MATH 2010 Chapter 4

4.1 Vector-Valued Functions in Multiple Variables

Let

$$\vec{f}:\Omega\longrightarrow\mathbb{R}^m,$$

be a vector-valued function, where $\Omega \subseteq \mathbb{R}^n$.

Definition 4.1. The graph of \vec{f} is:

$$\operatorname{Graph}(\vec{f}) = \left\{ \left(\vec{x}, \vec{f}(\vec{x}) \right) : \vec{x} \in \Omega \right\} \subseteq \mathbb{R}^{n+m}$$

4.1.1 Level Set

For a function $\vec{f}: \Omega \longrightarrow \mathbb{R}^m$, $\Omega \subseteq \mathbb{R}^n$, in n variables, and $\vec{c} \in \mathbb{R}^m$, the **level set** of \vec{f} corresponding to \vec{c} is the set of points $(x_1, x_2, \dots, x_n) \in \Omega$ such that

$$\vec{f}(x_1, x_2, \dots, x_n) = \vec{c}$$

- If n=2, then a level set of \vec{f} is typically a curve in the xy-plane, and is often called a **level curve**.
- If n=3, then a level set is typically a surface in the xyz-space, and is often called a **level surface**.

Example 4.2. $f(x,y) = x^2 + y^2$.

- ullet For c=-2,-1, the level sets $f(x,y)=x^2+y^2=c$ are empty.
- For c=0, the level set $f(x,y)=x^2+y^2=0$ consists of the single point (0,0).
- For c > 0, the level set $f(x, y) = x^2 + y^2 = c$ is the circle in \mathbb{R}^2 centred at the origin with radius \sqrt{c} .

Each level set f(x,y)=c corresponds to (the projection onto the xy-plane of) the intersection of the surface z=f(x,y) and the horizontal (hence "level") plane z=c:

IFRAME

4.2 Limits of Multivariable Functions

First, recall Closure.

Definition 4.3 (Limit). Let $\vec{f}: A \longrightarrow \mathbb{R}^m$ be a vector-valued function on $A \subseteq \mathbb{R}^n$. For any $\vec{a} \in \bar{A}$, we say that: The limit of \vec{f} at \vec{a} is \vec{L}

$$\lim_{\vec{x}\to\vec{a}}\vec{f}(\vec{x})=\vec{L}$$

if: For all $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$\|\vec{f}(\vec{x}) - \vec{L}\| < \varepsilon$$

for all $\vec{x} \in A$ which satisfies $0 < \|\vec{x} - \vec{a}\| < \delta$.

Example 4.4. Let:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R},$$

 $f(x,y) = x + y, \quad (x,y) \in \mathbb{R}^2.$

Then,

$$\lim_{(x,y)\to(1,2)} f(x,y) = 3.$$

Proof of Example 4.4. Show that given any $\varepsilon > 0$, one can find $\delta > 0$ such that if $0 < ||(x,y) - (1,2)|| < \delta$, then $|f(x,y) - 3| < \varepsilon$.

Idea:

$$|f(x,y) - 3| = |(x-1) + (y-2)|$$

$$\leq |x-1| + |y-2|$$

$$||(x,y) - (1,2)|| = \sqrt{(x-1)^2 + (y-2)^2}.$$

For example, for $\varepsilon = 1$, one can pick $\delta = \frac{1}{2}$:

If
$$||(x,y)-(1,2)|| < \delta = \frac{1}{2}$$
, then:

$$|x-1| = \sqrt{(x-1)^2} \leqslant \sqrt{(x-1)^2 + (y-2)^2} < \frac{1}{2}$$

 $|y-2| = \sqrt{(y-2)^2} \leqslant \sqrt{(x-1)^2 + (y-2)^2} < \frac{1}{2}$

This implies that:

$$|f(x,y) - 3| \le |x - 1| + |y - 2| < \frac{1}{2} + \frac{1}{2} = 1 = \varepsilon$$

Similarly, for $\varepsilon=\frac{1}{100}$, one can pick $\delta=\frac{1}{200}$ In general, we need to do it for any $\varepsilon>0$ For any given $\varepsilon>0$, one can pick $\delta = \frac{\varepsilon}{2}$. Then:

$$||(x,y) - (1,2)|| < \delta = \frac{\varepsilon}{2}$$

$$\Rightarrow |f(x,y) - 3| = |x+y-3| \le |x-1| + |y-2|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence,
$$\lim_{(x,y)\to(1,2)} f(x,y) = 3$$
.

