MATH 2010 Chapter 11

11.1 Second Derivative Test

Last time: Definiteness of symmetric matrix

Theorem 11.1. Suppose 2 C R" isopen, f : Q@ — Ris C? anda € Qisa
critical point (i.e. V f(a) = 0).
If Hf(a) is:

e positive definite, then a corresponds to a local minimum.
e negative definite, then a corresponds to a local maximum.
e indefinite, then a is a saddle point.

Idea of proof:
Use Taylor’s Theorem.
V f(a) = 0 = For x near a,

(x —a)"Hf(a)(z — a)

DO | —

flx) = fla) =

If H f(a) is positive definite
R.H.S. > 0forallz # a
= f(x) — f(a) > 0 for all x # a and near a.
= f has a local minimum at a.
”Proof” is similar for the other two cases.
Geometrically,

1. H f(a) is positive definite (e.g. f = 22 + y? at (0,0) )



3. Hf(a) is indefinite (e.g. f = x* — y* at (0,0))



How do we determine the definiteness of H f(a)?
For the simple case n = 2, it can be done easily by completing square.

A

Theorem 11.2. Let M = { B

B
C} be a symmetric 2 X 2 matrix with real coeffi-

cients. Then:
o M is positive definite < det(M) > 0,A >0
e M is negative definite < det(M) > 0, A < 0
o M is indefinite < det(M) < 0
Remark. det(M) = AC — B2
Proof of Theorem 11.2. Let q(z,y) = [z y]|M B] = Ax? + 2Bzy + Cy?
Casel (A#0)

Aq(z,y) = A*x* + 2ABxy + ACY?
= (Az + By)* + (AC — B*)y?

Clearly,

q(z,y) >0 VY(x,y) # (0,0) < AC —B*>0,A>0
q(z,y) <0 VY(x,y) # (0,0) < AC —B*>0,A<0
q(w, y) change signs < AC — B* < 0



Casell (A=0)AC —B?=-B?><0
q(z,y) = 2Bxy + Cy* = y(2Bx + Cy)

Clearly q is neither positive or negative definite and is indefinite < B # 0
& AC - B? <0 O]

Theorem 11.3 (Second Derivative Test for functions of two variables). If Q) C R?
isopen, f : Q) = Ris C?% a €, Vf(a) =0. Then,

1. foofyy — m2y > 0, foz > 0at a = ais a local minimum
2. foulyy — fy > 0, fre < 0ata = ais alocal maximum
3. feafyy — f2, < 0ata = aisasaddle point

4. feafyy — f2, = 0at a = inconclusive

Y

Remark. o f..f,, — f2 =det(Hf)

zy

e In Item 4, the point a can correspond to a local maximum/minimum or
saddle point.

Example 11.4.
f(z,y) = 32> — 102y + 3y + 2v + 2y + 3
Find and classify critical points of f.

Solution. f is polynomial, so is differentiable on R?

vf:[fa: fy]
= [6x — 10y +2 — 10z + 6y + 2]

= 6r — 10y +2 =0
Vf—0<:>{ —10r +6y+2=0
11

. (3, 1) is the only critical point.
fox fx] [6 —10]
H p— y p—
e

fzxfyy - 511 — (_6)2 - (—10)2 = —64 < 0.
By 2"¢ derivative test, (1, 1) is a saddle point.
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Example 11.5.
f(z,y) = 3z — 2 — 3xy®
Find and classify critical points of f.

Solution. f is a polynomial, so is differentiable on R?.

V= [fac fy]
=[3—32* - 3y* — 6ay]

Vf=0
- {3—3:152 3y =0---(1)
—6zy =0---(2)

(2)=x=00ry=0
Ifz=0(1)=3-32=0=y==%1
Ify=0,(1)=3-322=0=12=+1
Hence, there are 4 critical points: (0,+1), (£1,0).

_ facac f:vy _ —6x _6y
Hf N |:fyx fyy] N {_Gy —6x

e a=(0,1)

Then, H f(a) = {—06 _06}

det H f(a) = —36 < 0.

|

Hence, the point (0, 1) corresponds to a saddle point.

e a=(0,-1)

6 0
det H f(a) = —36 < 0.

Then, H f(a) = {0 6} .

Hence, the point (0, —1) corresponds to a saddle point.

e a=(1,0)
Then, H f(a) = {_06 —06}
det H f(a) = 36 > 0.
fez(a) = —6 < 0.

Hence (1,0) corresponds to a local maximum.
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e a=(-1,0)

Then, H f(a) — {6 0} .

0 6

det H f(a) = 36 > 0.
fez(a) =6 > 0.
Hence (—1, 0) corresponds to a local minimum.

