f:
1. Find critical points of f in Int(A).
2. Consider the restriction of f to the boundary 0 A of A.
Find maximum/minimum of f on 0A
3. Comparing values of f at points found in 1. and 2.
Example 9.15. Find global maximum/minimum of
flr,y) =2 +2y* —x +3

on the region:
A={(x,y) eR*: 2” +3y* < 1}

Remark. The region A is is closed and bounded.
Moreover, since f is polynomial, it is continuous.

So, by Extreme Value Theorem (EVT), the function f has global maximum

and minimum on A.

Solution. We follow the strategy above:
Step 1 Consider the critical points of f in Int(A):

First, notice that V f = (2 — 1, 4y) exists everywhere. Moreover:

- 2r—1=0
V=0 < {4y=0
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Also, (3,0) lies in Int(A) = {(z,y) € R? : 2? + 3y < 1}.
So, we conclude that f has only one critical point (%, 0) in Int(A), with:

(o) = (L 2+0—1+3—11
2°7) \2 2 4
Step 2 Consider f on 0A = {(z,y) € R? : 2% + y* = 1}.

Parametrize 0 A as follows:

(z,y) = (cosf,sinh),0 € [0, 27]

f(cos®,sinf) = cos? 6 + 2sin* 6 — cosf + 3
= cos? 0 +2(1 — cos® ) — cos O + 3
= —cos’f —cosf +5

1 1
= (cosO+ )+ +5
(cos —|—2) -|-4+
21 1
=" —(cosf + =)?

4 2

Maximum value of f on 0A is %. It is attained when:

<[5

1 1
$:C089:—§ ie. (z,y) = (—§,i—)
Minimum value of f on A is 3. It is attained when:
r=cosf =1 ie. (z,y)=(1,0)

Step 3 Reviewing the values of f at the points obtained in Steps 1 and 2, we have:

f (1 O) = % (minimum)

27
1 V3 21 ,
f <—§;i7> =7 (maximum)
f(1,0)=3

Hence, the maximum value of f is 2. It is attained at (—%, :|:73>

The minimum value of f is L. It is attained at (1, 0).
Example 9.16. Find the global extrema of
flay)=va+yt —y
onR={(r,y) eR?: -1 < x,y <1}



IFRAME

Solution. R is the square [—1,1] x [—1,1] C R?
R is closed and bounded.
Also, f is continuous.

By Extreme Value Theorem (EVT), the function f has a global maximum and
a global minimum.

First, observe that: Int(R) = {(z,y) € R?, -1 < z,y < 1}
Exercise : Show that %(O, 0) DNE. (Hint: (f(z,0)) = |z]).)
For(z,y) # (0,0), the gradient V f exists, with:

_(Of Of\ _ x 293
vI= <%78_?J> B <\/x2+y47 Va4 y _1>

Hence:
oyt 0
Vi=1(0,0) 28 B
A —1=0

Hence, V f(x,y) = 0 if and only if: z = 0, and

2 3

=

Y

which holds if and only if y = %
Therefore, f has two critical points in Int(R):

1
(07 ) ) (07 _>
~—— 2
V f DNE SN——
V=0
Note that: . .
Consider f on OR:

fl,y) =22 +yt—y

OR ={(z,y) :Ja| =1, -1 <y <1} U{(z,y) : Jyl =1, -1 <z <1}

Consider different parts of OR:
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fla,)=vVr2+1-1=0< f<v2-1
2.y=—1,—-1<zr<1

flao,-1) =V2+1+1=2< f<V2+1
3. |z =1,-1<y<1

flz,y) =vV1+yt—y.

If—1<y<Il,thenl < /1+y*< V2, and —1 < —y < 1. Hence:

0=1-1<1+y'—y<V2+1.

Restricted to C' = {(x,y)||z| = 1,—1 < y < 1}, the maximum value of

f(z,y) is therefore f(£1,—1) = V2 + 1.

Since we already know that f(0,1) = 0, which is less than all possible
values of f restricted to C'. The exact minimum of f on C'is of little interest

to us.

Hence, on OR, the function f has a minimum value of 0 at (0, 1), and a maximum

value of v/2 + 1 at (1, —1).
Comparing values of f at points obtained in Steps 1 and 2:

f(0,0) =
f(0, %) = —— (minimum)
f(07 1) =

f(£1,-1) = \/_ 241 (maximum)
fl= 1, 1) =v2 -1,

we conclude that the maximum value of f is V2 + 1, attained at (1,

the minimum value is —1, attained at (0, 1).

