
MATH 2010 Chapter 2

2.1 Linear Objects in Rn

In this section, we will study linear objects in Rn. Typical examples are 1-
dimensional lines and 2-dimensional planes. We will also look at their higher
dimensional analog.

2.1.1 Line
Consider the line L passing through A = (1, 0) and B = (0, 2) in R2.

Two standard ways to represent L is

• Equation form

2x+ y = 2

• Parametric form

(x, y) =
−→
OA+ t

−→
AB

= (1, 0) + t(−1, 2)
= (1− t, 2t)

Varying t ∈ R gives all the points X on L.
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• Symmetric form The parametric equation above implies x = 1− t
y = 2t

⇒

 t =
x− 1

−1
t =

y

2

By eliminating t from the parametric form, we obtain another way to repre-
sent L. It is called the symmetric form :

x− 1

−1
=
y − 0

2

2.1.2 Parametric form of a line in Rn

Let L be a line in Rn. Let A be a point on it with ~a =
−→
OA and ~v is a vector

representing a direction of L. Then A parametric form of L is given by

~x = ~a+ t~v, t ∈ R is called a parameter
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L is said to be parametrized by t ∈ R
Example 2.1. A line L passes through A = (1, 2, 3) and B = (−1, 3, 5). To find
a parametric form of L, we can take

~a = (1, 2, 3) and ~v =
−→
AB = (−1− 1, 3− 2, 5− 3) = (−2, 1, 2)

Hence, a parametric form is given by

(x, y, z) = (1, 2, 3) + t(−2, 1, 2)

Remark. 1. Parametric form is not unique. For instance,

(x, y, z) = (−1, 3, 5) + t(2,−1,−2) and (x, y, z) = (−1, 3, 5) + t(−4, 2, 4)

are two other parametrizations of L.

2. By eliminating t from the parametric equation, we get a symmetric form of
L

x− 1

−2
=
y − 2

1
=
z − 3

2

2.2 Planes in R3

A plane P in R3 can be uniquely determined by different sets of data, for example,

• 3 non-collinear points on P ; or

• A point on P and 2 linearly independent directions (not same or opposite) ;
or

• A point on P and a normal vector

We will study how to represent a plane in equation or parametric form. Suppose P
is a plane in R3, A is a point on it, ~u and ~v are two linearly independent directions
of it. Let ~a =

−→
OA. Then the position vector of any point on P is given by the sum

of ~a and a linear combination of ~u and ~v.
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Hence, a parametric form of P can be given by

~x = ~a+ s~u+ t~v

Here s, t ∈ R are parameters. By varying s, t ∈ R, we obtain all the points on P .
In another situation, suppose ~a = (a1, a2, a3) is a point on P and ~n = (n1, n2, n3)
is a normal vector of P (that is, a vector perpendicular to the plane P ). Let
~x = (x, y, z) ∈ R3. Then:

~x is on P ⇐⇒ ~x− ~a ⊥ ~n
⇐⇒ (~x− ~a) · ~n = ~0

⇐⇒ ~x · ~n = ~a · ~n

The plane P can be described by the equation

n1x+ n2y + n3z = a1n1 + a2n2 + a3n3

Remark. If (a, b, c) 6= ~0, the equation

ax+ by + cz = d

describes a plane in R3 with normal vector (a, b, c).

Normal Vector
IFRAME
Normal Vector as Cross Product
IFRAME

Example 2.2. Suppose P is a plane passing through

A = (0, 0, 1), B = (0, 2, 0), C = (−1, 1, 0)

Represent P using parametric and equation form.
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Solution. For parametric form,

−→
AB = (0, 2, 0)− (0, 0, 1) = (0, 2,−1)
−→
AC = (−1, 1, 0)− (0, 0, 1) = (−1, 1,−1)

Hence

(x, y, z) = (0, 0, 1) + s(0, 2,−1) + t(−1, 1,−1)

To represent P by an equation, we take

~n =
−→
AB ×

−→
AC =

∣∣∣∣∣∣
î ĵ k̂
0 2 −1
−1 1 −1

∣∣∣∣∣∣ = (−1, 1, 2) ⊥ P

Then for any point (x, y, z) on P ,

[(x, y, z)− (0, 0, 1)] · (−1, 1, 2) = 0

(−1)x+ (1)y + 2(z − 1) = 0

−x+ y + 2z = 2

Example 2.3. Let two planes in R3 be given:

a1x+ b1y + c1z = d1,

a2x+ b2y + c2z = d2,

where ~ni := 〈ai, bi, ci〉 6= ~0 (i = 1, 2).
Suppose ~n1 and ~n2 are not parallel to each other. Then, the two planes are

non-parallel, and the intersection of the two planes is a line parallel to the vector
~v = ~n1×~n2. Note that the vector ~v is nonzero, since ~n1 and ~n2 are by assumption
non-parallel.

Theorem 2.4. Given a plane in R3 corresponding to:

a(x− x0) + b(y − y0) + c(z − z0) = 0,

The (minimal) distance between a point P ∈ R3 and the plane is:

d =
∣∣∣Proj~n−−→P0P

∣∣∣ = ∣∣∣∣−−→P0P ·
~n

|~n|

∣∣∣∣ ,
where P0 = (x0, y0, z0) and ~n = 〈a, b, c〉.
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Example 2.5. Find the distance between A = (2, 1, 1) and the plane P : −x +
2y − z = −4.

