# MATH 2010 Chapter 11

## **11.1 Second Derivative Test**

Last time: Definiteness of symmetric matrix

**Theorem 11.1.** Suppose  $\Omega \subseteq \mathbb{R}^n$  is open,  $f : \Omega \to \mathbb{R}$  is  $C^2$ , and  $a \in \Omega$  is a critical point (i.e.  $\nabla f(a) = 0$ ).

If Hf(a) is:

- **positive definite**, then a corresponds to a local minimum.
- negative definite, then a corresponds to a local maximum.
- indefinite, then a is a saddle point.

Idea of proof: Use Taylor's Theorem.  $\nabla f(a) = 0 \Rightarrow$  For x near a,

$$f(x) - f(a) \approx \frac{1}{2}(x - a)^T H f(a)(x - a)$$

#### If Hf(a) is positive definite

R.H.S. > 0 for all  $x \neq a$   $\Rightarrow f(x) - f(a) > 0$  for all  $x \neq a$  and near a.  $\Rightarrow f$  has a local minimum at a. "Proof" is similar for the other two cases. Geometrically,

1. Hf(a) is positive definite (e.g.  $f = x^2 + y^2$  at (0,0))



2. Hf(a) is negative definite (e.g.  $f = -x^2 - y^2$  at (0,0))



3. Hf(a) is indefinite (e.g.  $f = x^2 - y^2$  at (0, 0))



How do we determine the definiteness of Hf(a)? For the simple case n = 2, it can be done easily by completing square.

**Theorem 11.2.** Let  $M = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$  be a symmetric  $2 \times 2$  matrix with real coefficients. Then:

- *M* is positive definite  $\Leftrightarrow \det(M) > 0, A > 0$
- *M* is negative definite  $\Leftrightarrow \det(M) > 0, A < 0$
- M is indefinite  $\Leftrightarrow \det(M) < 0$

**Remark.**  $det(M) = AC - B^2$ .

Proof of Theorem 11.2. Let  $q(x, y) = \begin{bmatrix} x & y \end{bmatrix} M \begin{bmatrix} x \\ y \end{bmatrix} = Ax^2 + 2Bxy + Cy^2$ Case I  $(A \neq 0)$ 

$$Aq(x,y) = A^2x^2 + 2ABxy + ACy^2$$
$$= (Ax + By)^2 + (AC - B^2)y^2$$

Clearly,

$$\begin{split} q(x,y) &> 0 \quad \forall (x,y) \neq (0,0) \Leftrightarrow AC - B^2 > 0, A > 0 \\ q(x,y) &< 0 \quad \forall (x,y) \neq (0,0) \Leftrightarrow AC - B^2 > 0, A < 0 \\ q(x,y) \text{ change signs} \Leftrightarrow AC - B^2 < 0 \end{split}$$

Case II (A=0 )  $AC-B^2=-B^2\leq 0$ 

$$q(x,y) = 2Bxy + Cy^2 = y(2Bx + Cy)$$

Clearly q is neither positive or negative definite and is indefinite  $\Leftrightarrow B \neq 0$   $\Leftrightarrow AC-B^2 < 0$ 

**Theorem 11.3** (Second Derivative Test for functions of two variables). If  $\Omega \subseteq \mathbb{R}^2$  is open,  $f : \Omega \to \mathbb{R}$  is  $C^2$ ,  $a \in \Omega$ ,  $\nabla f(a) = 0$ . Then,

- 1.  $f_{xx}f_{yy} f_{xy}^2 > 0, f_{xx} > 0$  at  $a \Rightarrow a$  is a local minimum
- 2.  $f_{xx}f_{yy} f_{xy}^2 > 0, f_{xx} < 0$  at  $a \Rightarrow a$  is a local maximum
- 3.  $f_{xx}f_{yy} f_{xy}^2 < 0$  at  $a \Rightarrow a$  is a saddle point
- 4.  $f_{xx}f_{yy} f_{xy}^2 = 0$  at  $a \Rightarrow$  inconclusive

**Remark.** •  $f_{xx}f_{yy} - f_{xy}^2 = \det(Hf)$ 

• In Item 4, the point *a* can correspond to a local maximum/minimum or saddle point.

