MATH 2010 Chapter 10

10.1 Taylor Series Expansion

Recall
Taylor expansion for 1-variable function g(t) at ¢t = 0 up to order k.

1 1
g(t) = g(0) + ¢'(0)t + Eg//(O)tQ + -4+ —¢®(0)t* + remainder ®

k!
We want a similar formula for a multi-variable function f(z) defined near a,
where z = (x1, -+ ,x,), a= (a1, - ,an).

Let g(t) = f(a +t(z — a))
If ||z — al| is small, then for |¢| < 1,

[t(x = a)|| = [t]l|x — al| < [lz — al| is small
and ¢(t) is defined.
By ®,

1 1
fla+t(x —a)) =g(0)+ ¢'(0)t + 59”(0)t2 + -4 —g®(0)t* + remainder

Hg
Putt =1,
/ 1 " 1 (k) .
f(x) =g(0)+4'(0) + 519 0)+---+ 719 (0) + remainder

Next, express ¢(*)(0) in terms of f :

9(0) = fla+t(x —a)) = f(a)

9(0) = Vot e —a))- 50+ tr —a)
=Vfla+tlx—a)) (r—a)
= o (a+t(x —a))(z; — a;)



= ¢(0) = V(@) (z—0)
= - B (a)(zi — a;)
9'(t) = %g'@f)

N Z c‘)xajafxz (@ +t(z — a))(z; — a;)(x; — a;)

=1 j=1

70 =33 5 @)~ 0o - a)

f(z) = fa) + Z 8f' (a)(z; — a;) + l 2 i -(a)(z; — a;)(z; — a;) + remainder

Similarly, the general term is
g™ (0) = | Z m(a)(% —ay) - (2, — )
=
Example 10.1. If n = 2, ie. f = f(2,y),a = (o, y0) [ is C? (50 fuy = fyz )
then
f(z,y) =f(20,v0) + fe(zo, y0)(x — x0) + f,(%0,Y0) (Y — ¥o)

+ %[fm(l‘o, Yo)(z — $0)2 + 2fxy<I07 Yo)(z — 20)(y — yo) + fyy<1707 Yo)(y — yo)z]
+ remainder

Theorem 10.2 (Taylor’s Theorem). Let Q C R™ be open, f : Q — R be C*.
Then for any x,a € (),

1 «— 0*f
)+ 30 G @ a4 g 32 e~y )+

1 ok f
Z M( a)(wy, —aq,) - (@, — a;,) + ex(z, @) ’

Zk—



with:

Definition 10.3.

pe(z) = fla) + Z D, (a)(z; — a;) + -

k! ~_ 8$i1 c. 81;% 11 11 Tk ik
11y 5=
is called the k-th order Taylor polynomial of f at a.
Remark. e pi(z) = L(x) = Linearization of f at a
e p; and f have equal partial derivatives up to order £ at a.
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Example 10.4. f(z,y) = e® cosy Find the 2"¢ order Taylor polynomial at a =

(0,0)
Solution.
Je =€ cosy fy = —€"siny
fex = € cos Y fye = —€"siny
fzy = —€"siny fyy = —€" cosy
= f(0,0)=1,
f:(0,0) =1 f,(0,0) =0
fﬂcx(oa()) =1 fyy(070) =1

fffy(()ao) = fyz(O,O) =0

pa(,) = F(0,0) + £o(0, 00 + £,(0,0)y + 5 (Fer(0,0)2 + 212y (0,0)2y + £, (0. 0)5?)
1

1
-1 L2 19
+$+2I 2y

How about p3(z,y) at (0,0) ?


https://www.geogebra.org/material/iframe/id/jT2NpGr6/width/925/height/615/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/true/ld/true/sdz/true/ctl/false
https://www.geogebra.org/material/iframe/id/jT2NpGr6/width/925/height/615/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/true/ld/true/sdz/true/ctl/false

1
p3(z,y) = pa(,y) + §;9°”(0)

N
37d order terms
Jrae = €" cOSY fa:xy:f:cyx:fym: —e’siny
fyyy = €”siny Jayy = fyay = fyya = —€" cosy
= [222(0,0) =1 J2ay(0,0) =0
fryy(oao) =-1 fyyy(oa()) =0

9(3) (O) = fmcz(oa 0)1:3 + Bfftﬂiy((]? O>$2y + 3fmyy<0a O)Iy2 + fyyy(oy 0)y3
= 23 — 3xy?

