
MATH 2010 Chapter 1

In one-variable calculus course, you study functions f(x) with both the “input"
variable x and “output" value f(x) are real numbers. In this course, we will look
at more general functions where the input or output may consist of a tuple of
numbers. For example, the function

f(x, y, z) = (xy − cos z, x2 − y + z)

maps the tuple (2, 1, 0) to the tuple f(2, 1, 0) = (1, 3). Tuples like this are called
vectors. Here x, y, z are the variables. We say that f is vector-valued multi-
variable function.

In this chapter, we will discuss vectors and some of its basic properties.

1.1 Euclidean Space
Let R be the set of real numbers and n be a positive integer. Consider the set

Rn = R× R× . . .× R (n copies of R)
= {(x1, x2, . . . , xn) : xi ∈ R for 1 ≤ i ≤ n}

The set Rn is called the n-dimensional Euclidean space. Its elements are called
n-dimensional vectors or simply vectors. A vector is often written in bold (v), or
with an arrow on top (~v). It can be geometrically represented by an arrow. For
example, the vector ~v = (2,−1) ∈ R2 can be denoted by an arrow that goes to the
right by 2 units and goes up by −1 unit, i.e., down by 1 unit, on the plane.
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Below are two vectors in R and R3. It is more difficult to visualize n-dimensional
vectors when n ≥ 4.

n ∈ N, Rn =



x1
x2
...
xn


∣∣∣∣∣∣∣∣∣xi ∈ R


• Each (x1, x2, . . . , xn) ∈ Rn may be viewed as a point or a vector in Rn.

• A vector in Rn is typically denoted by a symbol of the form ~v.

• IfA andB are points in Rn, then the vector with initial pointA and terminal
point B is often written as

−→
AB.

• The vector whose entries are all zero is called the zero vector. We denote
it by ~0.

1.2 Basic operations of vectors
Let ~v = (v1, v2, . . . , vn) , ~w = (w1, w2, . . . , wn) ∈ Rn and r ∈ R. Define

• Addition Law ~v + ~w = (v1 + w1, v2 + w2, · · · , vn + wn)

• Scalar Multiplication r~v = (rv1, rv2 · · · , rvn)

• Subtraction ~v − ~w = v + (−1)~w = (v1 − w1, v2 − w2, · · · , vn − wn)

1.2.1 Geometric Interpretation of Vector Algebra
The algebraic operations defined on vectors can be represented graphically:
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IFRAME
Similar to numbers, there is also a zero vector ~0 = (0, 0, . . . , 0) ∈ Rn in

each dimension n. The zero vectors and the basic operations above have many
properties similar to those of numbers.

Proposition 1.1. Let ~u,~v, ~w be vectors, α, β ∈ R.

1. 0~v = ~0

2. 1~v = ~v

3. Associativity (~u+ ~v) + ~w = ~u+ (~v + ~w)

4. Commutativity ~v + ~w = ~w + ~v

5. ~v +~0 = ~v

6. Distributivity (α + β)~v = α~v + β~v

7. Distributivity α(~v + ~w) = α~v + α~w

8. (αβ)~v = α(β~v)

Given two points A and B in Rn. An arrow can be drawn from A to B. It
represents a vector which is denoted by

−→
AB. The point A is called the initial

point or the tail while B is called the end point or the head.
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It is clear from the definitions and also the geometric properties that

•
−→
AB +

−−→
BC =

−→
AC

•
−→
BA = −

−→
AB

A position vector is a vector with initial point at the origin. If P has coordi-
nates (x1, x2, . . . , xn), the position vector is also given by

−→
OP = (x1, x2, . . . , xn).

More generally, the initial point of a vector may not be the origin. For example,
consider the vector from A = (x1, y1) to B = (x2, y2). To move from the initial
point to the terminal point, the vector goes to the right by x2−x1 and up by y2−y1.
Hence,

−→
AB = (x2 − x1, y2 − y1).
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More generally, the vector from A = (a1, a2, . . . , an) to B = (b1, b2, . . . , bn)
in Rn is −→

AB = (b1 − a1, b2 − a2, . . . , bn − an).

This formula can also be obtained by considering
−→
AB as a difference of position

vectors:
−→
AB =

−→
AO +

−−→
OB

= −
−→
OA+

−−→
OB

= −(a1, a2, . . . , an) + (b1, b2, . . . , bn)

= (b1 − a1, b2 − a2, . . . , bn − an).

Remark. Besides vectors, an element x ∈ Rn can be viewed as a point in the
Euclidean space. If we want to describe a location, it is more convenient to think
about x as a point. If we want to describe a quantity with both length and direction
(e.g. the displacement from one point to another), it is better to think about x as a
vector. Some people use notations like 〈x, y, z〉 for vectors and (x, y, z) for points.
We will not follow this convention and write (x, y, z) for both vectors and points.