Example 4.5. Let:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R},$$

 $f(x,y) = x^2 + y^2, \quad (x,y) \in \mathbb{R}^2.$

Then,

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Proof of Example 4.5. For all $\varepsilon > 0$, we need to find $\delta > 0$ such that:

if:

$$0 < \|(x,y) - (0,0)\| = \sqrt{x^2 + y^2} < \delta,$$

then:

$$|f(x,y) - 0| = |x^2 + y^2| < \varepsilon.$$

Exercise: Complete the rest of the proof.

Proposition 4.6. Let $A \subseteq \mathbb{R}^n$, $a \in A$, $\vec{f} : A \longrightarrow \mathbb{R}^m$, where:

$$\vec{f}(\vec{x}) = \begin{bmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_m(\vec{x}) \end{bmatrix}, \quad f_i : A \longrightarrow \mathbb{R}.$$

Then,

$$\lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x}) = \vec{L} = \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_m \end{bmatrix}$$

if and only if

$$\lim_{\vec{x}\to\vec{a}} f_i(\vec{x}) = l_i$$

for i = 1, 2, ..., m.

Example 4.7. Let:

$$\vec{f}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

$$\vec{f}(x,y)=\begin{bmatrix}x+y\\x^2+y^2+1\end{bmatrix},\quad (x,y)\in\mathbb{R}^2.$$

Then,

$$\lim_{(x,y)\to(1,2)} \vec{f}(x,y) = \begin{bmatrix} \lim_{(x,y)\to(1,2)} x + y \\ \lim_{(x,y)\to(1,2)} x^2 + y^2 + 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Proposition 4.8. Let $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a function. Let $\gamma, \psi: \mathbb{R} \longrightarrow \mathbb{R}^n$ be the parameterization of two paths in \mathbb{R}^n , with $\gamma(0) = \psi(0) = \vec{a}$. If $\lim_{t \to 0} \vec{f}(\gamma(t))$ or $\lim_{t \to 0} \vec{f}(\psi(t))$ does not exist, or the two limits are not equal to each other, then the limit $\lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x})$ does not exist.

In fact:

Theorem 4.9. $\lim_{\vec{x}\to\vec{a}} \vec{f}(\vec{x}) = \vec{L}$ if and only if the limit of $\vec{f}(\vec{x})$ at \vec{a} along any path through \vec{a} exists and is equal to \vec{L} .

Example 4.10. Consider $\lim_{(x,y)\to(0,0)} f(x,y)$, where:

$$f(x,y) = \frac{xy}{x^2 + y^2}.$$

Let:

$$\gamma(t) = (t, t), \quad t \in \mathbb{R},$$

$$\psi(t) = (t, -t), \quad t \in \mathbb{R}.$$

Then,

$$\gamma(0) = \psi(0) = (0, 0),$$

and:

$$\lim_{t \to 0} f(\gamma(t)) = \lim_{t \to 0} \frac{t \cdot t}{t^2 + t^2} = \lim_{t \to 0} \frac{t^2}{2t^2} = \frac{1}{2},$$

$$\lim_{t \to 0} f(\psi(t)) = \lim_{t \to 0} \frac{t \cdot (-t)}{t^2 + (-t)^2} = \lim_{t \to 0} -\frac{t^2}{2t^2} = -\frac{1}{2},$$

Since $\lim_{t\to 0} f(\gamma(t)) \neq \lim_{t\to 0} f(\psi(t))$, we conclude that the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ does not exist.

Remark. Let $\vec{a}=(x_0,y_0)$. If $\lim_{x\to x_0}f(x,y_0)=\lim_{x\to y_0}f(x_0,y)=L$, it is not necessarily true that $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L$, or that the limit even exists.

Example 4.11.

