MATH 2010 Chapter 5

5.1 Finding Limits Using Polar Coordinates

Recall:
(@,y) <= (r,0)pa
with:
x =rcosf
y =rsinf
and:

(z,y) =(0,0) <= r =0.
Example 5.1. Find:
3+ y3
im —.
(@) —(0,0) 22 + Y2
Solution.
3 cos® 0 + 3 sin® 0

m :
r—0 12 cos? 0 + r2 sin? 0

= limr (0053 0 + sin® 9)
r—0

=0 (Squeeze theorem)
Example 5.2. Find:
, 2%+ zy
lim @ ————.
(29)—(0,0) 2(x2 + 32)



Solution.
r? cos® 6 + r? cos A sin §

= lim
r—0 2r2

cos? 6 + cosfsin 0

In other words, the function approach different values as (x, y) approaches (0, 0)

at different angles. Hence, the limit does not exist .

Example 5.3. Find:
lim  zyln(z? + 4?).
(z,y)—(0,0) Y ( Y )

Solution.
= lim r* cos § sin 0 In(r?)

r—0\
TV

Observe that, as r — 0,
|cosfsinf| < 1,

r? — 0,
In (7’2) — —00.

Moreover:
!7"2 cos 6 sin 6 In (1”2) ‘ < ‘7"2 In (r2) |
We have:
In (12 —
lim 72 In (r2) = lim n(lr ) ( OO)
r—0 r—0 el o0
2r
= lim ’”22 (L’ Hopital’s Rule)
r—0 —3
=lim—r?=0
r—0

By Squeeze theorem, it now follows that:
lim 2yln (x2 + y2) =0.

(z,y)—(0,0)



5.2 Iterated Limits

Example 5.4. Consider:
Tty

r—Y

flz,y) =

. .. rx+y . x+0
lim lim = lim
z—>0y—>01;—y x—>0:l;—0

= 1.
On the other hand,
. .. ox+y . O+vy
lim lim = lim
y—=0z—0x —y y—=00—y
= —1.

Moreover, lim, 4)—(0,0) z—f?; does not exist (Exercise ).

Remark. e In general, if lim lim f(z,y) and lim lim f(x,y) both exist and
z—0 y—0 y—0z—0
are equal to each other, it does NOT follow that lim, ), 0,0y f(x, y) exists.

Counter-example:

1 itz =y
f(x’y)_{o if 7 4 .

e Conversely, if lim ;) (0,0) (%, y) exists, it also does NOT follow that:

lim lim f(z,y), limlim f(z,vy)

z—0 y—0 y—0z—0

both exist. Counter-example:

Floy) = a:cosi%—ycos% if (z,y) # (0,0);
R if (2,) = (0,0).

o If all three limits exist, then they are equal.

5.3 Continuity
Definition 5.5. We say that a function f : A — R in n variables is continuous
ata € Aif:

lim (%) = ().

3



Definition 5.6. A function f : A — R is continuous is f is continuous at every
point in its domain A.

Example 5.7. Each "coordinate function" f; : R™ — R, defined by:

fi(ﬂfl, To, ... ,l’m) = Ty,
1s continuous.

Theorem 5.8. Let k be a scalar constant. If f,g : A —> R are continuous at
a € A, then:

o f+g, kf, fgare all continuous at @

e = is continuous at a is g(@) # 0.
g

Proof of Theorem 5.8. This follows from the properties of limits. 0

Corollary 5.9. All polynomial and rational functions (i.e. polynomial divided by
another polynomial) are continuous (on their domains).

Theorem 5.10. If f : A — R is continuous at @ € A, and g : I — Risa
single-variable real-valued function continuous at f(a), then go f : A — R is
continuous at d.

In other words:

lim g(f(7)) = g (lim f(7)) = g((@))

Corollary 5.11. Every so-called "elementary function” (a function constructed
from constants, power functions, trigonometric, inverse trigonometric, exponen-
tial and logarithmic functions, via addition, subtraction, multiplication, division
and composition) is continuous at all points in its domain.

Example 5.12. e Every polynomial in n variables (e.g. f(x,vy,2) = z%yz +
5yz* + 16y — 8) is continuous everywhere.

e Every rational function in n variables is continuous at all points where the
function is defined.
cos(z2+y?)

o f(z,y)=ce is continuous at all (z,y) € R

o f(z,y) =

is continuous at all (z,y) € R? such that 2% + y > 0.

