
MATH 2010 Chapter 11

11.1 Second Derivative Test
Last time: Definiteness of symmetric matrix

Theorem 11.1. Suppose Ω ⊆ Rn is open, f : Ω → R is C2, and a ∈ Ω is a
critical point (i.e. ∇f(a) = 0).

If Hf(a) is:

• positive definite, then a corresponds to a local minimum.

• negative definite, then a corresponds to a local maximum.

• indefinite, then a is a saddle point.

Idea of proof:
Use Taylor’s Theorem.
∇f(a) = 0⇒ For x near a,

f(x)− f(a) ≈ 1

2
(x− a)THf(a)(x− a)

If Hf(a) is positive definite
R.H.S. > 0 for all x 6= a
⇒ f(x)− f(a) > 0 for all x 6= a and near a.
⇒ f has a local minimum at a.
”Proof” is similar for the other two cases.
Geometrically,

1. Hf(a) is positive definite (e.g. f = x2 + y2 at (0, 0) )
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2. Hf(a) is negative definite (e.g. f = −x2 − y2 at (0, 0) )

3. Hf(a) is indefinite (e.g. f = x2 − y2 at (0, 0) )
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How do we determine the definiteness of Hf(a)?
For the simple case n = 2, it can be done easily by completing square.

Theorem 11.2. Let M =

[
A B
B C

]
be a symmetric 2 × 2 matrix with real coeffi-

cients. Then:

• M is positive definite⇔ det(M) > 0, A > 0

• M is negative definite⇔ det(M) > 0, A < 0

• M is indefinite⇔ det(M) < 0

Remark. det(M) = AC −B2.

Proof of Theorem 11.2. Let q(x, y) = [x y]M

[
x
y

]
= Ax2 + 2Bxy + Cy2

Case I (A 6= 0 )

Aq(x, y) = A2x2 + 2ABxy + ACy2

= (Ax+By)2 + (AC −B2)y2

Clearly,

q(x, y) > 0 ∀(x, y) 6= (0, 0)⇔ AC −B2 > 0, A > 0

q(x, y) < 0 ∀(x, y) 6= (0, 0)⇔ AC −B2 > 0, A < 0

q(x, y) change signs⇔ AC −B2 < 0
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Case II (A = 0 ) AC −B2 = −B2 ≤ 0

q(x, y) = 2Bxy + Cy2 = y(2Bx+ Cy)

Clearly q is neither positive or negative definite and is indefinite⇔ B 6= 0
⇔ AC −B2 < 0

Theorem 11.3 (Second Derivative Test for functions of two variables). If Ω ⊆ R2

is open, f : Ω→ R is C2, a ∈ Ω, ∇f(a) = 0. Then,

1. fxxfyy − f 2
xy > 0, fxx > 0 at a⇒ a is a local minimum

2. fxxfyy − f 2
xy > 0, fxx < 0 at a⇒ a is a local maximum

3. fxxfyy − f 2
xy < 0 at a⇒ a is a saddle point

4. fxxfyy − f 2
xy = 0 at a⇒ inconclusive

Remark. • fxxfyy − f 2
xy = det(Hf)

• In Item 4, the point a can correspond to a local maximum/minimum or
saddle point.

Example 11.4.

f(x, y) = 3x2 − 10xy + 3y2 + 2x+ 2y + 3

Find and classify critical points of f .

Solution. f is polynomial, so is differentiable on R2

∇f = [fx fy]

= [6x− 10y + 2 − 10x+ 6y + 2]

∇f = ~0⇔
{

6x− 10y + 2 = 0
−10x+ 6y + 2 = 0

⇔ (x, y) = (
1

2
,
1

2
)

∴ (1
2
, 1
2
) is the only critical point.

Hf =

[
fxx fxy
fyx fyy

]
=

[
6 −10
−10 6

]
fxxfyy − f 2

xy = (−6)2 − (−10)2 = −64 < 0.
By 2nd derivative test, (1

2
, 1
2
) is a saddle point.
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Example 11.5.

f(x, y) = 3x− x3 − 3xy2

Find and classify critical points of f .

Solution. f is a polynomial, so is differentiable on R2.

∇f = [fx fy]

= [3− 3x2 − 3y2 − 6xy]

∇f = 0

⇔

{
3− 3x2 − 3y2 = 0 · · · (1)

−6xy = 0 · · · (2)

(2)⇒ x = 0 or y = 0
If x = 0, (1)⇒ 3− 3y2 = 0⇒ y = ±1
If y = 0, (1)⇒ 3− 3x2 = 0⇒ x = ±1
Hence, there are 4 critical points: (0,±1), (±1, 0).

Hf =

[
fxx fxy
fyx fyy

]
=

[
−6x −6y
−6y −6x

]
• a = (0, 1)

Then, Hf(a) =

[
0 −6
−6 0

]
.

detHf(a) = −36 < 0.

