
MATH 2010 Chapter 5

5.1 Finding Limits Using Polar Coordinates
Recall:

(x, y)←→ (r, θ)pol

with:
x = r cos θ

y = r sin θ

and:
(x, y) = (0, 0)⇐⇒ r = 0.

Example 5.1. Find:

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
.

Solution.

= lim
r→0

r3 cos3 θ + r3 sin3 θ

r2 cos2 θ + r2 sin2 θ

= lim
r→0

r
(
cos3 θ + sin3 θ

)
= 0 (Squeeze theorem)

Example 5.2. Find:

lim
(x,y)→(0,0)

x2 + xy

2(x2 + y2)
.
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Solution.

= lim
r→0

r2 cos2 θ + r2 cos θ sin θ

2r2

= lim
r→0

cos2 θ + cos θ sin θ

2

=

{
1
2

if θ = 0
0 if θ = π

2

In other words, the function approach different values as (x, y) approaches (0, 0)
at different angles. Hence, the limit does not exist .

Example 5.3. Find:
lim

(x,y)→(0,0)
xy ln(x2 + y2).

Solution.

= lim
r→0

r2 cos θ sin θ ln(r2)︸ ︷︷ ︸
Observe that, as r → 0,

| cos θ sin θ| 6 1,

r2 → 0,

ln
(
r2
)
→ −∞.

Moreover: ∣∣r2 cos θ sin θ ln (r2)∣∣ ≤ ∣∣r2 ln (r2)∣∣
We have:

lim
r→0

r2 ln
(
r2
)
= lim

r→0

ln (r2)
1
r2

(
−∞
∞

)

= lim
r→0

2r
r2

− 2
r3

(L’ Hopital’s Rule)

= lim
r→0
−r2 = 0

By Squeeze theorem, it now follows that:

lim
(x,y)→(0,0)

xy ln
(
x2 + y2

)
= 0.
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5.2 Iterated Limits
Example 5.4. Consider:

f(x, y) =
x+ y

x− y

lim
x→0

lim
y→0

x+ y

x− y
= lim

x→0

x+ 0

x− 0

= 1.

On the other hand,

lim
y→0

lim
x→0

x+ y

x− y
= lim

y→0

0 + y

0− y
= −1.

Moreover, lim(x,y)→(0,0)
x+y
x−y does not exist (Exercise ).

Remark. • In general, if lim
x→0

lim
y→0

f(x, y) and lim
y→0

lim
x→0

f(x, y) both exist and

are equal to each other, it does NOT follow that lim(x,y)→(0,0) f(x, y) exists.

Counter-example:

f(x, y) =

{
1 if x = y;

0 if x 6= y.

• Conversely, if lim(x,y)→(0,0) f(x, y) exists, it also does NOT follow that:

lim
x→0

lim
y→0

f(x, y), lim
y→0

lim
x→0

f(x, y)

both exist. Counter-example:

f(x, y) =

{
x cos 1

y
+ y cos 1

x
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

• If all three limits exist, then they are equal.

5.3 Continuity
Definition 5.5. We say that a function f : A −→ R in n variables is continuous
at ~a ∈ A if:

lim
~x→~a

f(~x) = f(~a).
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Definition 5.6. A function ~f : A −→ R is continuous is f is continuous at every
point in its domain A.

Example 5.7. Each "coordinate function" fi : Rm −→ R, defined by:

fi(x1, x2, . . . , xm) = xi,

is continuous.

Theorem 5.8. Let k be a scalar constant. If f, g : A −→ R are continuous at
~a ∈ A, then:

• f + g, kf , fg are all continuous at ~a

• f

g
is continuous at ~a is g(~a) 6= 0.

Proof of Theorem 5.8. This follows from the properties of limits.

Corollary 5.9. All polynomial and rational functions (i.e. polynomial divided by
another polynomial) are continuous (on their domains).

Theorem 5.10. If f : A −→ R is continuous at ~a ∈ A, and g : I −→ R is a
single-variable real-valued function continuous at f(~a), then g ◦ f : A −→ R is
continuous at ~a.

In other words:

lim
~x→~a

g(f(~x)) = g
(
lim
~x→~a

f(~x)
)
= g(f(~a)).

Corollary 5.11. Every so-called "elementary function" (a function constructed
from constants, power functions, trigonometric, inverse trigonometric, exponen-
tial and logarithmic functions, via addition, subtraction, multiplication, division
and composition) is continuous at all points in its domain.

Example 5.12. • Every polynomial in n variables (e.g. f(x, y, z) = x2yz +
5yz2 + 16y3 − 8) is continuous everywhere.

• Every rational function in n variables is continuous at all points where the
function is defined.

• f(x, y) = ecos(x
2+y2) is continuous at all (x, y) ∈ R2.

