MATH 2010 Chapter 10

10.1 Taylor Series Expansion

Recall

Taylor expansion for 1-variable function g(t) at t = 0 up to order k.

$$g(t) = g(0) + g'(0)t + \frac{1}{2!}g''(0)t^2 + \dots + \frac{1}{k!}g^{(k)}(0)t^k + \text{remainder} \quad \circledast$$

We want a similar formula for a multi-variable function f(x) defined near a, where $x = (x_1, \dots, x_n), \quad a = (a_1, \dots, a_n).$

Let
$$g(t) = f(a + t(x - a))$$

If ||x - a|| is small, then for $|t| \le 1$,

$$||t(x-a)|| = |t|||x-a|| \le ||x-a||$$
 is small

and g(t) is defined.

By \circledast ,

$$f(a+t(x-a)) = g(0) + g'(0)t + \frac{1}{2!}g''(0)t^2 + \dots + \frac{1}{k!}g^{(k)}(0)t^k + \text{remainder}$$
Put $t = 1$,

$$f(x) = g(0) + g'(0) + \frac{1}{2!}g''(0) + \dots + \frac{1}{k!}g^{(k)}(0) + \text{remainder}$$

Next, express $g^{(k)}(0)$ in terms of f:

$$g(0) = f(a + t(x - a)) = f(a)$$

$$g'(t) = \nabla f(a + t(x - a)) \cdot \frac{d}{dt}(a + t(x - a))$$
$$= \nabla f(a + t(x - a)) \cdot (x - a)$$
$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a + t(x - a))(x_i - a_i)$$

$$\Rightarrow g'(0) = \nabla f(a) \cdot (x - a)$$
$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i)$$

$$g''(t) = \frac{d}{dt}g'(t)$$

$$= \sum_{i=1}^{n} \frac{d}{dt} \left[\frac{\partial f}{\partial x_i} (a + t(x - a))(x_i - a_i) \right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i} (a + t(x - a))(x_j - a_j)(x_i - a_i)$$

$$g''(0) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i} (a)(x_j - a_j)(x_i - a_i)$$

Hence, Taylor Expansion at a up to order 2 is

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) + \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(a)(x_i - a_i)(x_j - a_j) + \text{remainder}$$

Similarly, the general term is

$$g^{(k)}(0) = \sum_{i_1, \dots, i_k=1}^n \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} (a)(x_{i_1} - a_{i_1}) \cdots (x_{i_k} - a_{i_k})$$

Example 10.1. If n=2, i.e. $f=f(x,y), a=(x_0,y_0)$ f is C^2 (so $f_{xy}=f_{yx}$), then

$$\begin{split} f(x,y) = & f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) \\ & + \frac{1}{2} [f_{xx}(x_0,y_0)(x-x_0)^2 + 2f_{xy}(x_0,y_0)(x-x_0)(y-y_0) + f_{yy}(x_0,y_0)(y-y_0)^2] \\ & + \text{remainder} \end{split}$$

Theorem 10.2 (Taylor's Theorem). Let $\Omega \subseteq \mathbb{R}^n$ be open, $f : \Omega \to \mathbb{R}$ be C^k . Then for any $x, a \in \Omega$,

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) + \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(a)(x_i - a_i)(x_j - a_j) + \cdots$$
$$+ \frac{1}{k!} \sum_{i_1, \dots, i_k=1}^{n} \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}(a)(x_{i_1} - a_{i_1}) \cdots (x_{i_k} - a_{i_k}) + \varepsilon_k(x, a)$$

with:

$$\lim_{x \to a} \frac{\varepsilon_k(x, a)}{\|x - a\|^k} = 0$$

Definition 10.3.

$$p_k(x) = f(a) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a)(x_i - a_i) + \cdots$$
$$+ \frac{1}{k!} \sum_{i_1, \dots, i_k=1}^n \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}(a)(x_{i_1} - a_{i_1}) \cdots (x_{i_k} - a_{i_k})$$

is called the k-th order Taylor polynomial of f at a.

Remark. • $p_1(x) = L(x) = \text{Linearization of } f \text{ at } a$

• p_k and f have equal partial derivatives up to order k at a.

