
Math 2010 Chapter 7

7.1 Differentiability, Gradient
Theorem 7.1. If f, g : Ω ⊆ Rn → R are differentiable at ~a ∈ Ω. Then:

1. f(~x)± g(~x), cf(~x), f(~x)g(~x) are differentiable at ~a.

2.
f(~x)

g(~x)
is differentiable at ~a if g(~a) 6= 0.

3. (Special case of Chain Rule) Let h(x) be a one-variable function which is
differentiable at f(~a). Then, h ◦ f is differentiable at ~a.

~a 7−→ f(~a) 7−→ (h ◦ f)(~a)

4. Any constant function f(~x) = c is differentiable.

5. Coordinate functions f(~x) = xi are differentiable.

Remark. We will discuss general case of chain rule later

Proof of 1,2,3 are similar to those for one variable. (MATH 2050)
The results above give many examples of differentiable functions:

• Polynomials (Sum of products of xi )

e.g. 4x3y2 + xy2 − xyz + z2 (deg 5)

• Rational functions (Quotient of polynomials) e.g.
x3y + z

x2 + y2 + z2 + 1

• If f(~x) is differentiable, then the followings are differentiable:

ef(~x), sin(f(~x)), cos(f(~x))

ln(f(~x)) where f(~x) > 0
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√
f(~x) where f(~x) > 0

ln |f(~x)| where f(~x) 6= 0

e.g.
e
√

4+sin(x2+xy)

ln (1 + cos(x2y))
is differentiable on its domain.

Theorem 7.2. If a function f isC1 on an open set Ω ⊆ Rn, then f is differentiable
on Ω.

Remark. The theorem provides a simple way to verify differentiability if all
∂f

∂xi
can be easily shown to be continuous.

e.g. f(x, y, z) = xex+y − log(x+ z). The domain of f :{
(x, y, z) ∈ R3 : x+ z > 0

}
is open.

∂f

∂x
= ex+y + xex+y − 1

x+ z

∂f

∂y
= xex+y

∂f

∂z
= − 1

x+ z

Hence,
∂f

∂x
,
∂f

∂y
,
∂f

∂z
are all continuous on the open domain of f .

So, f is C1, and by the theorem is it is differentiable.

Proof of Theorem 7.2. We prove the theorem for the special case where f has two
variables.

Let B be an open ball centered at (a, b) such that fx, fy are defined on B.
For each fixed x ∈ B, viewing f(x, y) as a one-variable function in y, by the

MVT there exists k between b and y such that:

f(x, y)− f(x, b) = fy(x, k)(y − b).

Likewise, for fixed y = b, there exists h between a and x such that:

f(x, b)− f(a, b) = fx(h, b)(x− a).

Hence,
f(x, y)− f(a, b) = f(x, y)− f(x, b)︸ ︷︷ ︸

fy(x,k)(y−b)

+ f(x, b)− f(a, b)︸ ︷︷ ︸
fx(h,b)(x−a)
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We have:∣∣∣∣ ε(x, y)

‖(x− a, y − b)‖

∣∣∣∣= ∣∣∣∣f(x, y)− f(a, b)− fx(a, b)(x− a)− fy(a, b)(y − b)
‖(x− a, y − b)‖

∣∣∣∣
=

∣∣∣∣ [fy(x, k)− fy(a, b)](y − b) + [fx(h, b)− fx(a, b)](x− a)

‖(x− a, y − b)‖

∣∣∣∣
≤
∣∣∣∣ [fy(x, k)− fy(a, b)](y − b)

‖(x− a, y − b)‖

∣∣∣∣+

∣∣∣∣ [fx(h, b)− fx(a, b)](x− a)

‖(x− a, y − b)‖

∣∣∣∣
≤ |fy(x, k)− fy(a, b)|+ |fx(h, b)− fx(a, b)|

Take the limit of both sides of the above inequality as (x, y) → (a, b). Then,
(x, k), (h, b) → (a, b), and by the continuity of fx and fy at (a, b) the right-hand
side of the inequality tends to zero.

It follows that:

lim
(x,y)→(a,b)

ε(x, y)

‖(x− a, y − b)‖
= 0.

So, f is differentiable at (a, b).

