MATH 2010 Chapter 3

3.1 Polar Coordinates in R>

A point P = (x,y) € R? can be represented by:

r = +/x? + y? = distance from origin.

6 = angel from the positive x — axis to O? in counter-clockwise direction.

If 2,y > 0, then we can take 6 = arctan (¥).
The angle formula above needs to be adjusted for points in other qudrants. For
example, if z < 0,y > 0 (Quadrant II), then:

0 = m + arctan <y>
T

Remark. e For P = (0,0), we have r = 0, but 6 is not (uniquely) defined.
e Different conventions for ranges of  and 6:
r € [0,00) or R
0 €[0,27) or R
In this course, we usually take:

re€[0,00), 6eR.

3.1.1 Change of Coordinates Fomula

If the polar coordinates for a point (x, y) is (r, #), then:

{ x =rcosb;

y =rsind.



3.1.2 Curves in Polar Coodinates
Example 3.1 (Circle with radius r0). Polar equation
T =To
Parametric form
r=Tp
0=t tel0,2n].
Example 3.2 (Half ray from origin). Polar equation
9 == 90
Polar equation
r=t, tel0,00)
0 =10,.

Example 3.3 (Archimedes Spiral). Let £ > 0 be a constant
Polar equation

r=k0

Polar equation
r =kt t € |0,00)
6=t,te0,00)

Example 3.4.
r =4cosf

IFRAME
Observe that the origin, corresponding to = 0,0 = 7/2, lies on the graph of
r = 4 cos 6. Hence, the solution set of » = 4 cos 6 is equal to the solution set of:

r? = 4r cos#,
which is equivalent to the Cartesian equation:
2 4y = 4o
Completing the square, the equation above is equivalent to:
(-2 +y* =2,

which corresponds to the circle of radius 2 centered at (2, 0).


https://www.desmos.com/calculator/rsc2hx4b2j?embed

Example 3.5.

T COS (0— %) = V2.

(Hint: The graph is a straight line in the Cartesian plane.)
Example 3.6. IFRAME

It is sometimes convenient to allow r < 0 in polar coordinates.
For instance, to describe a line through the origin which forms an angle of 7/6
with the positive z-axis, we can simply describe it as the graph of:

0=m/6

with the assumption that r € R.
(If we only let » > 0, then we only get "half" a line.)

Example 3.7. Let a > 1 be constant. Consider:
r=1— acost

If we require that » > 0, then the equatio above only possibly holds for 6 &
[0, 21 — §], where 0 = arccos(1/a).

IFRAME

On the other hand, of we let allow 7 to also be negative, then for any 6§ € [0, 27]
there is an r for which the equation holds. The resulting graph would have one
extra "loop".

IFRAME

3.2 Coordinate Systems in R®

Definition 3.8. Given a point P € R? with Cartesian coordinates (z, y, 2).
The cylindrical coordinates of P is:

(r767’2>7

where (r, #) are the polar coordinates of (x, ).

Hence,
r =1rcosb,
y =rsind,
z=2z.
IFRAME


https://www.geogebra.org/material/iframe/id/S9RXWmNP/width/950/height/574/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false
https://www.desmos.com/calculator/8urtgogusn?embed
https://www.desmos.com/calculator/wbikmp96by?embed
https://www.geogebra.org/material/iframe/id/c7apzyxp/width/919/height/630/border/888888/sfsb/true/smb/false/stb/true/stbh/true/ai/false/asb/false/sri/true/rc/false/ld/true/sdz/true/ctl/false

Example 3.9. Let a,b € R. A vertical helix with radius a may be described with
cylindrical coordinates as follows:

r=a
0=t , te]0,2n]
z=0bt

Definition 3.10. Given a point P € R? with Cartesian coordinates (z, y, z).
The spherical coordinates of P is:

(p,0,0),

where:

e p= /22 + y? + 22 is the distance between P and the origin.

e 0 is the angle coordinate of the polar coordinates of (x, y) in the xy-plane.

e ¢ is the angle between the positive z-axis and O?

Hence,
x = psin ¢ cos b,
y = psin¢sin g,
2 = pcos .
IFRAME
Example 3.11 (Sphere).
p=2.
Example 3.12 (Cone).
¢ =m/4
Example 3.13 (Half Plane).
0=m/3.

Example 3.14 (Circle). Equations:
p=3,
o =m/2.

(0,0, d)spn = (3,,7/2), te[0,27].

Parametric Form:
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https://www.geogebra.org/material/iframe/id/ssux6rzs/width/946/height/638/border/888888/sfsb/true/smb/false/stb/true/stbh/true/ai/false/asb/false/sri/true/rc/false/ld/true/sdz/true/ctl/false

3.3 Topological Terminology
Let Z, € R™, ¢ > 0.
Definition 3.15. The open ball with radius ¢ centered at ' is:
B.(%) ={Z e R" : ||¥ — || < e.}
The closed ball with radius ¢ centered at Z is:
B.(T) = {T € R": |7 — || < .}
Let S C R".
Definition 3.16. e The interior of S is the set:
Int(S) = {#¥ € R" : B.(¥) C S for some e > 0.}
Points in Int(.S) are called interior points of S.
e The exterior of S is the set:
Ext(S) = {Z € R" : B.(¥) C R"\S for some ¢ > 0.}
Points in Ext(.S) are called exterior points of S.
e The boundary of S is the set:
0S ={Z e R": B.(¥)NS # @ and B.(¥) NR"\S # &, foralle > 0.}
Points in J(.5) are called boundary points of S.
IMAGE
Example 3.17.
S={(z,y) eR*:1<2”+y* <4} CR?
Proposition 3.18. Let S C R". Then,
o R" is the disjoint union of Int(S), Ext(S) and 0S.
e Int(S) C S, Ext(S) C R™\S.
Definition 3.19. A subset S C R" is said to be

e open if for all x € S, there exists ¢ > 0 such that B.(z) C S.
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https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Interior_illustration.svg/256px-Interior_illustration.svg.png

e closed if R™\S is open.
Definition 3.20 (Closure). The closure of a set A C R" is:
A=AU0A
Remark. The closure of any set is always closed.
Theorem 3.21. A subset S C R™ is:
e open if and only if S = Int(95).
e closed if and only if S = Int(S) U 9S.

Example 3.22.
Subset S CR™ | B1(0,0) = {(z,y) € R* : 2 + y* < 1} | B1(0,0) = {(z,y) e R? : 2 + y* < 1}
Int(S)
Ext(5)
05
Open?
Closed?
Remark. e There are exactly two subsets of R"™ which are both open and

closed:

R", &

e Some subsets of R™ are neither open nor closed:

{(z,y) eR*: 1 <2’ +9* <4} CR"

(0,1] CR
QCR
Exercise : 0Q = R.
Definition 3.23. A subset .S C R" is said to be:

e bounded if there exists M > 0 such that:

S C By(0) = {7 € R | < M}

e unbounded if it is not bounded.

Definition 3.24. A subset S C R" is said to be path-connected if any two points

in S can be connected by a curve in S.

Theorem 3.25 (Jordan Curve Theorem). A simple closed curve in R? divides R>
into two path-connected components, with one bounded and one unbounded.
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