IFRAME

open in new window

Example 10.4. $f(x,y) = e^x \cos y$ Find the 2^{nd} order Taylor polynomial at a = (0,0)

Solution.

$$f_x = e^x \cos y$$
 $f_y = -e^x \sin y$
 $f_{xx} = e^x \cos y$ $f_{yx} = -e^x \sin y$
 $f_{xy} = -e^x \sin y$ $f_{yy} = -e^x \cos y$

$$\Rightarrow f(0,0) = 1$$
,

$$f_x(0,0) = 1$$
 $f_y(0,0) = 0$
 $f_{xx}(0,0) = 1$ $f_{yy}(0,0) = -1$
 $f_{xy}(0,0) = f_{yx}(0,0) = 0$

$$p_2(x,y) = f(0,0) + f_x(0,0)x + f_y(0,0)y + \frac{1}{2!}(f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2)$$
$$= 1 + x + \frac{1}{2}x^2 - \frac{1}{2}y^2$$

How about $p_3(x, y)$ at (0, 0)?

$$p_3(x,y) = p_2(x,y) + \underbrace{\frac{1}{3!}g^{(3)}(0)}_{3^{rd} \text{ order terms}}$$

$$f_{xxx} = e^x \cos y \qquad f_{xxy} = f_{xyx} = f_{yxx} = -e^x \sin y$$

$$f_{yyy} = e^x \sin y \qquad f_{xyy} = f_{yxy} = f_{yyx} = -e^x \cos y$$

$$\Rightarrow f_{xxx}(0,0) = 1 f_{xxy}(0,0) = 0$$

$$f_{xyy}(0,0) = -1 f_{yyy}(0,0) = 0$$

$$g^{(3)}(0) = f_{xxx}(0,0)x^3 + 3f_{xxy}(0,0)x^2y + 3f_{xyy}(0,0)xy^2 + f_{yyy}(0,0)y^3$$

= $x^3 - 3xy^2$

$$p_3(x,y) = p_2(x,y) + \frac{1}{3!}(x^3 - 3xy^2)$$
$$= 1 + x + \frac{1}{2}x^2 - \frac{1}{2}y^2 + \frac{1}{6}x^3 - \frac{1}{2}xy^2$$

Question If f = f(x, y, z) is C^6 , then coefficient of xy^2z^3 in $p_6(x, y, z)$ at (0,0,0) is $\alpha f_{xyyzzz}(0,0,0), \alpha = ?$

10.1.1 Matrix form for 2nd order Taylor Polynomial

Definition 10.5. Let $\Omega \subseteq \mathbb{R}^n$ be open, $f: \Omega \to \mathbb{R}$ be C^2 . Then the **Hessian matrix** of f at $a \in \Omega$ is:

$$Hf(a) = \begin{bmatrix} f_{x_1x_1}(a) & \cdots & f_{x_1x_n}(a) \\ \vdots & \ddots & \vdots \\ f_{x_nx_1}(a) & \cdots & f_{x_nx_n}(a) \end{bmatrix}$$

Remark. • Hf(a) is a symmetric $n \times n$ matrix by the mixed derivatives theorem.

• In Thomas' Calculus, Hessian of f is defined to be the determinant of our Hessian matrix.

With the Hessian matrix, the 2nd order Taylor polynomial of f at a can be written as:

where $x, a \in \mathbb{R}^n$ are written as column vectors:

$$(x-a)^{\top}$$
 = Transpose of $x-a$
= $[x_1 - a_1, \dots, x_n - a_n]$

Remark.

$$(x-a)^{\top} H f(a)(x-a)$$

$$= [x_1 - a_1, \dots, x_n - a_n] \begin{bmatrix} f_{x_1 x_1}(a) & \dots & f_{x_1 x_n}(a) \\ \vdots & \ddots & \vdots \\ f_{x_n x_1}(a) & \dots & f_{x_n x_n}(a) \end{bmatrix} \begin{bmatrix} x_1 - a_1 \\ \vdots \\ x_n - a_n \end{bmatrix}$$

$$= [x_1 - a_1, \dots, x_n - a_n] \begin{bmatrix} f_{x_1 x_1}(a)(x_1 - a_1) + \dots + f_{x_1 x_n}(a)(x_n - a_n) \\ \vdots \\ f_{x_n x_1}(a)(x_1 - a_1) + \dots + f_{x_n x_n}(a)(x_n - a_n) \end{bmatrix}$$

$$= f_{x_1 x_1}(a)(x_1 - a_1)(x_1 - a_1) + \dots + f_{x_1 x_n}(a)(x_1 - a_1)(x_n - a_n)$$

$$+ \dots$$

$$\vdots$$

$$+ f_{x_n x_1}(a)(x_1 - a_1)(x_n - a_n) + \dots + f_{x_n x_n}(a)(x_n - a_n)(x_n - a_n)$$

$$= \sum_{i,j=1}^{n} f_{x_i x_j}(a)(x_i - a_i)(x_j - a_j)$$

$$= g^{(2)}(0)$$

Example 10.6.

$$f(x,y) = e^x \cos y$$

Find $p_2(x, y)$ at a = (0, 0) using matrix form.

