MATH 2010 Chapter 8

8.1 Matrix Multiplication
|

Abe an m x n (m rows, n columns) matrix. Let b = || be a (column) vector in

RTL
If we view A as a collection of row vectors:

(055 QA1n —Q1—
A = : '.. : =
Am1 - - Amn —Qyy,—

then by definition of matrix multiplication we have:

Ab=| bl=1] : | €R™

_am_

Now let, B be an n x k matrix. Then, view B as a collection of column vectors:

—

B=|b - by,
| |
we have: | | | |
AB=A b, --- by| = [Ab -+ Ab,
| | | |
Alternatively, we also have:
—d— —a,B—
AB = B = : ,
—Qyy— —0y B—



where:
CLl‘B:(CLi'bl, ai'bg, . e, azbk)

Example 8.1.

A
o[- Al B ] -
[1 2]B=[21 24 27] [3 4]B=[47 54 61]

8.2 Vector-valued Functions

Let f: Q CR" — R™

f1(@)
f(@) = ([(@), - ful@) = |
vector-valued fm( x—:)
Suppose %(6) exists for each 7, j . Foreach 1 < i < m,

fi(@) = fi(@) + Vfi(@) - (T — @) +&(F) &

1x1 1x1 1xn nx1 1x1

Here, regard V f;(@) as a row vector and Z — @ as a column vector,
in order to use multiplication Writing ® for 1 < ¢ < m in a matrix:

J1(Z) f1(@) =V (@)= | |z1 —a £1(7)
2 I R I I S
fm(T) fm (@) V(@)= [Zn —an Em(T)
—_— —_——

Of; Errors

m X n matrix of )
Tj

Definition 8.2. The Jacobian matrix of f at a is:

=V fi(@)—
Df(a) = : (m x n matrix )

_vfm@i)_



The linearization of f at a is:

— —

L(#) = f(a@) + Df(a)(# — a)

The function f is said to be differentiable at @ if the error term:

i 1SN _
Tr—a ||(L’ — CLH
Remark. 1.
o Ofi
Df@)s = 5@

3. If f is real-valued (m = 1) , then
Df(a@) = Vf(a)

4. ||E(@)]], || & — d|| are lengths in R™ R™, respectively.

5.
i JEDL 6@
T—a ||{L‘ — a|| r—a ||J,’ — CL”
foralle =1, --- ,m.
Hence,
f is differentiable at @ < f; is differentiable at a,
foralli=1,---,m.



8.2.1 Approximation:

— —

f(#) ~ L(@) = f(@) + Df(a)(# - a)

= f@® - flaj~ Df@ x (@-a)
—_—— —— ~——
Af= change in f Jacobian Matrix ~ AZ= change in T

—

Can consider D f(@) as a linear map:

—

Df(d) : R" —s R™

AT — Df(@)AT =df

approximated change in f

Af ~df =Df(@) x di

(vector) (matrix) (vector)

Remark. Compare with f : R — R

Ay ~df = f'(a) x Az

(number) (number) (number)
Example 8.3.
f1 f2
fla,y) = [(y + DInz,2® —siny + 1
| w+1)nz .
= Lg —siny+1 (rewrite as column vector)

1. Find D f(1,0)

2. Approximate f(0.9,0.1)

Solution.

filz,y) =(y+1)Inz

fo(z,y) = z? —siny + 1



V=] — cos Y|
- vt g
= Df(@.y) {2?5 —cosy}
1 0

Linearization of f at (1,0):

e = 70,0+ Do) 1] - o]

HRE iy

£(0.9,0.1) ~ L(0.9,0.1)

_[o}, v 0] foo-1
T2l T2 1 0.1

—_——

AZ=dZ¥=change in ¥

_Jo]  [-01
) + —0.3 d f=approximated change of f

_ L
~|—0.1
LT
Remark. Actual change in f

Af = [(0.9,0.1) — f(1,0) = [:8;;82]

Remark. Total differential can also be written in matrix form:
f:QCR"—R™

fi
f=1:
fm
df g gt [dan
df = : = : . : : :Df(o_i)df
df m, % ngr dx,



8.3 Chain Rule

Recall the chain rule for functions in one variable:

=g(u) =2u+1
u= f(r)=2"
(go f)(z) =g (f(x))f (x)or
dw dw du
dr  du dx
=2-2x =4x

For multivariable functions,

Theorem 8.4 (Chain Rule). Let:
f:0 CRF —R”

G: 0 CR" — R™

—

Suppose that [ is differentiable at @, and § is differentiable at b = (@).

Then, g o f is differentiable at a, with:

D(go f)(@) = (Dg)(f(a))(Df)(a)

mxk mxn nxk

Remark. For simplicity, we might omit — for vectors
Fromnowon: f=f, 7 ==

Example 8.5. Let:

f:R—=R?
g: R? — ]RQ,
where:
) cos
f(0) = (cosf,sinf) = {sin&]
2uv
o) = Qua? =) = | )
Find D(g o f)(0).



Solution. Method 1 Find composition explicitly.

(go f)(0) = g(cosB,sin)

B 2008981118
~ |cos? 6 —sin’ 6

sin 26 ]
CoS 20

dsin 20 2 cos 26
, _ | a0 | —
- D(ge f)(0) = dd_eze} - [—25in29]

Method 2 Chain Rule

_|Vai| _|2v 2u
Dyg(u, v) = {Vgg] N [2u —21}]

Dg(f(#)) = Dg(cost,sinf) = {QSinﬁ 2cost }

2cosf —2sinf
By Chain Rule,

D(go f)(0) = Dg(f(8))Df(0)
B [28inf  2cosf —sind
o |2cosf —2sinf| | cosf
_ [—2sin% 0 + 2 cos? 0

—4 cosfsind

__200829 (same answer)
= _—2sin29 same answe

Example 8.6.

flzy) = (2%, 32y, x + )



Consider g o f :

T ¥ fl:u g
> fo=v g
Y f3—w

Find 2%(1,1) .

