MATH 2010 Chapter 4

4.1 Vector-Valued Functions in Multiple Variables

Let .
f:Q— R™,

be a vector-valued function, where 2 C R™.

Definition 4.1. The graph of f is:

4.1.1 Level Set

For a function f Q0 — R™, ) C R", in n variables, and ¢ € R™, the level set
of f corresponding to c'is the set of points (z1, xa, ..., x,) € {2 such that

—

flzy,29,...,2,) =7C

e If n = 2, then a level set of f is typically a curve in the xy-plane, and is
often called a level curve.

e If n = 3, then a level set is typically a surface in the xyz-space, and is often
called a level surface.

Example 4.2. f(z,y) = 2% + °.
e Forc = —2,—1, the level sets f(z,y) = ? + y* = c are empty.

e For ¢ = 0, the level set f(x,y) = 22 + y? = 0 consists of the single point
(0,0).

e For ¢ > 0, the level set f(z,y) = 2* + y* = c s the circle in R? centred at
the origin with radius /c.



Each level set f(x,y) = c corresponds to (the projection onto the xy-plane
of) the intersection of the surface z = f(z,y) and the horizontal (hence “level”)
plane z = c:

IFRAME

4.2 Limits of Multivariable Functions

First, recall Closure.

Definition 4.3 (Limit). Let f :A— R™be a vector-valued function on A CR",
For any @ € A, we say that: The limit of f at d is L

lim f(Z) =L

Tr—ad
if: For all € > 0, there exists & > 0 such that:
1f(Z) —L|| <e

for all ¥ € A which satisfies 0 < ||Z — ]| < 9.
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Example 4.4. Let:
f:R* — R,
fla,y) =z +y, (v,y) €R%
Then,

lim T = 3.
o flz,y) =

Proof of Example 4.4. Show that given any € > 0, one can find § > 0 such that if
0 < |[(z,y) = (1,2)]| <4, then [f(x,y) — 3| <e.

Idea:
|flz,y) =3[ =[(z— 1)+ (y — 2)|
Sl =1+ |y — 2|
(2, 9) = (1,2)]| = V/(z = 1)2 + (y — 2)2.

For example, for ¢ = 1, one can pick § = 1
If || (z,y) — (1,2)]| <& = 4, then:

1
w1l = V-1 <VE-12+ -2 <3
1
=2 =V-22<VE-1P+E-22<;
This implies that:
1 1
|f(:6,y)—3!<|x—1!+!y—2\<§+§=1=€

Similarly, for e = 100, one can pick ) = 200
In general, we need to do it for any € > 0 For any given € > 0, one can pick
0 = 5. Then:
€
”(ZE,y) - <1a2)H <d=
= |f(z,y) =3l =lz+y =3[ <|lz -1+ |y -2
€

<S4t
2 2

Hence, lim f(z,y) = 3. O
(z,y)—(1,2)

(\V]

Example 4.5. Let:
f:R? —R,
fle,y) =2*+4%  (2,y) €R
Then,
lim  f(z,y) =0.

(z,y)—(0,0)



Proof of Example 4.5. For all € > 0, we need to find 6 > 0 such that:

if:
0 <|l(z,y) = (0,0)] = V&> +y* <,
then:
[f(2,y) = 0| = [2* + 9| <e.
Exercise: Complete the rest of the proof. [

Proposition 4.6. Let A C R", a € A, f : A — R™, where:

7(@)
@) = ﬁg),ij—aR
S ()
Then,
h
- - lo
lim f(#) =L =|.
b
if and only if

fori=1,2 ... .m.

Example 4.7. Let: .
f: R? — R?
- . x + Y )
f(xay)_|:x2_|_y2+1:|7 (:E7y)€R
Then,

lim z,y) = |, (zy)—(1,2) _
(z,9)—(1,2) f(@.y) [hm(x’y)_}(m) 2+ y?+1 6

Proposition 4.8. Let f : A C R" — R™ be a function. Let v, : R — R" be

the parameterization of two paths in R™, with v(0) = ¢(0) = a. Iflin% F(v(t) or
%

Pn& F(¥(t)) does not exist, or the two limits are not equal to each other, then the

%

—

limit lim f(Z) does not exist.
r—a

In fact:



—

Theorem 4.9. lim f(f) = L if and only if the limit of f(Z) at @ along any path
r—a
through a exists and is equal to L.

Example 4.10. Consider lim  f(x,y), where:

(=,9)—(0,0)
_ Ty
f(x7y) - -1'2"_:’./2‘
Let:
V() = (t,t), teR,
Then,
’Y(O) - w(O) = (070)7
and: ,
. . t-t .t
lim f(y(t) = lim -5— Tp Mo =3,
. .t (=1) . t? 1
o J(0(0) =l e ~ e =
Since 11551(1) f(y(t) # 11_{% f((t)), we conclude that the limit (x,yl)iirzo,ﬂ) ﬁyzﬁ

does not exist.

Remark. Let @ = (x¢, yo). If lim, 4, f(z,y0) = lim,_,,, f(xo,y) = L, it is not

necessarily true that ~ lim  f(x,y) = L, or that the limit even exists.
(m7y)4>(xo>y0)

Example 4.11.
f:R* —R
flay) = { (1) i)fther?zvi<sey <
Find lim(, )z f(x,y), where:
1. a=(0,1)
2.d=(1,1)
3. a=(0,0)



4.2.1 Proporties of Limits

If all limits on the right-hand side exists, then the limit of the left-hand side exists
and the formula holds:

L lim(f(z) = (o)) = lim f(#) + lim §(2).

T—a r—a

2. lim kf(Z) = k lim_f(Z) for any scalar constant k.

r—_—

3. If f and § are real-valued, then lim F(2)7(Z) = (lim 4(5)) (lim ﬁ(f)) :

—a

r)  limgq (7 : : -
4. lim f(f) = 1m ~ J:(f) provided that limz_,z §(¥) # 0.
z—a () limgz §(7)
5. .
lim (f())" = (Limf(f)) foralln € N={1,2,3,...},
Tr—a r—a
6.
: 1/n . — 1/n e
lim (f(x))'" = (LHQ f (x)) for all odd positive integers n.
r—a r—a
7. If imgz_,; ((f) =L > 0, then

lim (f()"" = L

r—a

forall n € N.

Theorem 4.12 (Squeeze Theorem). Let f,g,h : 2 — R be real-valued func-
tions on §2 € R"™,

l](:.

for all ¥ near a € <), and

lim ¢(Z) = lim h(Z) = L,

T—a r—a

then:
lim f(7) = L.
Tr—ra

Corollary 4.13. If | f(Z)| < g(Z) near @ and lim g(z) = 0, then lim f(Z) = 0.

r—a T—d



Example 4.14. Find:

1
lim xcos (—) )
(z,y)—(0,0) x? +y?

1
X COS (m)‘ < |Q§'|

lim |z[=0.
(2,y)=+(0,0)

Solution. Note:

1
cos| —— || <1 =
($2+y2)‘

Also,

Hence,

1
lim xcos (—) =0
(y)—(0,0) x? + 2
by the Squeeze Theorem.

Example 4.15. Find:
(r —1)%Inx

(@y)—1,0) (x —1)2 +y?
Solution. Note:

(x —1)2Inx (x —1)2

— 1
EEREE R T M
< |Inz|
AISO, hm(m’y)ﬁ(lp) |1Il Qf| = |ln(1)| =0
By squeeze theorem,
(r =12

lm —%——=0
(@)= (1,0) (x — 1)2 + ¢?
Remark. If a > b, then
ca<cbifc>0
ca <chbifec <0
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