Example 11.4.

$$f(x,y) = 3x^2 - 10xy + 3y^2 + 2x + 2y + 3$$

Find and classify critical points of f.

**Solution.** *f* is polynomial, so is differentiable on  $\mathbb{R}^2$ 

$$\nabla f = \begin{bmatrix} f_x & f_y \end{bmatrix} \\ = \begin{bmatrix} 6x - 10y + 2 & -10x + 6y + 2 \end{bmatrix}$$

$$\nabla f = \vec{0} \Leftrightarrow \begin{cases} 6x - 10y + 2 = 0\\ -10x + 6y + 2 = 0 \end{cases}$$
$$\Leftrightarrow (x, y) = (\frac{1}{2}, \frac{1}{2})$$

 $\therefore (\frac{1}{2}, \frac{1}{2})$  is the only critical point.

$$Hf = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 6 & -10 \\ -10 & 6 \end{bmatrix}$$

 $f_{xx}f_{yy} - f_{xy}^2 = (-6)^2 - (-10)^2 = -64 < 0.$ By  $2^{nd}$  derivative test,  $(\frac{1}{2}, \frac{1}{2})$  is a saddle point. Example 11.5.

$$f(x,y) = 3x - x^3 - 3xy^2$$

Find and classify critical points of f.

**Solution.** *f* is a polynomial, so is differentiable on  $\mathbb{R}^2$ .

$$\nabla f = \begin{bmatrix} f_x & f_y \end{bmatrix}$$
$$= \begin{bmatrix} 3 - 3x^2 - 3y^2 & -6xy \end{bmatrix}$$
$$\nabla f = 0$$
$$\Leftrightarrow \begin{cases} 3 - 3x^2 - 3y^2 = 0 \cdots (1) \\ -6xy = 0 \cdots (2) \end{cases}$$
$$= 0 \text{ or } y = 0$$

 $\begin{array}{l} (2) \Rightarrow x = 0 \text{ or } y = 0 \\ \text{If } x = 0, \, (1) \Rightarrow 3 - 3y^2 = 0 \Rightarrow y = \pm 1 \\ \text{If } y = 0, \, (1) \Rightarrow 3 - 3x^2 = 0 \Rightarrow x = \pm 1 \\ \text{Hence, there are 4 critical points: } (0, \pm 1), \, (\pm 1, 0). \end{array}$ 

$$Hf = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} -6x & -6y \\ -6y & -6x \end{bmatrix}$$

• a = (0, 1)Then,  $Hf(a) = \begin{bmatrix} 0 & -6 \\ -6 & 0 \end{bmatrix}$ .  $\det Hf(a) = -36 < 0.$ 

Hence, the point (0, 1) corresponds to a saddle point.

- a = (0, -1)
  - Then,  $Hf(a) = \begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix}$ . det Hf(a) = -36 < 0.

Hence, the point (0, -1) corresponds to a saddle point.

• 
$$a = (1, 0)$$

Then,  $Hf(a) = \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}$ . det Hf(a) = 36 > 0.  $f_{xx}(a) = -6 < 0$ .

Hence (1,0) corresponds to a local maximum.

• a = (-1, 0)Then,  $Hf(a) = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ .  $\det Hf(a) = 36 > 0$ .  $f_{xx}(a) = 6 > 0$ . Hence (-1, 0) corresponds to a local minimum.

### IFRAME

**Example 11.6.** Inconclusive from  $2^{nd}$  derivative test

$$f(x,y) = x^{2} + y^{4} \qquad g(x,y) = x^{2} - y^{4} \qquad h(x,y) = -x^{2} - y^{4}$$
$$\nabla f = \begin{bmatrix} 2x & 4y^{3} \end{bmatrix} \qquad \nabla g = \begin{bmatrix} 2x & -4y^{3} \end{bmatrix} \qquad \nabla h = \begin{bmatrix} -2x & -4y^{3} \end{bmatrix}$$

 $\Rightarrow (0,0)$  is a critical point of f, g, h.

$$Hf = \begin{bmatrix} 2 & 0 \\ 0 & 12y^2 \end{bmatrix} \quad Hg = \begin{bmatrix} 2 & 0 \\ 0 & -12y^2 \end{bmatrix} \quad Hh = \begin{bmatrix} -2 & 0 \\ 0 & -12y^2 \end{bmatrix}$$
$$Hf(0,0) = Hg(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \quad Hh(0,0) = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$$

 $\Rightarrow$  Each Hessian matrix has zero determinant at (0,0), so the  $2^{nd}$  derivative test is inconclusive.