1
mmwzmmm+§w—wm

1 1 1 1
—1 L2 L2, -3 - 2
+:c—|—2a: 2y —|—6x 2a:y

Question If f = f(x,y,z) is C°®, then coefficient of zy*23 in ps(z,y, 2) at
(0,0,0) i8 @ fryy222(0,0,0), ¢ =7

10.1.1 Matrix form for 2nd order Taylor Polynomial

Definition 10.5. Let 2 C R" be open, f : 2 — R be C?.
Then the Hessian matrix of f ata € () is:

frlzl (CL) T fxlxn (CL)
Hf(a) = : :
Jenar (@) - fre,(a)

Remark. e Hf(a) is a symmetric n X n matrix by the mixed derivatives
theorem.

e In Thomas’ Calculus, Hessian of f is defined to be the determinant of our
Hessian matrix.



With the Hessian matrix, the 2nd order Taylor polynomial of f at a can be
written as:

p2(z) = fla) + V f(a)(z —a) + %(l‘ —a)' Hf(a)(z - a)

1x1 1x1 1xn nx1 1xn nxn nx1

where z,a € R" are written as column vectors:

(z —a)" = Transpose of z — a

= [1’1—&1,--- axn_an]
Remark.

(x —a) Hf(a)(z —a)

_faclacl (a) e f:len (a) T1 —aq
:[xl—al,"',fn—an] .

_fxnxl (a) Tt fxnxn ((I) Ty — Ap

_fr1m1(a)(x1 —a1) + -+ faw, (@) (20 — an)
:[xl—ah...7xn_an] .

o (@)1= 1) 4+ fanan (@) (0 — )

=frrz (@) (21 — 1) (21 — @1) ++ + fayu, (@) (21 — ar1) (20 — ay)
+ e

+ frpe (@) (@1 — a1)(Tn — @) + -+ + frpe, (@) (20 — an) (20 — an)

= Z Jui; (@) (@i — ai)(z; — ay)

ij=1
=g(0)
Example 10.6.
f(x,y) =e"cosy
Find py(z,y) at a = (0,0) using matrix form.
Solution.

f(070) =1

V£(0,0) = (1,0)



.0 =) 1]

pa(e,y) = £(0,0) + V£(0,0) [;“" B 8} +ie—0 y—0HF©0,0) B - 8}

2
T 1 1 0 T
S L/]+§[x v [0 —J M
1 1
=1 T2 -2
+l'+2£(} 2y

Example 10.7.

Inz
9(r.9) =1
Find py(z,y) at (1,0).
Solution.
1 Inz
Vg =199, = { , }
90 = | ST T g7

J— 1 L 1
Hg = [gm gzy} — | TP
Jyz  Gyy z(1—y)? (1-y)* |

—1 1]

Vg(1,0)=[1 0] Hg(1,0)= {

pa(,) = 9(0,0) + Vg(0,0) {x . 1} et gm0 {7” . 1}
o e
=(w—1)—%(x—1)2+<x_1)y

6



10.1.2 Application to local maximum / minimum

Suppose f : R* — R is C?, and a is a critical point of f.
Then, V f(a) = 0. For x near a ,

£(&) ~ o)
= () + V(@) ~ a) + 5(r — ) Hf @)z~ a)
= @+ 5 a) Hi (@) - a)

2

~ J/
-

This term determines whether f(x)>f(a) or f(x)<f(a)

Forn = 1,i.e. f is 1-variable.