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$f(x,y) = \left\{ \begin{array}{ll} 1 & \text{if} \quad 0 < y < x^2 \\ 0 & \text{otherwise} \end{array} \right.$$

Find $\lim_{(x,y)\to\vec{a}} f(x,y)$, where:

- 1. $\vec{a} = (0,1)$
- 2. $\vec{a} = (1,1)$
- 3. $\vec{a} = (0,0)$

4.2.1 Proporties of Limits

If all limits on the right-hand side exists, then the limit of the left-hand side exists and the formula holds:

- 1. $\lim_{\vec{x} \to \vec{a}} (\vec{f}(x) \pm \vec{g}(x)) = \lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x}) \pm \lim_{\vec{x} \to \vec{a}} \vec{g}(\vec{x}).$
- 2. $\lim_{\vec{x} \to \vec{a}} k \vec{f}(\vec{x}) = k \lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x})$ for any scalar constant k.
- 3. If \vec{f} and \vec{g} are real-valued, then $\lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x}) \vec{g}(\vec{x}) = \left(\lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x})\right) \left(\lim_{\vec{x} \to \vec{a}} \vec{g}(\vec{x})\right)$.
- 4. $\lim_{\vec{x} \to \vec{a}} \frac{f(\vec{x})}{g(\vec{x})} = \frac{\lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x})}{\lim_{\vec{x} \to \vec{a}} \vec{g}(\vec{x})}$ provided that $\lim_{\vec{x} \to \vec{a}} \vec{g}(\vec{x}) \neq 0$.
- 5. $\lim_{\vec{x} \to \vec{a}} (f(\vec{x}))^n = \left(\lim_{\vec{x} \to \vec{a}} f(\vec{x})\right)^n \quad \text{ for all } n \in \mathbb{N} = \{1, 2, 3, \ldots\},$
- 6.

$$\lim_{\vec{x} \to \vec{a}} (f(x))^{1/n} = \left(\lim_{\vec{x} \to \vec{a}} f(\vec{x})\right)^{1/n} \quad \text{ for all odd positive integers } n.$$

7. If $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = L > 0$, then

$$\lim_{\vec{x} \to \vec{a}} (f(\vec{x}))^{1/n} = L^{1/n}$$

for all $n \in \mathbb{N}$.

Theorem 4.12 (Squeeze Theorem). Let $f, g, h : \Omega \longrightarrow \mathbb{R}$ be real-valued functions on $\Omega \in \mathbb{R}^n$.

If:

$$g(\vec{x}) \le f(\vec{x}) \le h(\vec{x})$$

for all \vec{x} near $\vec{a} \in \Omega$, and

$$\lim_{\vec{x} \to \vec{a}} g(\vec{x}) = \lim_{\vec{x} \to \vec{a}} h(\vec{x}) = L,$$

then:

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = L.$$

Corollary 4.13. If $|f(\vec{x})| \leq g(\vec{x})$ near \vec{a} and $\lim_{\vec{x} \to \vec{a}} g(\vec{x}) = 0$, then $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = 0$.

Example 4.14. Find:

$$\lim_{(x,y)\to(0,0)} x \cos\left(\frac{1}{x^2+y^2}\right).$$

Solution. Note:

$$\left|\cos\left(\frac{1}{x^2+y^2}\right)\right| \leqslant 1 \Rightarrow \left|x\cos\left(\frac{1}{x^2+y^2}\right)\right| \leqslant |x|$$

Also,

$$\lim_{(x,y)\to(0,0)} |x| = 0.$$

Hence,

$$\lim_{(x,y)\to(0,0)} x\cos\left(\frac{1}{x^2+y^2}\right) = 0$$

by the Squeeze Theorem.

Example 4.15. Find:

$$\lim_{(x,y)\to(1,0)}\frac{(x-1)^2\ln x}{(x-1)^2+y^2}.$$

Solution. Note:

$$\left| \frac{(x-1)^2 \ln x}{(x-1)^2 + y^2} \right| = \left| \frac{(x-1)^2}{(x-1)^2 + y^2} \right| \cdot |\ln x|$$

 $\leq |\ln x|$

Also, $\lim_{(x,y)\to(1,0)} |\ln x| = |\ln(1)| = 0$ By squeeze theorem,

$$\lim_{(x,y)\to(1,0)} \frac{(x-1)^2 \ln x}{(x-1)^2 + y^2} = 0$$

Remark. If $a \geqslant b$, then

$$ca \leqslant cb \text{ if } c > 0$$

$$ca \leqslant cb \text{ if } c < 0$$