Solution. From the equation of P , ~n = (−1, 2,−1) ⊥ P . Consider the line L
defined by

−→
X (t) =

−→
A + t~n = (2, 1, 1) + t(−1, 2,−1)

Let B = L ∩ P be the intersection of L and P .

Then B is the point of P closest to A. To find B, put:

−→
X (t) = (2− t, 1 + 2t, 1− t)

into the equation of P . Then:

−(2− t) + 2(1 + 2t)− (1− t) = −4⇒ 6t− 1 = −4⇒ 6t = −3⇒ t = −1

2

We have B =
−→
X (−1

2
) = (5

2
, 0, 3

2
). The distance between A and P is

= ‖
−→
AB‖ =

√(
5

2
− 2

)2

+ (0− 1)2 +

(
3

2
− 1

)2

=

√
6

2

Exercise 2.6. Find the distance between the lines

L1(s) = (−4, 9,−4) + s(4,−3, 0)
L2(t) = (5, 2, 10) + t(4, 3, 2)

Hint: Find A on L1, B on L2 such that
−→
AB ⊥ L1, L2
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2.2.1 Line in R3 by equations
Can we describe the a straight line in R3 by an equation? Note that each non-trivial
linear equation in x, y, z can only represent a plane. At least two such equations
are needed to describe a line. For instance,

Example 2.7. Consider the y-axis in R3. A point (x, y, z) is on the y-axis if and
only if both the x and z coordinates are zero. Hence, y-axis can be described using
the equations {

x = 0
z = 0

Geometrically, each of the equations x = 0 and z = 0 represents a plane in R3.
The y-axis is the intersection of the two planes.

IFRAME

Given a linear object, for example, a line or a plane, we can describe it us-
ing either parametric form or a system of linear equations. It is easy to convert
between the two using linear algebra.

Example 2.8. Let L be the line represented by the system{
x+ y + 6z = 6

x− y − 2z = −2

By Gaussian elimination, x
y
z

 =

 2
4
0

+ t

 −2−4
1

 .
The solution describes L in parametric form.

Conversely, from the above parametric form
x = 2− 2t

y = 4− 4t

z = t

The first two equations imply 2x− y = 0 while the last two imply y = 4− 4z.
We obtain another set of linear equation representing L:{

2x− y = 0

y + 4z = 4
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2.2.2 Intersection of Planes
Example 2.9. Consider a system of three non-trivial equations of the form ax +
by + cz = d. Each of them represents a plane in R3. What can be their intersec-
tions?

• Case 1: Unique solution

• Case 2: Infinitely many solutions

• Case 3: No solution

• All three planes are parallel to each other.

IFRAME

• Only two planes are parallel to each other.

IFRAME

• The intersection of each pair of planes is a line and three such lines are
parallel to each other.

IFRAME

• Their intersection is a line.

IFRAME

• Their intersection is a point, e.g. the xy-plane, yz-plane and zx-plane inter-
sect at (0, 0, 0).

IFRAME

2.2.3 General linear objects in Rn

Similar to lines in R3, we need a system of equations to describe a 2-dimensional
plane in Rn when n ≥ 4. Generally in Rn, an equation of the form

~a · ~x = a1x1 + a2x2 + · · ·+ anxn = c, ~a 6= ~0

describes a hyperplane (dimension = n− 1) with normal vector ~a:
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A k-dimensional “plane” P (called k-plane) in Rn can be described in para-
metric form or by equation(s).

1. Parametric form

~x = ~q +
k∑
i=1

ti~vi

where

• ~q ∈ P
• ~v1, · · · , ~vk are k linearly independent vectors parallel to P

• t1, · · · , tk are parameters

2. n− k non-redundant equations

n∑
j=1

aijxj = ci for i = 1, 2, · · · , n− k

Here non-redundant means that the (n−k)×n coefficient matrix A = (aij)
has rank n− k. The solution of the system of n− k equations corresponds
to the intersection of the n− k hyperplanes.

2.3 Curves in Rn

Definition 2.10. Let I ⊆ R be an interval.
A curve in Rn is a continuous function:

~x : I −→ Rn
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That is, ~x is defined as:

~x(t) = (x1(t), x2(t), . . . , xn(t)), t ∈ R

where xi is a continuous real-valued function on I for each i.

IFRAME

Example 2.11. Let ~v : [−1, 1) −→ R2 be defined by ~v(t) = (t2, t). Then y2 =
t2 = x and the curve lies on the parabola x = y2.

IFRAME

Example 2.12. Let ~p, ~q ∈ R3, ~q 6= ~0. Define ~x : R −→ R3 by ~x(t) = ~p + t~q.
Then ~x(t) is a straight line.

Definition 2.13. A curve ~x : [a, b] −→ Rn is said to be:

• closed if ~x(a) = ~x(b).

• simple if ~x(t1) 6= ~x(t2) for any a ≤ t1 < t2 ≤ b, except possibly at
t1 = a, t2 = b.