1 T _ 1 " 2
S —a) Hf(@)x—a) = 3f"(@)(z —a)

Recall: Second Derivative Test
This may be viewed as a consequence of Taylor’s Theorem. That is, if f'(a) =
0, then near x = a, we have:

F(@) ~ fa) + f'(a)(x — a) 45 f(a)(z — a)
—_——

=0

IFRAME

The sign of the second derivative at + = a essentially tells us whether locally
the graph of the function looks like an upward or downward parabola.

For n = 2, the 2™ order term is:

1 Y — 0] [fm(l’o, Yo)  Jfay(To, yo)] {IE — xo]

—\r — X
2[ 0 yx(x07y0) fyy($07y0) Y—1%Y

TV
f is C2=-Symmetric

To understand the nature of critical points, we study quadratic forms of 2 vari-

ables.
q(z,y) = [z | [g g] m

= Ax® 4+ 2Bxy + Cy?

Does ¢(z,y) have a definite sign (always positive or always negative) for (z,y) #
(0,0)?
We can determine it by completing square.


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=content/math1010/week8.xml&query=(//lv:*[./lv:label/@name='thm:sdt'])[1]
https://www.desmos.com/calculator/ufntlwig2i?embed

Example 10.8.

q(w,y) = 2y (: [z y] {(1) tl)} [ZD
IFRAME )

Note g(z,y) = 3(x +y)? — 5(x —y)? Along z + y = 0, i.e. y = —u,
q(z,—x) = —22* < Oforx # 0
Alongz —y=0,ie.y=2x
q(z,7) =22° > 0 forz # 0

Hence, ¢ has no definite sign, i.e. indefinite.

Clearly (0, 0) is a critical point of ¢(x, y) but neither local maximum nor min-
imum.

Such a critical point is called a saddle point .

Example 10.9.
o 2 2 ( 17 —6 T
q(z,y) = 172" — 122y + 8y (— [z y] {_6 s | 1y
IFRAME
Does ¢(z,y) have a definite sign?
Solution.
2-6 6 36
— 172 20 D2 2 99, o
6
= 17(z — 1—7y)2 + 10y ®

Hence, ¢(z,y) > 0 = ¢(0,0) for (z,y) # (0,0) Hence, The critical point (0, 0) is
a local minimum. Also global minimum of ¢(z, y).

Remark. Expression like ® is called diagonalization of quadratic form. It is not
unique!