**Remark.** Clearly, f, g, h has local minimum, saddle point and local maximum at (0,0) respectively.

### **11.1.1** Second Derivative Test for Functions of *n* Variables

Let  $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$  be  $C^2, a \in \Omega, \nabla f(a) = 0$ .

$$Hf(a) = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & \cdots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \cdots & f_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1} & f_{x_nx_2} & \cdots & f_{x_nx_n} \end{bmatrix}$$

 $f \text{ is } C^2 \Rightarrow Hf(a) \text{ is symmetric. From linear algebra, there exists an orthogonal } n \times n \text{ matrix } P \text{ (i.e. } P^\top P = I_n \text{ ) such that:}$ 

$$P^{T}Hf(a)P = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_{n} \end{bmatrix}$$

where  $\lambda_i$  are eigenvalues of Hf(a). Hence,

| ĺ                    | positive definite | $\Leftrightarrow$ | All $\lambda_i > 0$                         |
|----------------------|-------------------|-------------------|---------------------------------------------|
| $Hf(a)$ is $\langle$ | negative definite | $\Leftrightarrow$ | All $\lambda_i < 0$                         |
|                      | indefinite        | $\Leftrightarrow$ | Some $\lambda_i > 0$ , some $\lambda_j < 0$ |

### **11.1.2** Another way to check definiteness of Hf(a)

Let  $H_k$  be the k by k submatrix

$$H_{k} = \begin{bmatrix} f_{x_{1}x_{1}} & f_{x_{1}x_{2}} & \cdots & f_{x_{1}x_{k}} \\ f_{x_{2}x_{1}} & f_{x_{2}x_{2}} & \cdots & f_{x_{2}x_{k}} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{k}x_{1}} & f_{x_{k}x_{2}} & \cdots & f_{x_{k}x_{k}} \end{bmatrix}$$

1. Hf(a) is positive definite  $\Leftrightarrow \det H_k > 0$  for  $k = 1, 2, \cdots, n$ 

2. Hf(a) is negative definite  $\Leftrightarrow \det H_k \begin{cases} < 0 \text{ if } k \text{ is odd} \\ > 0 \text{ if } k \text{ is even} \end{cases}$ 

For n = 2,

$$\det H_1 = \det[f_{xx}] = f_{xx}$$
$$\det H_2 = \det \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = f_{xx}f_{yy} - f_{xy}^2$$

Same result as before.

#### 11.2 Lagrange Multiplier

Finding extrema under constraints.

**Example 11.7.** Find the point on the parabola  $x^2 = 4y$  closest to (1, 2). Find minimum of  $f(x, y) = (x - 1)^2 + (y - 2)^2$  under constraint g(x, y) = $x^2 - 4y = 0.$ (Constraint: expressed as a level set q = 0) **IFRAME** https://www.math3d.org/Z2YmkbAD **IFRAME** 

**Theorem 11.8** (Lagrange Multipliers). Let f, g be  $C^1$  functions on  $\Omega \subseteq \mathbb{R}^n$ 

$$S = g^{-1}(c) = \{x \in \Omega : g(x) = c\}$$

Suppose

- 1. a corresponds to a local extremum of f on S
- 2.  $\nabla g(a) \neq 0$

Then 
$$\begin{cases} \nabla f(a) = \lambda \nabla g(a) \text{ for some } \lambda \in \mathbb{R} \\ g(a) = c \end{cases}$$

#### **Remark.** 1. $\lambda$ is called a **Lagrange Multiplier**.

2. Let  $F(x, \lambda) = f(x) - \lambda(g(x) - c)$ Then  $\nabla F(x, \lambda) = (\underbrace{\nabla(f(x) - \lambda g(x))}_{n \text{ components}}, g(x) - c)$ 