Example 1.2. Let A = (1, 0), B = (3, 3), C = (2, 4), D = (0, 1) be points on the
plane. Show that ABCD is a parallelogram.
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Solution.
−→
AB = (3, 3)− (1, 0) = (2, 3)
−−→
DC = (2, 4)− (0, 1) = (2, 3) =

−→
AB

Hence, ABCD is a parallelogram.

Remark.
−→
AB and

−−→
DC are considered equal because they have the same magni-

tude and direction even though their initial points are different.

1.3 Length and Dot Product
Definition 1.3. The norm (or length, or magnitude) of a vector ~v = 〈v1, v2, . . . , vn〉 ∈
Rn is:

‖~v‖ =

√√√√ n∑
i=1

v2i =
√
v21 + v22 + · · · v2n.

Definition 1.4. The dot product of two vectors ~v, ~w ∈ Rn is:

~v · ~w = ~w · ~v =
n∑

i=1

viwi.

Proposition 1.5. Let ~u,~v, ~w ∈ Rn, r ∈ R. Then:

1. (~u+ ~v) · ~w = ~u · ~w + ~v · ~w and ~u · (~v + ~w) = ~u · ~v + ~u · ~w.

2. (r~v) · ~w = ~v · (r ~w) = r(~v · ~w)

3. ~v · ~w = ~w · ~v

4. ‖r~v‖ = |r|‖~v‖

5. ~v · ~v = ‖~v‖2

6. ~v · ~v > 0 with equality ~v · ~v = 0 occurs if and only if ~v =
−→
0 .

7. ~v · ~w = ‖~v‖‖~w‖ cos θ where θ is the angle between ~v and ~w. Hence, if
~v, ~w 6= ~0, then:

~v · ~w = 0 ⇐⇒ cos θ = 0 ⇐⇒ ~v ⊥ ~w
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Proof of Proposition 1.5. We will prove property 7 for the case n ≤ 3. The proof
is essentially the same as that of cosine law. Assume θ <

π

2
. Consider the follow-

ing triangle.

Note:

||~v − ~w||2 = (||~v|| sin θ)2 + (||~w|| − ||~v|| cos θ)2
= ||~v||2 sin2 θ + ||~w||2 − 2||~w|| ||~v|| cos θ + ||~v||2 cos2 θ
= ||~v||2 + ||~w||2 − 2||~w|| ||~v|| cos θ (1)

Also,
||~v − ~w||2 = (~v − ~w) · (~v − ~w)

= ~v · ~v − ~w · ~v − ~v · ~w + ~w · ~w
= ||~v||2 + ||~w||2 − 2~v · ~w (2)

Compare (1) and (2), we have

~v · ~w = ||~v|| ||~w|| cos θ.

The proof for the cases θ ≥ π

2
can be done similarly.
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Remark. Properties 5 and 7 are geometric properties of length and angle in Rn

for n ≤ 3. They are used for defining length and angle in higher dimension n ≥ 4.
A vector of length 1 is called a unit vector.

For ~v 6= ~0, the vector
1

‖~v‖
~v has length:

∣∣∣∣ 1

‖~v‖
~v

∣∣∣∣ = 1

‖~v‖
‖~v‖ = 1.

We call
1

‖~v‖
~v the unit vector associated with ~v. It captures the direction of ~v.

Every nonzero vector ~v has the form:

~v = λ~u, λ > 0,

where ~u = 1
‖~v‖~v is the unit vector associated with ~v, and λ = ‖~v‖ is the length of

~v.

Example 1.6. Let ~v, ~w have the same length. Show that (~v + ~w) · (~v − ~w) = 0.

Solution.
(~v + ~w) · (~v − ~w) = ~v · ~v − ~v · ~w + ~w · ~v − ~w · ~w

= ‖v‖2 − ~v · ~w + ~v · ~w − ‖w‖2

= ‖v‖2 − ‖v‖2

= 0

Remark. The assumption ||~v|| = ||~w|| means that the parallelogram spanned by
~v and ~w is a rhombus. The computation above shows the fact that the diagonals
of a rhombus are perpendicular.
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Example 1.7. Consider a circle centered atO. AB is diameter. Show that ∠ACB
is a right angle.

Solution.
−→
AC =

−→
AO +

−→
OC

−−→
BC =

−−→
BO +

−→
OC = −

−→
AO +

−→
OC

−→
AC ·

−−→
BC = (

−→
AO +

−→
OC) · (−

−→
AO +

−→
OC)

= −
−→
AO ·

−→
AO +

−→
AO ·

−→
OC −

−→
OC ·

−→
AO +

−→
OC ·

−→
OC

= −||
−→
AO||2 + ||

−→
OC||2 (||

−→
AO|| = ||

−→
OC|| are radius)

= 0

Therefore,
−→
AC ⊥

−−→
BC. Hence, ∠ACB is a right angle.