Hence, the point (0, 1) corresponds to a saddle point.

• a = (0,−1)

Then, Hf(a) =

[
0 6
6 0

]
.

detHf(a) = −36 < 0.

Hence, the point (0,−1) corresponds to a saddle point.

• a = (1, 0)

Then, Hf(a) =

[
−6 0
0 −6

]
.

detHf(a) = 36 > 0.

fxx(a) = −6 < 0.

Hence (1, 0) corresponds to a local maximum.
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• a = (−1, 0)

Then, Hf(a) =

[
6 0
0 6

]
.

detHf(a) = 36 > 0.

fxx(a) = 6 > 0.

Hence (−1, 0) corresponds to a local minimum.

IFRAME

Example 11.6. Inconclusive from 2nd derivative test

f(x, y) = x2 + y4 g(x, y) = x2 − y4 h(x, y) = −x2 − y4

∇f = [2x 4y3] ∇g = [2x − 4y3] ∇h = [−2x − 4y3]

⇒ (0, 0) is a critical point of f , g, h.

Hf =

[
2 0
0 12y2

]
Hg =

[
2 0
0 −12y2

]
Hh =

[
−2 0
0 −12y2

]

Hf(0, 0) = Hg(0, 0) =

[
2 0
0 0

]
Hh(0, 0) =

[
−2 0
0 0

]
⇒ Each Hessian matrix has zero determinant at (0, 0), so the 2nd derivative test is
inconclusive.

Remark. Clearly, f , g, h has local minimum, saddle point and local maximum at
(0, 0) respectively.

11.1.1 Second Derivative Test for Functions of n Variables
Let f : Ω ⊆ Rn → R be C2, a ∈ Ω,∇f(a) = 0.

Hf(a) =


fx1x1 fx1x2 · · · fx1xn

fx2x1 fx2x2 · · · fx2xn

...
... . . . ...

fxnx1 fxnx2 · · · fxnxn


f is C2 ⇒ Hf(a) is symmetric. From linear algebra, there exists an orthogonal
n× n matrix P (i.e. P>P = In ) such that:

P THf(a)P =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn


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where λi are eigenvalues of Hf(a). Hence,

Hf(a) is


positive definite ⇔ All λi > 0
negative definite ⇔ All λi < 0
indefinite ⇔ Some λi > 0, some λj < 0

11.1.2 Another way to check definiteness of Hf(a)

Let Hk be the k by k submatrix

Hk =


fx1x1 fx1x2 · · · fx1xk

fx2x1 fx2x2 · · · fx2xk

...
... . . . ...

fxkx1 fxkx2 · · · fxkxk


1. Hf(a) is positive definite⇔ detHk > 0 for k = 1, 2, · · · , n

2. Hf(a) is negative definite⇔ detHk

{
< 0 if k is odd
> 0 if k is even

For n = 2,

detH1 = det[fxx] = fxx

detH2 = det

[
fxx fxy
fyx fyy

]
= fxxfyy − f 2

xy

Same result as before.

11.2 Lagrange Multiplier
Finding extrema under constraints.

Example 11.7. Find the point on the parabola x2 = 4y closest to (1, 2).
Find minimum of f(x, y) = (x − 1)2 + (y − 2)2 under constraint g(x, y) =

x2 − 4y = 0.
(Constraint: expressed as a level set g = 0 )
IFRAME
https://www.math3d.org/Z2YmkbAD
IFRAME

Theorem 11.8 (Lagrange Multipliers). Let f , g be C1 functions on Ω ⊆ Rn

S = g−1(c) = {x ∈ Ω : g(x) = c}

Suppose
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1. a corresponds to a local extremum of f on S

2. ∇g(a) 6= 0

Then
{
∇f(a) = λ∇g(a) for some λ ∈ R
g(a) = c

Remark. 1. λ is called a Lagrange Multiplier.

2. Let F (x, λ) = f(x)− λ(g(x)− c)
Then ∇F (x, λ) = (∇(f(x)− λg(x))︸ ︷︷ ︸

n components

, g(x)− c)

Find critical points point of f under constraint g = c

m

Find critical point of F without constraint

Back to Example 11.7,

Minimize f(x, y) = (x− 1)2 + (y − 2)2

Constraint g(x, y) = x2 − 4y = 0

Solution. f , g are C1 on R2.

∇f = [2(x− 1) 2(y − 2)]

∇g = [2x − 4] 6= ~0 on R2

Suppose (x, y) is a local extremum of f(x, y) on g(x, y) = 0.
Then, by Lagrange multipliers,{

∇f(x, y) = λ∇g(x, y) for some λ ∈ R
g(x, y) = 0

⇒


2(x− 1) = 2λx · · · (1)
2(y − 2) = −4λ · · · (2)
x2 − 4y = 0 · · · (3)
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(1)⇒ x− 1 = λx⇒ x(1− λ) = 1
(2)⇒ y − 2 = −2λ⇒ y = 2(1− λ) = 2

x

(3)⇒ x2 − 8
x

= 0, x3 − 8 = 0⇒ x = 2
∴ y = 2

2
= 1, and now it is easy to check (x, y) = (2, 1) is a solution.