7.2 Gradient and Directional derivative
Definition 7.3. Let Ω ⊆ Rn be open ,~a ∈ Ω, f : Ω → R. The gradient, or
gradient vector, of f at ~a is:

∇f(~a) =

(
∂f

∂x1
(~a), · · · , ∂f

∂xn
(~a)

)
∈ Rn

Example 7.4.
f(x, y) = x2 + 2xy

∇f(x, y) = (fx, fy) = (2x+ 2y, 2x)

∇f(1, 2) = (6, 2)

Remark. Using ∇f , the linearization of f at ~a can be expressed as:

L(~x) = f(~a) +
∑ ∂f

∂xi
(~a) (xi − ai)

= f(~a) +∇f(~a) · (~x− ~a)

Definition 7.5. Let Ω ⊆ Rn be open, ~a ∈ Ω, f : Ω→ R.
Let ~u ∈ Rn be an unit vector (i.e. ‖~u‖ = 1 ) The directional derivative of f

in the direction of ~u at ~a is:

D~uf(~a) = lim
t→0

f(~a+ t~u)− f(~a)

t
= the rate of change of f in the direction of ~u at the point ~a
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Example 7.6. e2 = (0, 1) ∈ R2

De2f(a, b) = lim
t→0

f ((a, b) + te2)− f(a, b)

t

= lim
t→0

f(a, b+ t)− f(a, b)

t

=
∂f

∂y
(a, b)

Remark. In general, if ei = (0, · · · , 0, 1, 0, · · · 0) ∈ Rn (with the i-th entry equal
1), then:

Deif(~a) =
∂f

∂xi
(~a).

Theorem 7.7. Suppose f is differentiable at ~a. Let ~u ∈ Rn be a unit vector .
Then:

D~uf(~a) = ∇f(~a) · ~u

Remark. Recall that if ~v 6= ~0 ∈ Rn, then the unit vector
~v

‖~v‖
is essentially the

direction of ~v.

Example 7.8. Let f(x, y) = arcsin

(
x

y

)
.

Find the rate of change of f at (1,
√

2) in the direction of ~v = (1,−1).

Solution. Let ~u =
~v

‖~v‖
=

(
1√
2
,− 1√

2

)
.

Recall:
d

dz
(arcsin z) =

1√
1− z2

.

Hence.
∂f

∂x
=

1√
1−

(
x
y

)2 · 1

y
,

∂f

∂y
=

1√
1−

(
x
y

)2 · −xy2 .
Note that: f,

∂f

∂x
,
∂f

∂y
are continuous near (1,

√
2).

Hence, f is C1 near (1,
√

2)
So, f is differentiable at (1,

√
2).
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By the theorem above, it follows that:

D~uf(1,
√

2) = ∇f(1,
√

2) · ~u

=

(
∂f

∂x
(1,
√

2),
∂f

∂y
(1,
√

2)

)
·
(

1√
2
,− 1√

2

)
=

(
1,− 1√

2

)
·
(

1√
2
,− 1√

2

)
=

1√
2

+
1

2

Proof of Theorem 7.7. Suppose f is differentiable at ~a.
Let L(~x) be the linearization of f(~x) at ~a.
Then,

f(~x) = L(~x) + ε(~x)

= f(~a) +∇f(~a) · (~x− ~a) + ε(~x)

Put ~x = ~a+ t~u :

f(~a+ t~u) = f(~a) +∇f(~a) · (t~u) + ε(~a+ t~u)

.
Then,

D~uf(~a) = lim
t→0

f(~a+ t~u)− f(~a)

t

= lim
t→0

∇f(~a) · (t~u) + ε(~a+ t~u)

t

= ∇f(~a) · ~u+ lim
t→0

ε(~a+ t~u)

t

Differentiability of f at ~a implies that:

lim
t→0

∣∣∣∣ε(a+ t~u)

t

∣∣∣∣ = lim
t→0

|ε(a+ t~u)|
‖(~a+ t~u)− ~a‖

= 0,

It now follows that:

D~uf(~a) = ∇f(~a) · ~u+ 0 = ∇f(~a) · ~u.

5



7.3 Geometric Meanings of∇f (~a)
Suppose f is differentiable at ~a and ‖~u‖ = 1. Then:

D~uf(~a) = ∇f(~a) · ~u.

By the Cauchy-Schwarz Theorem, we have:

|∇f(~a) · ~u| 6 ‖∇f(~a)‖‖~u‖ = ‖∇f(~a)‖

Also, if∇f 6= ~0, then:

−‖∇f(~a)‖ ≤ ∇f(~a) · ~u ≤ ‖∇f(~a)‖,

where each inequality is equality if and only if∇f(~a) is parallel to ~u.
This means that: f increases (resp. decreases) most rapidly in the direction of

∇f(~a) (resp. (−∇f(~a)), at the rate of ‖∇f(~a)‖.

7.4 Properties of the Gradient
Theorem 7.9. Let Ω ⊆ Rn be open. Suppose f, g : Ω ⊆ Rn −→ R are differen-
tiable, and c ∈ R is a constant. Then:

1. ∇(f + g) = ∇f +∇g

2. ∇(cf) = c∇f

3. ∇(fg) = g∇f + f∇g

4. ∇
(
f

g

)
=
g∇f − f∇g

g2
, provided that: g 6= 0

Proof of Theorem 7.9. Exercise.

Remark. In the definition of D~uf(~a), the vector ~u is assumed to be a unit vector.
It can also be generalized to D~vf(~a) for any vector ~v of any length.