• f(x, y) = 1√
x2 + y

is continuous at all (x, y) ∈ R2 such that x2 + y > 0.
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Example 5.13. • Consider:

g(x, y) =
x4 − y4

x2 + y2
.

Since x2 + y2 = 0⇔ (x, y) = (0, 0), the domain of g is R2\{(0, 0)}.

lim
(x,y→(0,0)

g(x, y) = lim
(x,y)→(0,0)

x4 − y4

x2 + y2

= lim
r→0

r4 cos4 θ − r4 sin4 θ

r2 cos2 θ + r2 sin2 θ

= lim
r→0

r2
(
cos2 θ − sin2 θ

)
= 0 (Sandwich theorem)

Hence, g can be extended to a continuous function on the whole R2 as
follows:

g(x, y) =

{
x4−y4
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

• On the other hand, consider:

f(x, y) =
xy + y3

x2 + y2

lim
(x,y)→(0,0)

y=mx

f(x, y) = lim
(x,y)→(0,0)

y=mx

xy + y3

x2 + y2

= lim
x→0

mx2 +m3x3

x2 +m2x2

= lim
x→0

m+m3x

1 +m2

=
m

1 +m2
=

{
0, if m = 0
1
2

if m = 1

Since the limit varies with slope, lim
(x,y)→(0,0)

f(x, y) does not exist.

The function f cannot be extended to a function defined on R2.

5.4 Partial Derivatives
Definition 5.14. Let f : A −→ R be a function on an open region A ∈ Rn,
~a = (a1, a2, . . . , an) ∈ A. For i = 1, 2, . . . , n, we define the partial derivative
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with respect to xi of f at ~a to be:

∂f

∂xi
(~a) =

 d

dxi
f(a1, a2, . . . , ai−1, xi︸︷︷︸

i-th coordinate

, ai+1, . . . , an)

∣∣∣∣∣∣
xi=ai

= lim
h→0

f(a1, a2, . . . , ai−1, ai + h, ai+1, . . . , an)− f(~a)
h

Observe that as ~a varies, the correspondence:

~a 7→ ∂f

∂xi
(~a)

defines a real-valued function on a subsetA′ ofA consisting of those points ~a ∈ A
where ∂f

∂xi
(~a) is defined.

We have therefore a multivariable function defined as follows:

Definition 5.15.
∂f

∂xi
: A′ −→ R,

∂f

∂xi
(x1, x2, . . . , xn)

= lim
h→0

f(x1, x2, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, x2, . . . , xn)
h

.

Notation. Other notations for
∂f

∂xi
are:

fxi , ∂if, Dif, ∇if

IFRAME

Example 5.16.
f(x, y) = x2 + y2

∂f

∂x
= 2x+ 0 = 2x (Regard y as a constant)

∂f

∂y
= 0 + 2y = 2y (Regard x as a constant)

In particular:
∂f

∂x
(1,−1) = 2(1) = 2 > 0

∂f

∂y
(1,−1) = 2(−1) = −2 < 0

This means that f(x, y) increases as x increases at (1,−1), and it decreases as y
increases at (1,−1).
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Example 5.17.
f(x, y, z) = xy2 − cos(xz)

Find fx, fy, fz.

Solution.
fx = y2 + z sin(xz)

fy = 2xy + 0 = 2xy

fz = 0 + x sin(xz) = x sin(xz)

Example 5.18.

f(x, y) =

{
1 if xy ≥ 0;

0 if xy < 0.

Find
∂f

∂x
(1, 1),

∂f

∂x
(0, 1),

∂f

∂x
(0, 0).

Solution.
∂f

∂x
: Fix y, differentiate f(x, y) with respect to x.

Along y = 1

f(x, 1) =

{
1 if x > 0
0 if x < 0

Hence:
∂f

∂x
(1, 1) = 0,

and:
∂f

∂x
(0, 1) DNE

Along y = 0 We have f(x, 0) = 1 for all x ∈ R. This implies that:

∂f

∂x
(0, 0) = 0.

Remark. In the previous example, we can similarly conclude that:
∂f

∂y
(0, 0) = 0.

Also, it may be shown that f is not continuous at (0, 0) (exercise ).

Hence, in general, the existence of
∂f

∂x
and

∂f

∂y
at a point P does not imply

that f is continuous at P .
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5.5 Higher Order Partial Derivatives

Since,
∂f

∂xi
is itself a function in n variables, we can consider its partial derivative

with respect to any of the variables xj . We can likewise further consider partial
derivatives of that partial derivative, and so on. The notation is as follows:

∂2f

∂x2i
= fxixi :=

∂

∂xi

(
∂f

∂xi

)
.

For j 6= i,
∂2f

∂xj∂xi
= fxixj :=

∂

∂xj

(
∂f

∂xi

)
.