Geometrically, f must have a minimum on g = 0.
By the Lagrange Multipliers Theorem, only one point can be that minimum

point.
⇒ f has minimum at (2, 1) on g = 0.
To summarize, to find the minimum of f(x, y) = (x − 1)2 + (y − 2)2 under

the constraint g(x, y) = x2 − 4y, we solve:{
∇f = λ∇g
g = 0

Exercise 11.9. Find the point on the parabola x2 = 4y closest to (2, 5).
f(x, y) = (x− 2)2 + (y − 5)2

g(x, y) = x2 − 4y

Remark. The system: {
∇f = λ∇g
g = 0

has solutions. Global minimum on g = 0 : (4, 4).
Not local extremum on g = 0 : (−2, 1).

Example 11.10. Maximize xy2 on the ellipse

x2 + 4y2 = 4

Solution.

Let f(x, y) = xy2

g(x, y) = x2 + 4y2

Note f is continuous and the ellipse g = 4 is closed and bounded.
By EVT, f has global maximum and minimum on g = 4.

∇f = [y2 2xy]

∇g = [2x 8y]

Note:∇g 6= 0 on x2 + 4y2 = 4.
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Lagrange multipliers:

{
∇f = λ∇g
g = 4

⇔


y2 = 2λx · · · (1)

2xy = 8λy · · · (2)
x2 + 4y2 = 4 · · · (3)

Case 1: If y = 0, then

(3)⇒ x2 = 4⇒ x = ±2,

λ = 0 by (1)

∴ (x, y) = (±2, 0).
Case 2: If y 6= 0, then:

(2)

(1)
⇒ 2xy

y2
=

8λy

2λx
⇒ 2x

y
=

4y

x
⇒ x2 = 2y2

By (3), 6y2 = 4⇒ y = ±
√

2
3

∴ x2 = 2y2 = 4
3
⇒ x = ±

√
4
3

∴ (x, y) = (±
√

4
3
,±
√

2
3
).

Compare values of f at the 6 points found using Lagrange Multipliers:
f(x, y) = xy2

f(±2, 0) = 0

f(
√

4
3
,±
√

2
3
) =

√
4
3
· 2
3

= 4
3
√
3

(maximum)

f(−
√

4
3
,±
√

2
3
) = −

√
4
3
· 2
3

= − 4
3
√
3

(minimum)
Hence, for f(x, y) on g = 4,

Global maximum value = 4
3
√
3

at (
√

4
3
,±
√

2
3
)

Global minimum value = − 4
3
√
3

at (−
√

4
3
,±
√

2
3
)

Remark. We may use another form of Lagrange Multiplier.
Let F (x, y, λ) = f(x, y)− λ(g(x, y)− 4) = xy2 − λ(x2 + 4y2 − 4).

Then,∇F = (y2−2λx, 2xy−8λy, x2+4y2−4),∇F = 0⇔


y2 − 2λx = 0

2xy − 8λy = 0
x2 + 4y2 − 4 = 0

Same system as before.

For problems of finding maximum/minimum of f : A→ R,
Lagrange Multipliers can be used to study f on ∂A. Consider a previous

example:
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Example 11.11. Find global maximum/minimum of:

f(x, y) = x2 + 2y2 − x+ 3 for x2 + y2 ≤ 1

Solution. Domain = A = {(x, y) ∈ R2 : x2 + y2 ≤ 1}
As found before, f has only one critical point (1

2
, 0) in Int(A), with f(1

2
, 0) =

11
4

.
To study f on ∂A = {(x, y) ∈ R2 : x2 + y2 = 1} by Lagrange Multipliers:
Let g(x, y) = x2 + y2

∇g = (2x, 2y) 6= ~0 on ∂A(g = 1)

{
∇f = λ∇g
g = 1

⇔


2x− 1 = 2λx · · · (1)

4y = 2λy · · · (2)
x2 + y2 = 1 · · · (3)

(2)⇒ (4− 2λ)y = 0

⇒ λ = 2 or y = 0

For λ = 2:
By (1),

2x− 1 = 4x

x = −1

2

By (3),

y = ±
√

3

2

For y = 0,
By (3),

x = ±1

Comparing values of f at five points:

f(
1

2
, 0) =

11

4

f(−1

2
,

√
3

2
) = f(−1

2
,−
√

3

2
) =

21

4
f(1, 0) = 3

f(−1, 0) = 5

Hence, maximum value = 21
4

at (−1
2
,±
√
3
2

) and minimum value = 11
4

at (1
2
, 0).

11


	Second Derivative Test
	Second Derivative Test for Functions of n Variables
	Another way to check definiteness of Hf(a)

	Lagrange Multiplier