9.2.2 Finding Extrema on an Unbounded Region
Example 9.17. Find the global extrema of
flx,y) =2 +9y* —4x+6y+7

on R?,

—1), and



Remark. R? is not bounded. So f might not have global extrema. Observe that:

lim f(z,y) = +o0
(z,y)—00

——

"(z,y) are far away from origin.'

Hence,
1. f has no global maximum on R?

2. Strategy for finding global minimum

Find a closed and bounded region A such that f is “large enough” outside
R. Then, the minimum of f on A is equal to the minimum of f of R.

min on R = min on R?

Solution. Find the critical points of f.

af of

Vf:(£,a—y):(2x—4,2y+6)

is defined everywhere on R

20 —4=0
Vf-(0,0)@{ 2y+6=0

< (7,y) = (2,-3)

Hence, the function f has only one critical point (2, —3), with f(2, —3) = —6.
We want to show that f has a global minimum at (2, —3):

For (z,y) € R%, letr = /22 + 32
Then f(x,y) = 2° +y* — 4o + 6y + 7
>r2 Ay —6r+7
=r(r—10)+7.

This is because:

r=va?+y* >zl yl,

r<r= —dx > —4r
—y < r = 6y > —06r

which implies:
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Hence, if /22 + y? = r > 10, then f(x,y) > 7 > f(2,-3).

Let A = Byy(0,0). Let f|r denote the restriction of f on R.

By Extreme Value Theorem (EVT) , the function f|z has global a minimum.

In Int(R), the point (2, —3) is the only critical point, with:

f(2,-3)=—-6

On 0A, we have f(z,y) > 7 > f(2,—3). Hence, f|r has a global minimum at
(2,-3).

For (xz,y) ¢ R, we have f(z,y) > 7 > f(2,—3). Hence, f has no global
maximum, but it has a global minimum value of —6 at (2, —3).
Remark. 1. Itis in fact easier to solve this problem using elementary algebra:

Since
flzy) =2 +y* —dx +6y +7
=(x—-2°+(y+3)*—6,
it is quite clear what the global minimum of f is.

2. A function can have neither global maximum nor global minimum.
For example, let g(x,y) = 2*> —y* — 4o + 6y + 7
Along the line z = 0, we have ¢(0,y) = —y* + 6y + 7. So:

lim ¢(0,y) = —oo = no global minimum.
y—Foo

Along y = 0, we have g(z,0) = 22 — 4z + 7. So:

lirf g(x,0) = 0o = no global maximum.
T—>L 00

Another example of extrema on unbounded region.

Example 9.18. Make a box (without top) with volume = 16
Cost:
Base $2/unit area
Side $0.5/unit area
Question :
How to minimize cost?

Solution. Want to minimize
16

16
C =2 — —)(2)(0.5
(z,y) = 2zy + (xyrH xyy)( )(0.5)
on the domain Q = {(z,y) € R? : z,y > 0}

11
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e () is neither closed nor bounded. Hence, Extreme Value Theorem (EVT)
cannot be applied directly.

e (' islarge if z or y is small or large.

Strategy: Find a rectangle R such that the values of C'|g2\  are all greater than the
minimum of C'| .

Step 1

Find critical points

16
VC = (2y — —;, 2z — —;) exists everywhere
Y
4

y2 bl
one critical point (2,2), C(2,2) = 24.
Step 2
Choose R s.t. C' > 24 on OR and outside R.

16 16
Clr,y) = 2oy + — + —
r Yy

One possible choice: R = [0.1,1000] x [0.1, 1000]

o I[fz <0lory<0.1,

1 1 1
thenC’>—6+—6>—6:160>24
T Y 0.1

e If (x > 0.1,y > 1000) or (y > 0.1,z > 1000) ,
then C' > 2(0.1)(1000) = 200 > 24

Step 3
Analysis
e R is closed and bounded, C'is continuous.

By Extreme Value Theorem (EVT), C'|g has minimum.

e (C has only one critical point (2,2) € Q (2,2) € Int(R),C(2,2) = 24
C > 24 on OR = C'|g has minimum value 24 at (2, 2)

o (' > 24 outside R

Hence, C' has the minimum value of 24 at (2, 2) on ).
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