Example 2.14.
~x : [1,∞) −→ R2,

~x(t) =

(
1

t
,
1

t2

)
, t ∈ R.

Definition 2.15. Let ~x(t) = (x1(t), x2(t), . . . , xn(t)), where xi are real-valued
functions. The derivative of ~x at t is:

~x′(t) = lim
h→0

~x(t+ h)− ~x(t)
h

.

For any a in the domain of ~x, if ~x′(a) exists, then ~x′(a) is called the tangent
vector of ~x at t = a.

IFRAME

Theorem 2.16. Let ~x(t) = (x1(t), x2(t), . . . , xn(t)). Then:

•
lim
t→a

~x(t) =
(
lim
t→a

x1(t), lim
t→a

x2(t), . . . , lim
t→a

xn(t)
)

• If ~x′(t) exists, then each xi is differentiable at t, and:

~x′(t) = (x′1(t), x
′
2(t), . . . , x

′
n(t)).
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In physics, if we let ~x(t) be the displacement (position) of a moving particle
at time t. Then:

• ~x′(t) is the velocity of the particle at time t.

• ~x′′(t) = (~x′)′ (t) is the acceleration of the particle at time t.

Example 2.17.

~x(t) = (cos t, sin t), 0 6 t 6 2π

~v(t) = ~x′(t) = (− sin t, cos t) ⊥ ~x(t)
~a(t) = ~x′′(t) = (− cos t,− sin t) = −~x(t)

Also speed = ‖~v(t)‖ = 1

Example 2.18. Let ~x : [1,∞)→ R2 be defined by

~x(t) =

(
1

t
,
1

t2

)
.

Then:

lim
t→∞

~x(t) =

(
lim
t→∞

1

t
, lim
t→∞

1

t2

)
= (0, 0)

Theorem 2.19. Let ~x(t), ~y(t) be curves in Rn, and c ∈ R a scalar constant. Let
f : R −→ R be a real-valued function.

1. (~x± ~y)′(t) = ~x′(t)± ~y′(t).

2. (c~x(t))′ = c~x′(t).

3. (f(t)~x(t))′ = f ′(t)~x(t) + f(t)~x′(t).

4. (~x(t) · ~y(t))′ = ~x′(t) · ~y(t) + ~x(t) · ~y′(t).

5. If n = 3,

(~x(t)× ~y(t))′ = ~x′(t)× ~y(t) + ~x(t)× ~y′(t).
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2.4 Arclength
IFRAME

Definition 2.20. Let ~x : [a, b] −→ Rn be a curve such that ~x′ exists and is contin-
uous on (a, b).

The arclength of ~x on [a, b] is:

S =

∫ b

a

‖~x′(t)‖dt

Remark. In physics, if ~x(t) is the displacement of a moving particle at time t,
then the arclength of ~x on [a, b] is the distance travelled by the particle over the
time period [a, b].

If ~x(t) = displacement at time t.
Then, ~x′(t) = velocity
and ‖~x′(t)‖ = speed.∫ b
a
‖~x′(t)‖dt = distance travelled.

From a mathematical point of view, approximate a curve by line segments:
Take: a = t0 < t1 < t2 < · · · < tn = b. Then,

S ≈
n∑
i=1

‖~x (ti)− ~x (ti−1)‖
(

Recall ~x′(t) := lim
h→0

~x(t+ h)− ~x(t)
h

)
≈

n∑
i=1

‖~x′ (ti)‖ (ti − ti−1)

Take Limit⇒ S =
∫ b
a
‖~x′(t)‖dt

Example 2.21 (Helix). ~x(t) = (cos t, sin t, t), t ∈ [0, 2π]
IFRAME

1. Find the tangent line of ~x at t = π

2. Find arclength of the helix.

Solution. 1.
~x(t) = (cos t, sin t, t)

~x′(t) = (− sin t, cos t, 1)

~x′(π) = (0,−1, 1)← direction of tangent

Also, ~x(π) = (−1, 0, π)← a point on tangent line

∴ Parametric form of tangent line

~x = (−1, 0, π) + t(0,−1, 1)
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2.

‖~x′(t)‖ =
√

(− sin t)2 + (cos t)2 + 12

=
√
2

⇒ S =

∫ 2π

0

‖~x′(t)‖ dt

=

∫ 2π

0

√
2dt

= [
√
2t]2π0

= 2
√
2π

Theorem 2.22. Arclength is independent of parametrization.

Example 2.23.

~x(t) = (t, t) 0 6 t 6 4

~y(t) = (t2, t2) 0 6 t 6 2

~x, ~y are two parametrization of the same line segment:

~x′(t) = (1, 1)

arclength of ~x(t)

=

∫ 4

0

‖~x′(t)‖dt

=

∫ 4

0

√
2dt

= 4
√
2

~y′(t) = (2t, 2t)

arclength of ~y(t)

=

∫ 2

0

‖~y′(t)‖dt

=

∫ 2

0

√
(2t)2 + (2t)2dt

=

∫ 2

0

2
√
2dt

= [
√
2t2]20

= 4
√
2
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