1
N



Example 5.13. e Consider:

PO
9(z,y) = 2 1yt
Since 72 + y* = 0 & (z,y) = (0,0), the domain of g is R*\{(0,0)}.

7t — y4
lim g(z,y)= lm —=
(2,5—(0,0) (z,9)—(0,0) 2 + y2

rtcostf — rtsin @

1m
r—0 12 cos2 § + r2sin? @

= lim r? ((3082 0 — sin? 9)
r—0

=0 (Sandwich theorem)

Hence, g can be extended to a continuous function on the whole R? as
follows:

oy EE i (ry) #(0,0)
9(z,y) { 0" if (z.y) = (0,0)

e On the other hand, consider:

Ty +y
x,y) =
flay) =57 )
Ty + ?J
li lim ———~
(3 10.0) flw,y) = (20)(0.0) x? 4+ y?
y=mx
1 ma? + m3a?
g 22 + m2ax?
m+miz

Since the limit varies with slope, lim  f(z, y) does not exist.
(z,9)—(0,0)

The function f cannot be extended to a function defined on R2,

5.4 Partial Derivatives

Definition 5.14. Let f : A — R be a function on an open region A € R",
a = (ay,a9,...,a,) € A. Fori = 1,2,...,n, we define the partial derivative



with respect to x; of f at a to be:

af d

a$(6>: dI f(CLl,ClQ,...,CLz‘_l, Z; 7ai+17"'7an)
’ ’ i-th coordinate zi=a;
~ lim flay,as, ... ai—1,0; + h, @iy, ... a,) — f(d)
h—0 h

Observe that as @ varies, the correspondence:

i L @)

a +—
8:62-

defines a real-valued function on a subset A’ of A consisting of those points @ € A
where %(&’) is defined.
We have therefore a multivariable function defined as follows:

Definition 5.15.

0
/ A — R,
8@»
0
ai (:L'17x27 LI axn)
_ hm f(xl,a:Q, N I I 7 + h, Litly-- - ,I‘n) — f(.ﬁl,’l,$2, . ,SL’n>
h—0 h, )
Notation. Other notations for 5 are:
T
fxw azfv le7 vlf
IFRAME
Example 5.16.

fla,y) =" +y*

0
8_f =2x+0=2x (Regard y as a constant)
x

0
0_f =042y =2y (Regard x as a constant)
Y

In particular:

of o
Zo(1,-1) =2(1) =2>0

of B o

gy (LD =2(-1)=-2<0

This means that f(z,y) increases as x increases at (1, —1), and it decreases as y
increases at (1, —1).


https://www.geogebra.org/material/iframe/id/acvGcp2n/width/853/height/809/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false

Example 5.17.
f(x,y, Z) = ‘ryz - COS(‘T'Z)

Find fo, fy, [

Solution.
fo =y + zsin(zz)
fy =22y +0 = 2xy
f. =04 zsin(zz) = zsin(zz)
Example 5.18.
1 ifzy > 0;
ﬂ%yy_{o ifzy <0
. Of of of
Find —(1,1), =—(0,1), — )
lnd a:C( Y )7 az(()? )7 ax(()?O)

3} . . . :
Solution. of : Fix y, differentiate f(x,y) with respect to .

Alongy =1
1 ifz>0
f@J”‘{o if 2 <0
Hence: of
—(1,1)=0
31:( 1) =0,
and: of
—(0,1) DNE
Lo
Along y = 0 We have f(z,0) = 1 for all z € R. This implies that:
of
—(0,0) =0.
0.0
: . of
Remark. In the previous example, we can similarly conclude that: —(0,0) = 0.
Also, it may be shown that f is not continuous at (0, 0) (exercise ).
0
Hence, in general, the existence of Iz and 8_f at a point P does not imply
x y

that f is continuous at P.



5.5 Higher Order Partial Derivatives

. of . . .. . D . .
Since, £ is itself a function in n variables, we can consider its partial derivative
x .