Find critical points point of f under constraint g = c

### $\updownarrow$

Find critical point of F without constraint

Back to Example 11.7,

Minimize  $f(x, y) = (x - 1)^2 + (y - 2)^2$ 

Constraint  $g(x, y) = x^2 - 4y = 0$ 

**Solution.** f, g are  $C^1$  on  $\mathbb{R}^2$ .

$$\nabla f = \begin{bmatrix} 2(x-1) & 2(y-2) \end{bmatrix}$$

$$\nabla g = \begin{bmatrix} 2x & -4 \end{bmatrix} \neq \vec{0} \text{ on } \mathbb{R}^2$$

Suppose (x, y) is a local extremum of f(x, y) on g(x, y) = 0. Then, by Lagrange multipliers,

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \text{ for some } \lambda \in \mathbb{R} \\ g(x,y) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} 2(x-1) = 2\lambda x \cdots (1) \\ 2(y-2) = -4\lambda \cdots (2) \\ x^2 - 4y = 0 \cdots (3) \end{cases}$$

 $\begin{array}{l} (1) \Rightarrow x - 1 = \lambda x \Rightarrow x(1 - \lambda) = 1\\ (2) \Rightarrow y - 2 = -2\lambda \Rightarrow y = 2(1 - \lambda) = \frac{2}{x}\\ (3) \Rightarrow x^2 - \frac{8}{x} = 0, x^3 - 8 = 0 \Rightarrow x = 2\\ \therefore y = \frac{2}{2} = 1, \text{ and now it is easy to check } (x, y) = (2, 1) \text{ is a solution.}\\ \text{Geometrically, } f \text{ must have a minimum on } g = 0.\\ \text{By the Lagrange Multipliers Theorem, only one point can be that minimum} \end{array}$ 

point.

 $\Rightarrow$  f has minimum at (2, 1) on g = 0.

To summarize, to find the minimum of  $f(x, y) = (x - 1)^2 + (y - 2)^2$  under the constraint  $g(x, y) = x^2 - 4y$ , we solve:

$$\begin{cases} \nabla f = \lambda \nabla g \\ g = 0 \end{cases}$$

**Exercise 11.9.** Find the point on the parabola  $x^2 = 4y$  closest to (2, 5).  $f(x, y) = (x - 2)^2 + (y - 5)^2$   $g(x, y) = x^2 - 4y$ 

Remark. The system:

$$\begin{cases} \nabla f &= \lambda \nabla g \\ g &= 0 \end{cases}$$

has solutions. Global minimum on g = 0: (4, 4). Not local extremum on g = 0: (-2, 1).

**Example 11.10.** Maximize  $xy^2$  on the ellipse

$$x^2 + 4y^2 = 4$$

Solution.

Let 
$$f(x, y) = xy^2$$
  
 $g(x, y) = x^2 + 4y^2$ 

Note f is continuous and the ellipse q = 4 is closed and bounded.

By EVT, f has global maximum and minimum on g = 4.

$$\nabla f = \begin{bmatrix} y^2 & 2xy \end{bmatrix}$$

$$\nabla g = \begin{bmatrix} 2x & 8y \end{bmatrix}$$

Note:  $\nabla g \neq 0$  on  $x^2 + 4y^2 = 4$ .

Lagrange multipliers:

$$\begin{cases} \nabla f = \lambda \nabla g \\ g = 4 \end{cases} \Leftrightarrow \begin{cases} y^2 = 2\lambda x \cdots (1) \\ 2xy = 8\lambda y \cdots (2) \\ x^2 + 4y^2 = 4 \cdots (3) \end{cases}$$

Case 1: If y = 0, then

(3) 
$$\Rightarrow x^2 = 4 \Rightarrow x = \pm 2,$$
  
 $\lambda = 0$  by (1)

 $\therefore (x, y) = (\pm 2, 0).$ Case 2: If  $y \neq 0$ , then:

$$\frac{(2)}{(1)} \Rightarrow \frac{2xy}{y^2} = \frac{8\lambda y}{2\lambda x} \Rightarrow \frac{2x}{y} = \frac{4y}{x} \Rightarrow x^2 = 2y^2$$