Solution.
Dg=Vg=[1 -~ ]
Dg(f(17 1)) = Dg(17372)
-3 -3 4
Vfl 2x 0
Df=|Vf| = |3y 3z
Vi3 1 2y
2 0
Df(1,1)= 1|3 3
1 2
Hence,
D(go f)(1,1) = Dg(f(1,1))Df(1,1)
2 0
-3 43 8
1 2
=[1 0]
Note D(g o f) = [% g_ﬂ
1) =1

In the previous example, we have:

D(go f)=DgDf




From matrix multiplication, we get another form of chain rule (in classical nota-
tion)

09 09 ou 09 v 09 Ou
dr Ou Ox Ov Ox Ow Ox
99 _0g Ou_ 0g Ov_ 0g Ow
dy Ou dy Ov dy Ow Oy

Example 8.7.

1U<33,y,2) =V 2 +y2 + 227

where:
xr = 3etsin s

y = 3el cos s
2z = 4ét

Find 22 at (s,t) = (0,0).

Solution.
ow_ow 0r du 3y w0
ds Oxr 0O0s Oy O0s 0z O0s

x Yy . z
= -3¢l cos s — - 3elsins +

0
Va2 +y? + 22 Va?+y?+ 22 \/x2+y2+z2( )

s=t=0= (z,y,2) = (0,3,4). Hence,

8_w
0s

(s,t)=(0,0)

Example 8.8. John is hiking with position at time ¢ given by:

{a:(t):t3+1

y(t) =2t
His altitude is given by: H(z,y) = 2* — y? + 100
1. Is John going up/down att =1 ?

2. Which direction should he go instead at ¢ = 1 to go down most quickly?



Solution. 1. Find 41| _:
AH _OH dr  OH dy
dt Or dt Oy dt
= (22)(3t%) + (—2y)(41)
=2(% + 1)(3t?) — 2(2t%)(4¢)
= 61° — 16t + 612
L =6-16+6=—-4<0
.".John is going downhill at ¢ = 1.

2. Att=1,(z,y) = (2,2)
VH = (2x,—2y)

VH = (4,—4)
.. H decreases most rapidly in the direction of —VH(2,2) = (—4,4)
.".John should go NW .

Remark.

slope in z- and y- direction
gradient

1 &

!

dH _OH dr OH dy i [dedy

dt Jr dt Oy dt dt dt

0 0 1

velocity in z- and y- direction velocity

8.3.1 Idea of Proof of Chain Rule

Suppose
f: Q) CRF — R", differentiable at a
g:Qy CR" — R™, differentiable at b = f(a) € Qs
For
rey, f(x)— fla) = Df(a)(x —a)+es(z) (8.1)
yey  gy) —g(b) = Dg(b)(y —b) +e4(y) (8.2)

Puty = f(x),b = f(a) and (1) into (2):

9(f(x)) = g(f(a)) = Dg(f(a))[Df(a)(z — a) + e5(x)] + £4(f (x))
= Dg(f(a))Df(a)(x —a) + Dg(f(a))ef(x) +&4(f(2))

. \ TV
linear in z—a Denote this by €407 ()

10



Then, show that:
lim w -0

oo flz—al

Sketch of the argument: For x close to a, the continuity of f at a implies that
||f(x) — f(a)|| is small. The differentiability of ¢ at f(a) then implies that
g4(f(x))) is small.

Similarly, the differentiability of f at a implies that £;(x) is small. Hence,
Dg(f(a))es(x) is small.

Hence, g o f is differentiable at a, with:

D(g o f)(a) = Dg(f(a)) Df(a).

8.3.2 Summary
Jacobian Matrix

l. f:QCR—R (l-variable, real-valued)

Df(z) = % (scalar, 1 x 1 matrix)
2. fQCR" =R (multivariable, real-valued)

&7:(171,'",mn)'—>f($):f(m1,m,mn)
Df(z) =V [(z)
B ﬁ() 8f<> vectors in R"
-\ o v " 0xy, o 1 X m matrix

3. f:Q CR" — R™(multivariable, vector-valued)

fi(z)
z=(x1, ,xn)— fil@)=fi(z1, ,zn)

of of

_Vfl_ 8_:1:1 . ﬁ
Df(x) = : =1 . i | (m xn matrix)
_ _ Ofm Ofm
Chain Rule
f
(zla"' 71'16) — (ylv"' 7yn) ’i> (gla"' agm)

11



gi = gi(y1, -, yn) are functions of y1, - -+ , y,

y; = f; = fij(x1,- -+, z) are functions of 1, - - - , zy,
.. We can regard ¢g; = g;(x1,- - ,xy) as functions of xy, - -+ , xp
Chain Rule in Matrix Notation
991 .. Od¢ g1 .. a7 [Ou Oy1
Ox1 Oz oy Oyn ox1 Oz,
Ogm .. Ogm Ogm .. 9gm | | Oyn Oyn
ox1 oxy, oy OYn ox1 oxy,
mxk mxn nxk

By definition of matrix multiplication:

Ogi _ 990y, 09iOyn
Ox; Oy Oz, Oyy, 0z

12
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