(2
with respect to any of the variables x;. We can likewise further consider partial
derivatives of that partial derivative, and so on. The notation is as follows:

°r_ 0 (o

(2

r_, 0 (0]
8@»8@- o 8[)3j 8@ ‘

o f B (8m1f)

oxl" & Oy \ o

For j # 1,

Form € N,

m times

Foril,ig,...,ime {1,2,3,...,n},

amf ' 0 ( am—lf )

Ox;, O0x;  0x; ., ---0x; nteTm O Ox;, ,0x; -0z

Example 5.19. Find all first and second order partial derivatives of:

f(z,y) = xsiny + y2e®®

Solution.
fo = siny + 2y%e*™®
fy = xcosy + 2ye**
foo = (f2), = 4y°€*
fay = (fac)y = cosy + dye*®

fye = (fy), = cosy + 4ye*”

fyy = (fy), = —wsiny + 2e%"

IS fuy = fye & coincidence?



Example 5.20. Compute f,,(0,0), f,.(0,0) , where:

flz,y) = %_yg) if (z,y) # (0,0)
0 if (z,y) = (0,0)

Solution. By definition, f,, = (f.) ”

So, fxy(07 O) = hmkHO f:c(07 k) ; fx(o, 0)
Need to find: f,(0, k) for k # 0 and f,(0,0) for k # 0,

xy (2% — y?)
f = W near (O, k?)
I = (2% +y?) 3%y — y°) — wy (2 — y*) (22)
: (22 +y?)”
near (0, k)
Hence: 2 ( k3) 0
f(0, k) = i = —k
.. f(h,0) = £(0,0)
. 0-=0
=y =, =0
fa0,0) = Jimy k
. —k—0
B

Similar calculation gives: f,,(0,0) = 1.
(Alternatively, note that f(x,y) = —f(y, ). Hence f,,(0,0) = —f,,(0,0) =

1)
Hence, in this example, f,,(0,0) # f,.(0,0)

Theorem 5.21 (Mixed Derivative Theorem). Let x and y be two of the variables
of a real-valued function f in multiple variables. If f,, and f,, exist and are
continuous on an open region containing a point a, then:

fwy(a) = fyz(a)'

Proof of Mixed Derivative TheoremClairaut’s Theorem. We prove the theorem for
the special case where f : A — R has two variables (i.e. A C R?).

Without loss of generality, we may assume that @ = (0,0) € A. We want to
show that:

fﬂﬁy(()» 0) = fyﬂ?(()? 0)
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Let h, k be any positive real numbers such that [0, h] x [0, k] C A. Let:

a = (f(h,k) = f(h,0)) = (f(0,k) = £(0,0))

Let:
g(x):f(x,k)—f(x,O), ngéh
Then:
a=g(h) —g(0),
and:

9 (@) = falz, k) = fa(,0).
By the Mean Value Theorem , there exists h; € (0, h) such that:
— =" =g () = fo(h1,k) = fu(h1,0).
By MVT again, there exists k; € (0, k) such that:

fm(hla k) - fx(hlao)
k

= fxy(h1,k1)-

Hence:
o = h [f:ﬁ(h7 k) - fz(h’ 0)] - hkfasy(hla kl)
Similarly, there exists (hg, k2) € (0, h) x (0, k) such that:
o = hk’fyaj(hg, k’g)

Hence, for any positive real numbers h, k sufficiently small, we have:

fa:y(hlakl) == fyw(h27k2) (51)

for some (hy, k1), (he, ko) lying the rectangle [0, h] x [0, k].
If we let (h, k) — (0,0), then (hy, k1), (ha, k2) — (0,0). So, from an intuitive
perspective, it follows from (5.1I)), and the continuity of f,, and f,, at (0, 0), that:

fxy(oa O) = fy:r(ov O)

More rigorously:
Suppose f.,(0,0) # f,2(0,0). Then, d := | f1,(0,0) — £,(0,0)| > 0.

10


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh//math1010/devel/week7.xml&query=(//lv:statement[./lv:label/@name=%27thm:lagrangemvt%27])[1]

The continuity of f,, and f,, at (0,0) implies that there exists 6 > 0 such that
for all (z,y) € Bs(0,0), we have:

[ fay(2,y) = fay(0,0)] < d/2

and
|fya:<x7y) - fyac(070)| < d/2

Hence, if we take (h, k) such that 0 < ||(h, k)| < &, then, (5.1)) implies that the
intervals:

(fxy(070) - d/27 fxy<070) + d/2)a (fy:t:(oao) - d/27 fya:(0>0) + d/2),

have nonempty intersection (i.e. the common value f,,(hy, k1) = f,.(ho, k2) lies
in both intervals). This contradicts the assumption that the distance d between
f24(0,0) and f,,(0,0) is nonzero. ]
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