IFRAME

Example 11.6. Inconclusive from 2" derivative test

flay) =2 +y'  glry) =2 -y h(z,y) = —2* —y'

Vfi=[2r 4y’ Vg=1[2r —4y° Vh=[-2r —4y°]

= (0,0) is a critical point of f, g, h.
2 0 2 0 -2 0
Hi= {0 12y2} Hy = {o —12y2} Hh = {0 —12y2}

oo-so- 1 mao-[ 3

= Each Hessian matrix has zero determinant at (0, 0), so the 2"¢ derivative test is

inconclusive.

Remark. Clearly, f, g, h has local minimum, saddle point and local maximum at
(0, 0) respectively.

11.1.1 Second Derivative Test for Functions of n Variables
Let f: QCR*" -5 RbeC?acQ, Vf(a)=0.

fxlasl fxlxg e fmlxn

fa:nzl fa:nazg e fznxn

fis C? = H f(a) is symmetric. From linear algebra, there exists an orthogonal
n x n matrix P (i.e. P' P = I,,) such that:

A 0 - 0
PTHf(@)P = | " Ao

TR

0 0 A


https://www.math.cuhk.edu.hk/~pschan/surfaceplot/?data=%7B%22sidebar%22%3A0%2C%22zscale%22%3A%220%22%2C%22domain%22%3A%223%22%2C%22numsamples%22%3A%2220%22%2C%22autozscale%22%3A%221%22%2C%22showaxes%22%3A%221%22%2C%22centeredaxes%22%3A%221%22%2C%22xmin%22%3A%22-2%22%2C%22xmax%22%3A%222%22%2C%22ymin%22%3A%22-2%22%2C%22ymax%22%3A%222%22%2C%22zmin%22%3A%22-10%22%2C%22zmax%22%3A%2210%22%2C%22xticks%22%3A%225%22%2C%22yticks%22%3A%229%22%2C%22zticks%22%3A%2210%22%2C%22equations%22%3A%5B%7B%22isParam%22%3Afalse%2C%22formula%22%3A%223x-x%5E3-3x*y%5E2%22%2C%22color%22%3A%226dbed9%22%2C%22alpha%22%3A%220.9%22%7D%2C%7B%22isParam%22%3Afalse%2C%22formula%22%3A%22-6x*(y-1)%22%2C%22color%22%3A%22a9d998%22%2C%22alpha%22%3A%220.9%22%7D%2C%7B%22isParam%22%3Afalse%2C%22formula%22%3A%226x*(y%2B1)%22%2C%22color%22%3A%22989ad9%22%2C%22alpha%22%3A%220.9%22%7D%2C%7B%22isParam%22%3Afalse%2C%22formula%22%3A%222-3(x-1)%5E2-3y%5E2%22%2C%22color%22%3A%22a48465%22%2C%22alpha%22%3A%220.9%22%7D%2C%7B%22isParam%22%3Afalse%2C%22formula%22%3A%22-2%2B3(x%2B1)%5E2%2B3y%5E2%22%2C%22color%22%3A%22d89797%22%2C%22alpha%22%3A%220.9%22%7D%5D%2C%22rotationMatrix%22%3A%5B-0.56%2C-0.4%2C0.51%2C0%2C0.66%2C-0.2%2C0.55%2C0%2C-0.13%2C0.74%2C0.4%2C0%2C0%2C0%2C0%2C1%5D%7D&dimensions=[480,480]

where ); are eigenvalues of H f(a). Hence,

positive definite < All \; > 0
Hf(a)is ¢ negative definite < All\; <0
indefinite < Some \; > 0,some \; <0

11.1.2 Another way to check definiteness of H f(a)
Let Hy, be the k by k submatrix

fl’wl fwlm fxlﬂck

e

fkaEl kam fivklvk
1. Hf(a) is positive definite < det H, > O0fork =1,2,--- | n

< 0if k is odd

2. Hf(a) is negative definite < det Hy, { < 0if k is even
Forn = 2,

det Hy = det[fre] = fon

det Hy = det ny jﬁzﬂ = foalyy — [2,

Same result as before.

11.2 Lagrange Multiplier

Finding extrema under constraints.

Example 11.7. Find the point on the parabola z* = 4y closest to (1, 2).

Find minimum of f(x,y) = (z — 1)?> + (y — 2)? under constraint g(z,y) =
2?2 — 4y = 0.

(Constraint: expressed as a level set g = 0)

IFRAME

https://www.math3d.org/Z2YmkbAD

IFRAME

Theorem 11.8 (Lagrange Multipliers). Let f, g be C! functions on Q C R"
S=g7(c)={r€Q:g(x) =}
Suppose


https://www.desmos.com/calculator/zdsqgisveg?embed
https://www.math3d.org/Z2YmkbAD

1. a corresponds to a local extremum of f on S

2. Vyg(a) #0
Then { Vf(a) = AVyg(a)forsome A € R
g(a) = c

Remark. 1. )is called a Lagrange Multiplier.