By (3),  $6y^2 = 4 \Rightarrow y = \pm \sqrt{\frac{2}{3}}$   $\therefore x^2 = 2y^2 = \frac{4}{3} \Rightarrow x = \pm \sqrt{\frac{4}{3}}$   $\therefore (x, y) = (\pm \sqrt{\frac{4}{3}}, \pm \sqrt{\frac{2}{3}}).$ Compare values of f at the 6 points found using Lagrange Multipliers:  $f(x, y) = xy^2$   $f(\pm 2, 0) = 0$   $f(\sqrt{\frac{4}{3}}, \pm \sqrt{\frac{2}{3}}) = \sqrt{\frac{4}{3}} \cdot \frac{2}{3} = \frac{4}{3\sqrt{3}}$  (maximum)  $f(-\sqrt{\frac{4}{3}}, \pm \sqrt{\frac{2}{3}}) = -\sqrt{\frac{4}{3}} \cdot \frac{2}{3} = -\frac{4}{3\sqrt{3}}$  (minimum) Hence, for f(x, y) on g = 4, Global maximum value  $= \frac{4}{3\sqrt{3}}$  at  $(\sqrt{\frac{4}{3}}, \pm \sqrt{\frac{2}{3}})$ Global minimum value  $= -\frac{4}{3\sqrt{3}}$  at  $(-\sqrt{\frac{4}{3}}, \pm \sqrt{\frac{2}{3}})$ 

### **Remark.** We may use another form of Lagrange Multiplier.

Let 
$$F(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - 4) = xy^2 - \lambda(x^2 + 4y^2 - 4).$$
  
Then,  $\nabla F = (y^2 - 2\lambda x, 2xy - 8\lambda y, x^2 + 4y^2 - 4), \nabla F = 0 \Leftrightarrow \begin{cases} y^2 - 2\lambda x = 0\\ 2xy - 8\lambda y = 0\\ x^2 + 4y^2 - 4 = 0 \end{cases}$ 

Same system as before.

For problems of finding maximum/minimum of  $f : A \to \mathbb{R}$ ,

Lagrange Multipliers can be used to study f on  $\partial A$ . Consider a previous example:

Example 11.11. Find global maximum/minimum of:

$$f(x,y) = x^2 + 2y^2 - x + 3$$
 for  $x^2 + y^2 \le 1$ 

**Solution.** Domain =  $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ As found before, f has only one critical point  $(\frac{1}{2}, 0)$  in Int(A), with  $f(\frac{1}{2}, 0) = 1$  $\frac{11}{4}$ .

To study f on  $\partial A=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$  by Lagrange Multipliers: Let  $g(x,y)=x^2+y^2$ 

$$\nabla g = (2x, 2y) \neq \vec{0} \text{ on } \partial A(g=1)$$

$$\begin{cases} \nabla f = \lambda \nabla g \\ g = 1 \end{cases} \Leftrightarrow \begin{cases} 2x - 1 = 2\lambda x \cdots (1) \\ 4y = 2\lambda y \cdots (2) \\ x^2 + y^2 = 1 \cdots (3) \end{cases}$$

$$(2) \Rightarrow (4 - 2\lambda)y = 0$$
  
$$\Rightarrow \lambda = 2 \text{ or } y = 0$$

For  $\lambda = 2$ : By (1),

$$2x - 1 = 4x$$
$$x = -\frac{1}{2}$$

By (3),

$$y = \pm \frac{\sqrt{3}}{2}$$

For y = 0, By (3),

 $x = \pm 1$ 

Comparing values of f at five points:

$$f(\frac{1}{2},0) = \frac{11}{4}$$

$$f(-\frac{1}{2},\frac{\sqrt{3}}{2}) = f(-\frac{1}{2},-\frac{\sqrt{3}}{2}) = \frac{21}{4}$$

$$f(1,0) = 3$$

$$f(-1,0) = 5$$

Hence, maximum value  $=\frac{21}{4}$  at  $\left(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$  and minimum value  $=\frac{11}{4}$  at  $\left(\frac{1}{2},0\right)$ .