For example ¢(z,y) = 5(%)2 + 20(%—\/_5@’)2 is another diagonalization.
0 0

"Orthogonal" change of coordinates


https://www.math.cuhk.edu.hk/~pschan/surfaceplot/?data=%7B%22sidebar%22%3A0%2C%22zscale%22%3A%220%22%2C%22domain%22%3A%2210%22%2C%22numsamples%22%3A%2220%22%2C%22autozscale%22%3A%221%22%2C%22showaxes%22%3A%221%22%2C%22centeredaxes%22%3A%221%22%2C%22xmin%22%3A%22-5%22%2C%22xmax%22%3A%225%22%2C%22ymin%22%3A%22-5%22%2C%22ymax%22%3A%225%22%2C%22zmin%22%3A%22-10%22%2C%22zmax%22%3A%2210%22%2C%22xticks%22%3A%225%22%2C%22yticks%22%3A%229%22%2C%22zticks%22%3A%2210%22%2C%22equations%22%3A%5B%7B%22isParam%22%3Afalse%2C%22formula%22%3A%222*x*y%22%2C%22color%22%3A%226cb8d9%22%2C%22alpha%22%3A%220.9%22%7D%5D%2C%22rotationMatrix%22%3A%5B-0.43%2C-0.51%2C0.88%2C0%2C1.02%2C-0.26%2C0.35%2C0%2C0.04%2C0.95%2C0.57%2C0%2C0%2C0%2C0%2C1%5D%7D&dimensions=[480,480]
https://www.math.cuhk.edu.hk/~pschan/surfaceplot/?data=%7B%22sidebar%22%3A0%2C%22zscale%22%3A%220%22%2C%22domain%22%3A%2217%22%2C%22numsamples%22%3A%2220%22%2C%22autozscale%22%3A%221%22%2C%22showaxes%22%3A%221%22%2C%22centeredaxes%22%3A%221%22%2C%22xmin%22%3A%22-17%22%2C%22xmax%22%3A%2217%22%2C%22ymin%22%3A%22-17%22%2C%22ymax%22%3A%2217%22%2C%22zmin%22%3A%22-10%22%2C%22zmax%22%3A%2210%22%2C%22xticks%22%3A%225%22%2C%22yticks%22%3A%229%22%2C%22zticks%22%3A%2210%22%2C%22equations%22%3A%5B%7B%22isParam%22%3Afalse%2C%22formula%22%3A%2217x%5E2%20-12x*y%20%2B%208y%5E2%22%2C%22color%22%3A%22d9916d%22%2C%22alpha%22%3A%220.9%22%7D%5D%2C%22rotationMatrix%22%3A%5B-0.71%2C-0.31%2C0.66%2C0%2C0.73%2C-0.24%2C0.68%2C0%2C-0.06%2C0.95%2C0.38%2C0%2C0%2C0%2C0%2C1%5D%7D&dimensions=[480,480]

10.1.3 Higher dimension example

Example 10.10.
q(z,y,2) = vy +yz+ 2z
Definite sign for (x,y, z) # (0,0,0) ?
Solution.

4= 3ty = 1 -9+ (o +y)

=~ =

Letu = % v:x—;y.Then

q=u*—v?+2uz
= (u® + 2uz + 2%) —v? — 2

= (u+2)2—2? — 22

Tty 2 (T =Y 2
(o - (-
1 2 1 2 2
= 1 (z+y+22) _Z(x_y) —z
1 ro T
positive negative
Ontheplanex+y+2z:0,i.e.z:—xTer
r+y
qzq(x,y,— 9 )
1 2 1 2

Alongthelinerz —y=2z=0,ie.y=2,2=0

Q(xmwa) - q(ZE,I,O)
=22 >0forz#0

Hence, the critical point (0,0, 0) is a saddle point. For general theory, need linear
algebra:
Diagonalization of quadratic form, eigenvalues - - -

Definition 10.11. Let A be a n x n symmetric matrix.
Then A is said to be

e positive definite if 27 Az > 0 for all column vectors = € R™\ {0}

9



e negative definite if 7 Az < 0 for all column vectors = € R™\ {0}

e indefinite if 3 column vectors z,y € R™\{0} such that 2T Az > 0 and
yTAy <0

Remark. These are not all the possible cases:
There are symmetric matrix which is not positive definite, negative definite
nor indefinite.

Example 10.12.

lz 9] [(1) Z] m =22+ 4y>>0 forall m € R\ {0}

Hence, [(1) 2] is positive definite.

Example 10.13.

[z [_01 _04} m = —2? —4y> <0 forall m e R*\{0}

Hence, [_O _O 4] is negative definite.

Example 10.14.
A [
[1 0] _01 2 (1) =-1<0
[0 1] _01 2 (1) =4>0

-1 0f. . .
Hence, [ 0 4] is indefinite.
Example 10.15.

lz 9] B 8} m —22>0 forall m € R2

0 1] [(1) 8} {ﬂ = 0 = not positive definite

Hence, [(1) 8} is neither positive/negative definite nor indefinite.

10



Example 10.16.

= ala 3
Y2 5 (Y
=(2 + doy + 4%) + ¢
=(z+2y)* +y* >0 forall Bj} € R*\{0}

Hence, B g] is positive definite.

11
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