For m ∈ N,
∂mf

∂xmi
= fxixi · · ·xi︸ ︷︷ ︸

m times

:=
∂

∂xi

(
∂m−1f

∂xm−1i

)
For i1, i2, . . . , im ∈ {1, 2, 3, . . . , n},

∂mf

∂xim∂xim−1∂xim−2 · · · ∂xi1
= fxiixi2 ···xim :=

∂

∂xim

(
∂m−1f

∂xim−1∂xim−2 · · · ∂xi1

)
.

Example 5.19. Find all first and second order partial derivatives of:

f(x, y) = x sin y + y2e2x

Solution.
fx = sin y + 2y2e2x

fy = x cos y + 2ye2x

fxx = (fx)x = 4y2e2x

fxy = (fx)y = cos y + 4ye2x

fyx = (fy)x = cos y + 4ye2x

fyy = (fy)y = −x sin y + 2e2x

Is fxy = fyx a coincidence?
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Example 5.20. Compute fxy(0, 0), fyx(0, 0) , where:

f(x, y) =


xy (x2 − y2)
x2 + y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Solution. By definition, fxy = (fx)y.

So, fxy(0, 0) = limk→0
fx(0, k)− fx(0, 0)

k
Need to find: fx(0, k) for k 6= 0 and fx(0, 0) for k 6= 0,

f =
xy (x2 − y2)
x2 + y2

near (0, k).

fx =
(x2 + y2) (3x2y − y3)− xy (x2 − y2) (2x)

(x2 + y2)2

near (0, k)
Hence:

fx(0, k) =
k2 (−k3)− 0

k4
= −k

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

0− 0

h
= 0

fxy(0, 0) = lim
k→0

fx(0, k)− fx(0, 0)
k

= lim
k→0

−k − 0

k
= −1

Similar calculation gives: fyx(0, 0) = 1.
(Alternatively, note that f(x, y) = −f(y, x). Hence fyx(0, 0) = −fxy(0, 0) =

1.)
Hence, in this example, fxy(0, 0) 6= fyx(0, 0)

Theorem 5.21 (Mixed Derivative Theorem). Let x and y be two of the variables
of a real-valued function f in multiple variables. If fxy and fyx exist and are
continuous on an open region containing a point ~a, then:

fxy(~a) = fyx(~a).

Proof of Mixed Derivative TheoremClairaut’s Theorem. We prove the theorem for
the special case where f : A −→ R has two variables (i.e. A ⊆ R2).

Without loss of generality, we may assume that ~a = (0, 0) ∈ A. We want to
show that:

fxy(0, 0) = fyx(0, 0)
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Let h, k be any positive real numbers such that [0, h]× [0, k] ⊆ A. Let:

α = (f(h, k)− f(h, 0))− (f(0, k)− f(0, 0))

Let:
g(x) = f(x, k)− f(x, 0), 0 ≤ x ≤ h.

Then:
α = g(h)− g(0),

and:
g′(x) = fx(x, k)− fx(x, 0).

By the Mean Value Theorem , there exists h1 ∈ (0, h) such that:

α

h
=
g(h)− g(0)

h
= g′(h1) = fx(h1, k)− fx(h1, 0).

By MVT again, there exists k1 ∈ (0, k) such that:

fx(h1, k)− fx(h1, 0)
k

= fxy(h1, k1).

Hence:
α = h [fx(h, k)− fx(h, 0)] = hkfxy(h1, k1).

Similarly, there exists (h2, k2) ∈ (0, h)× (0, k) such that:

α = hkfyx(h2, k2)

Hence, for any positive real numbers h, k sufficiently small, we have:

fxy(h1, k1) = fyx(h2, k2) (5.1)

for some (h1, k1), (h2, k2) lying the rectangle [0, h]× [0, k].
If we let (h, k)→ (0, 0), then (h1, k1), (h2, k2)→ (0, 0). So, from an intuitive

perspective, it follows from (5.1), and the continuity of fxy and fyx at (0, 0), that:

fxy(0, 0) = fyx(0, 0).

More rigorously:
Suppose fxy(0, 0) 6= fyx(0, 0). Then, d := |fxy(0, 0)− fyx(0, 0)| > 0.
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The continuity of fxy and fyx at (0, 0) implies that there exists δ > 0 such that
for all (x, y) ∈ Bδ(0, 0), we have:

|fxy(x, y)− fxy(0, 0)| < d/2

and
|fyx(x, y)− fyx(0, 0)| < d/2.

Hence, if we take (h, k) such that 0 < ‖(h, k)‖ < δ, then, (5.1) implies that the
intervals:

(fxy(0, 0)− d/2, fxy(0, 0) + d/2), (fyx(0, 0)− d/2, fyx(0, 0) + d/2),

have nonempty intersection (i.e. the common value fxy(h1, k1) = fyx(h2, k2) lies
in both intervals). This contradicts the assumption that the distance d between
fxy(0, 0) and fyx(0, 0) is nonzero.
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