2. Let F(xz,\) = f(z) — AMg(z) — ¢
Then VF(z,\) = (V(f(z) — Ag(x)), g(x) — ¢)

~~
m components

Find critical points point of f under constraint g = ¢

)

Find critical point of F' without constraint

Back to Example 11.7,

Minimize f(z,y) = (x — 1)* + (y — 2)*

Constraint g(x,y) = 2% — 4y = 0
Solution. f, g are C'! on R2.

Vi=[2-1) 2(y-2)

Vg=[2z — 4]+ 0onR?

Suppose (x,y) is a local extremum of f(z,y) on g(x,y) = 0.
Then, by Lagrange multipliers,

{ Vf(z,y) = AVg(x,y) for some A € R
glz,y) = 0

= {2y—2) = —4x ---(2)


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=content/math2010//chap11.xml&slide=13&item=11.7

=z-1=X=2z(1-X)=1

2)=2>y—2=-22=>y=21-))=2

B)=>a2?-2=0,"-8=0=2=2

.y =2 =1, and now it is easy to check (z,y) = (2,1) is a solution.

Geometrically, f must have a minimum on g = 0.

By the Lagrange Multipliers Theorem, only one point can be that minimum
point.

= f has minimum at (2, 1) on g = 0.

To summarize, to find the minimum of f(z,y) = (z — 1)? + (y — 2)? under
the constraint g(x,y) = 2% — 4y, we solve:

Vf = AVg
g = 0

Exercise 11.9. Find the point on the parabola 22 = 4y closest to (2, 5).
fle,y) = (x=2)* + (y = 5)°
g(z,y) =2* — 4y

Remark. The system:

Vf = A\Vyg
g =0

has solutions. Global minimum on g = 0: (4,4).
Not local extremum on g = 0: (—2,1).

Example 11.10. Maximize xy? on the ellipse
?+ 4yt =4
Solution.

Let f(z,y) = 2y?
g(z,y) = 2 + 4y

Note f is continuous and the ellipse g = 4 is closed and bounded.
By EVT, f has global maximum and minimum on g = 4.

Vi=1[/ 2y

Vg=1[2r 8

Note: Vg # 0 on 2% + 4y* = 4.



Lagrange multipliers:

2
B y° = 2 ---(1)
{Vf B i\Vg & 2ry = 8\y ---(2)
7 = 244y = 4 (3)

Case 1: If y = 0, then

(B) =2’ =4= 1 =22,
A=0by (1)
L (z,y) = (£2,0).
Case 2: If y # 0, then:

@2y Sy
(1) y?  2\x y x

By (3), 6¢° 4;»y_i\[

Lt =2r == \/;

L@y) = (/512
Compare Values of f at the 6 points found using Lagrange Multipliers:

flz,y) = :vy
F(£2,0)

\/; , i\/7 \/7 f (maximum)
\/g ; ﬂ:\/7 \/7 = WE (minimum)

Hence for f(z,y)ong =4,
_ 4 2
Global maximum value = WE at (y/3, j:\/; )

. . o 4 4 2
Global minimum value = — === at (— \/; : j:\/; )

Remark. We may use another form of Lagrange Multiplier.
Let F(z,y,\) = f(z,y) — Mg(x,y) — 4) = 2y? — M2? + 49> — 4).

2

y° — 2 \x

Then, VF = (y*—2)\z, 22y—8\y, 2°+4y*—4),VF = 0 & 2xy — 8\y
22 +4y? — 4

Same system as before.

For problems of finding maximum/minimum of f : A — R,
Lagrange Multipliers can be used to study f on JA. Consider a previous
example:

10
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Example 11.11. Find global maximum/minimum of:

flr,y) =2 +2y* —x +3fora* +y* <1
Solution. Domain = A = {(z,y) € R*: 2?2 + ¢y* < 1}

As found before, f has only one critical point (3, 0) in Int(A), with f(1,0) =
1

1

—

To study f on A = {(x,y) € R? : 2% + y*> = 1} by Lagrange Multipliers:
Let g(x,y) = 2% + 32

Vg = (2x,2y) # 0on dA(g = 1)

B 20 —1 = 2z ---(1)
VIii= AVe By = 2y - (2)

g =1
2yt o= 1 - (3)

(2)=@4-2N)y=0
= A=2o0ry=0

For \ = 2:
By (1),
20 — 1 =4z
1
=735
By (3),
3
y = ig
Fory =0,
By (3),
r ==l
Comparing values of f at five points:
1 11
f(5:00 =~
[ESC Ry .
27 2 27 2 4
f(1,0) =3
f(=1,0)=5

Hence, maximum value = 2 at (—1 4+¥3) and minimum value = & at (1, 0).
1 20179 4
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