In that case,

D~vf(~a) = lim
t→0

f(~a+ t~v)− f(~a)

t

and D~vf(~a) = ∇f(~a) · ~v.
Note that:

D~vf =

 ‖~v‖D~uf if ~v 6= ~0, ~u =
~v

‖~v‖
0 if ~v = ~0
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7.5 Total Differential
(of a real-valued function)

Let f : Ω ⊆ Rn → R be differentiable at ~a ∈ Ω.
Consider linearization at ~a :

f(~x) = f(~a) +
n∑

i=1

∂f

∂xi
(~a) (xi − ai) + ε(~x)

Denote:
∆f = f(~x)− f(~a),∆xi = xi − ai

Then,

∆f ≈
n∑

i=1

∂f

∂xi
(~a)∆xi.

The approximation is good up to first order, since:

lim
~x→a

ε(~x)

‖~x− ~a‖
= 0.

Classically, this first order approximated change is denoted by

df =
n∑

i=1

∂f

∂xi
(~a)dxi

and is called the total differential of f at ~a.

Example 7.10. Let V (r, h) = πr2h, the volume of a cylinder of radius r and
height h.

Observe that V is C1 on R2, hence it is differentiable everywhere.
We have:

dV =
∂V

∂r
dr +

∂V

∂h
dh

= 2πrhdr + πr2dh

For application:
Suppose we want to approximate change of V when (r, h) changes from
(r, h) = (3, 12) to (3 + 0.08, 12− 0.3)
Let

dr = ∆r = 0.08,

dh = ∆h = −0.3
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Then:
∆V ≈ dV ← approximated change

= 2πrhdr + πr2dh

= 2π(3)(12)(0.08) + π(3)2(−0.3)

= 3.06π ≈ 9.61

7.5.1 Properties of the Total Differential
Theorem 7.11. Suppose f, g : Ω ⊆ Rn → R are differentiable and c ∈ R is a
constant. Then:

1. d(f + g) = df + dg

2. d(cf) = c df

3. d (fg) = g df + f dg

4. d
(
f

g

)
=
g df − f dg

g2

Proof of Theorem 7.11. Exercise.

7.6 Summary: Differentiating a real-valued func-
tion f (~x) = f (x1, · · · , xn) at ~a ∈ Rn

7.6.1 Different types of derivatives

• Directional derivative: D~uf(~a) = limt→0
f(~a+ t~u)− f(~a)

t
for ‖~u‖ = 1

• Partial derivative:
∂f

∂xi
(~a) = Deif(~a) ei = (0, · · · , 0, 1, 0, · · · , 0)

• Gradient: ∇f(~a) =

(
∂f

∂x1
(~a), · · · , ∂f

∂xn
(~a)

)
• Total differential: df =

∑n
i=1

∂f
∂xi

(~a)dxi

• Higher derivatives: eg
∂2f

∂x1∂x2
= fx2x1

f isCk means f and all its partial derivatives up to order k exist and are continuous
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7.6.2 Linear Approximation of f(~x) near ~a
• L(~x) = f(~a) +∇f(~a) · (~x− ~a)

• f(~x) = L(~x) + ε(~x)

• f is differentiable at ~a if lim~x→~a
ε(~x)

‖~x− ~a‖
= 0⇒ df ≈ ∆f

7.6.3 Relations among derivatives
1. C∞ ⇒ · · · ⇒ Ck+1 ⇒ Ck ⇒ · · · ⇒ C1 ⇒ C0

2.
f is C1 on an open set containing ~a

⇓

f is differentiable at ~a.

⇓

D~uf(~a) = ∇f(~a) · ~u

⇓

D~uf(~a) exists for any unit vector ~u ∈ Rn

⇓
∂f

∂xi
(~a) exists for i = 1, · · · , n

3. All the⇒ in the reverse direction are false. See next slide for counter ex-
amples

Verify the following (counter-) example:

Example 7.12. f : R −→ R

f(x) =

{
x2 sin 1

x
if x 6= 0;

0 if x = 0.
f is differentiable on R but f ′(x) is not continuous at x = 0.
Simiarly,
g(x) = x2k−2f(x) is k-time differentiable but g(k)(x) is not continuous at

x = 0 .
Hence, k-time differentiable ; Ck

In particular, Ck−1 ; Ck

For a multivariable example, let: h(~x) = g (x1).
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Example 7.13. Let:

f(x, y) =


xy2

x2 + y4
if (x, y) 6= (0, 0).

0 if (x, y) = (0, 0).

Then, D~uf(0, 0) exists for any unit vector ~u ∈ R2 but f is not continuous at (0, 0).

Example 7.14. Let f(x, y) = |x+ y|.
Then, f is continuous on R2 but fx(0, 0), fy(0, 0) do not exist.

Example 7.15. Let f(x, y) =
√
|xy|.

Then, fx(0, 0), fy(0, 0) exist, butD~uf(0, 0) does not exist for any ~u 6= ±~e1,±~e2
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