Solution.

$$f(0,0) = 1$$

$$\nabla f(0,0) = (1,0)$$

$$Hf(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$p_{2}(x,y) = f(0,0) + \nabla f(0,0) \begin{bmatrix} x - 0 \\ y - 0 \end{bmatrix} + \frac{1}{2} [x - 0 \quad y - 0] H f(0,0) \begin{bmatrix} x - 0 \\ y - 0 \end{bmatrix}$$

$$= 1 + \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \frac{1}{2} [x \quad y] \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= 1 + x + \frac{1}{2} x^{2} - \frac{1}{2} y^{2}$$

Example 10.7.

$$g(x,y) = \frac{\ln x}{1 - y}$$

Find $p_2(x, y)$ at (1, 0).

Solution.

$$g(1,0) = 0$$

$$\nabla g = [g_x, g_y] = \left[\frac{1}{x(1-y)}, \frac{\ln x}{(1-y)^2}\right]$$

$$Hg = \begin{bmatrix} g_{xx} & g_{xy} \\ g_{yx} & g_{yy} \end{bmatrix} = \begin{bmatrix} -\frac{1}{x^2(1-y)} & \frac{1}{x(1-y)^2} \\ \frac{1}{x(1-y)^2} & \frac{2\ln x}{(1-y)^3} \end{bmatrix}$$

$$\nabla g(1,0) = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad Hg(1,0) = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$p_2(x,y) = g(0,0) + \nabla g(0,0) \begin{bmatrix} x-1 \\ y \end{bmatrix} + \frac{1}{2} [x-1 \quad y] H g(1,0) \begin{bmatrix} x-1 \\ y \end{bmatrix}$$

$$= 0 + \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x-1 \\ y \end{bmatrix} + \frac{1}{2} [x-1 \quad y] \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x-1 \\ y \end{bmatrix}$$

$$= (x-1) - \frac{1}{2} (x-1)^2 + (x-1)y$$

10.1.2 Application to local maximum / minimum

Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is C^2 , and a is a critical point of f. Then, $\nabla f(a) = \vec{0}$. For x near a,

$$\begin{split} f(x) &\approx p_2(x) \\ &= f(a) + \nabla f(a)(x-a) + \frac{1}{2}(x-a)^\top H f(a)(x-a) \\ &= f(a) + \underbrace{\frac{1}{2}(x-a)^\top H f(a)(x-a)}_{\text{This term determines whether } f(x) > f(a) \text{ or } f(x) < f(a) \end{split}$$

This term determines whether f(x) > f(a) of f(x) < f(a)

For n = 1, i.e. f is 1-variable.

$$\frac{1}{2}(x-a)^{\mathsf{T}} H f(a)(x-a) = \frac{1}{2} f''(a)(x-a)^2$$

Recall: Second Derivative Test

This may be viewed as a consequence of Taylor's Theorem. That is, if f'(a) = 0, then near x = a, we have:

$$f(x) \approx f(a) + \underbrace{f'(a)(x-a)}_{=0} + \frac{1}{2}f''(a)(x-a)$$

IFRAME

The sign of the second derivative at x = a essentially tells us whether locally the graph of the function looks like an upward or downward parabola.

For n=2, the 2^{nd} order term is:

$$\frac{1}{2}[x - x_0 \quad y - y_0] \underbrace{\begin{bmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ y_x(x_0, y_0) & f_{yy}(x_0, y_0) \end{bmatrix}}_{f \text{ is } C^2 \Rightarrow \text{Symmetric}} \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}$$

To understand the nature of critical points, we study **quadratic forms** of 2 variables.

$$q(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= Ax^{2} + 2Bxy + Cy^{2}$$

Does q(x, y) have a definite sign (always positive or always negative) for $(x, y) \neq (0, 0)$?

We can determine it by completing square.

Example 10.8.

$$q(x,y) = 2xy \left(= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$

IFRAME

Note
$$q(x,y) = \frac{1}{2}(x+y)^2 - \frac{1}{2}(x-y)^2$$
 Along $x+y=0$, i.e. $y=-x$,
$$q(x,-x) = -2x^2 < 0 \text{ for } x \neq 0$$

Along x - y = 0, i.e. y = x

$$q(x,x) = 2x^2 > 0 \text{ for } x \neq 0$$

Hence, q has no definite sign, i.e. indefinite.

Clearly (0,0) is a critical point of q(x,y) but neither local maximum nor minimum.

Such a critical point is called a saddle point.

Example 10.9.

$$q(x,y) = 17x^2 - 12xy + 8y^2 \left(= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 17 & -6 \\ -6 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$

IFRAME

Does q(x, y) have a definite sign?

Solution.

$$q(x,y) = 17\left[x^2 - \frac{2 \cdot 6}{17}xy + \left(\frac{6}{17}\right)^2 y^2\right] + \left(8 - \frac{36}{17}\right)y^2$$
$$= 17\left(x - \frac{6}{17}y\right)^2 + 10y^2 \quad \circledast$$

Hence, q(x,y) > 0 = q(0,0) for $(x,y) \neq (0,0)$ Hence, The critical point (0,0) is a local minimum. Also global minimum of q(x,y).

Remark. Expression like ** is called diagonalization of quadratic form. It is not unique!

For example
$$q(x,y) = 5(\frac{x+2y}{\sqrt{5}})^2 + 20(\frac{2x-y}{\sqrt{5}})^2$$
 is another diagonalization.

"Orthogonal" change of coordinates

10.1.3 Higher dimension example

Example 10.10.

$$q(x, y, z) = xy + yz + zx$$

Definite sign for $(x, y, z) \neq (0, 0, 0)$?

Solution.

$$q = \frac{1}{4}(x+y)^2 - \frac{1}{4}(x-y)^2 + z(x+y)$$

Let
$$u = \frac{x+y}{2}$$
 $v = \frac{x-y}{2}$. Then

$$\begin{split} q &= u^2 - v^2 + 2uz \\ &= (u^2 + 2uz + z^2) - v^2 - z^2 \\ &= (u + z)^2 - v^2 - z^2 \\ &= (\frac{x + y}{2} + z)^2 - (\frac{x - y}{2})^2 - z^2 \\ &= \frac{1}{4} (x + y + 2z)^2 - \frac{1}{4} (x - y)^2 - z^2 \\ &\stackrel{\uparrow}{\underset{\text{positive}}{\text{positive}}} \end{split}$$

On the plane x+y+2z=0 , i.e. $z=-\frac{x+y}{2}$

$$q = q(x, y, -\frac{x+y}{2})$$

$$= -\frac{1}{4}(x-y)^2 - \frac{1}{4}(x+y)^2 < 0 \text{ for } (x, y, z) \neq (0, 0, 0)$$

Along the line x - y = z = 0 , i.e. y = x, z = 0

$$q(x, y, z) = q(x, x, 0)$$
$$= x^2 > 0 \text{ for } x \neq 0$$

Hence, the critical point (0,0,0) is a saddle point. For general theory, need linear algebra:

Diagonalization of quadratic form, eigenvalues · · ·

Definition 10.11. Let A be a $n \times n$ symmetric matrix.

Then A is said to be

• positive definite if $x^{\top}Ax > 0$ for all column vectors $x \in \mathbb{R}^n \setminus \{\vec{0}\}$

- negative definite if $x^{\top}Ax < 0$ for all column vectors $x \in \mathbb{R}^n \setminus \{\vec{0}\}$
- indefinite if \exists column vectors $x,y \in \mathbb{R}^n \backslash \{\vec{0}\}$ such that $x^\top Ax > 0$ and $y^\top Ay < 0$

Remark. These are not all the possible cases:

There are symmetric matrix which is not positive definite, negative definite nor indefinite.

Example 10.12.

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + 4y^2 > 0 \quad \text{ for all } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \setminus \{\vec{0}\}$$

Hence, $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ is positive definite.

Example 10.13.

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -x^2 - 4y^2 < 0 \quad \text{ for all } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \setminus \{\vec{0}\}$$

Hence, $\begin{bmatrix} -1 & 0 \\ 0 & -4 \end{bmatrix}$ is negative definite.

Example 10.14.

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -x^2 + 4y^2$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -1 < 0$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 4 > 0$$

Hence, $\begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix}$ is indefinite.

Example 10.15.

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^2 \ge 0 \quad \text{ for all } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \Rightarrow \text{ not positive definite}$$

Hence, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is neither positive/negative definite nor indefinite.

Example 10.16.

$$\begin{split} & [x \quad y] \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ = & x^2 + 4xy + 5y^2 \\ = & (x^2 + 4xy + 4y^2) + y^2 \\ = & (x + 2y)^2 + y^2 > 0 \quad \text{ for all } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \backslash \{\vec{0}\} \end{split}$$

Hence, $\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$ is positive definite.