Theorem 1.8 (Cauchy-Schwarz Inequality). For all ~a,~b ∈ Rn, the following in-
equality holds:

‖~a ·~b‖ ≤ ‖~a‖‖~b‖.

Remark. For lower dimensional spaces like R2 and R3, the inequality follows
from the Law of Cosine, since the cosine function has absolute value at most 1.

For n > 3, it’s not as easy to visualize the situation. We prove the inequaltiy
as follows:

Proof of Cauchy-Schwarz Inequality. Observe that for all t ∈ R, we have:

0 ≤ ‖~a− t~b‖2 = (~a− t~b) · (~a− t~b) = ‖~a‖2 − 2(~a ·~b)t+ t2‖~b‖2
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In other words, ‖~a‖2,−2~a · ~b and ‖~b‖2 are coefficients of a quadratic function
which is always non-negative.

The discriminant of such a quadratic function must be non-positive. Hence:

(−2(~a ·~b))2 − 4‖~a‖2‖~b‖2 ≤ 0

which implies that:
‖~a ·~b‖ ≤ ‖~a‖‖~b‖

Theorem 1.9 (Triangle Inequality). For any ~a,~b ∈ Rn, we have:

‖~a+~b‖ ≤ ‖~a‖+ ‖~b‖.

Proof of Triangle Inequality.

‖~a+~b‖2 = ~a · ~a+ ~a ·~b+~b · ~a+~b ·~b = ‖~a‖2 + 2~a ·~b+ ‖~b‖2.

By the Cauchy-Schwarz inequality

|~a ·~b| ≤ ‖~a‖‖~b‖,

thus

‖~a+~b‖2 ≤ ‖~a‖2 + 2‖~a‖‖~b‖+ ‖~b‖2 = (‖~a‖+ ‖~b‖)2.

The result follows by taking square roots on both sides.

1.4 Cross Product
Besides dot product, there is another type of product, called cross product, for
vectors in R3. It can be defined using determinant. Recall the following formulas
for 2× 2 and 3× 3 determinants.∣∣∣∣a b

c d

∣∣∣∣ = ad− bc
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∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2 ∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣
Example 1.10. ∣∣∣∣1 2

3 4

∣∣∣∣ = (1)(4)− (2)(3) = −2∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = (1)

∣∣∣∣5 6
8 9

∣∣∣∣− (2)

∣∣∣∣4 6
7 9

∣∣∣∣+ (3)

∣∣∣∣4 5
7 8

∣∣∣∣
= (1)[(5)(9)− (6)(8)]− (2)[(4)(9)− (6)(7)] + (3)[(4)(8)− (5)(7)]

= −3 + 12− 9

= 0

Definition 1.11 (Cross product). Let ~a = (a1, a2, a3) and ~b = (b1, b2, b3). Their
cross product is defined to be

~a×~b =

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ î− ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ ĵ + ∣∣∣∣a1 a2
b1 b2

∣∣∣∣ k̂
= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Here the vectors î = (1, 0, 0), ĵ = (0, 1, 0) and k̂ = (0, 0, 1) are the standard
unit vectors. A hat instead of an arrow is written on top of each of them to mean
that they are unit vectors (vectors of length one).

Example 1.12.

î× ĵ =

∣∣∣∣∣∣
î ĵ k̂
1 0 0
0 1 0

∣∣∣∣∣∣
=

∣∣∣∣0 0
1 0

∣∣∣∣ î− ∣∣∣∣1 0
0 0

∣∣∣∣ ĵ + ∣∣∣∣1 0
0 1

∣∣∣∣ k̂
= 0̂i− 0ĵ + 1k̂ = k̂

Similarly, we can compute the cross products of other standard unit vectors:

î× î = ~0 î× ĵ = k̂ î× k̂ = −ĵ
ĵ × î = −k̂ ĵ × ĵ = ~0 ĵ × k̂ = î

k̂ × î = ĵ k̂ × ĵ = −î k̂ × k̂ = ~0
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The diagram below helps you to remember the cross products of standard unit
vectors.

Example 1.13. Let ~a = 2̂i+ 3ĵ + 5k̂,~b = î+ 2ĵ + 3k̂. Then

~a×~b =

∣∣∣∣∣∣
î ĵ k̂
2 3 5
1 2 3

∣∣∣∣∣∣
=

∣∣∣∣ 3 5
2 3

∣∣∣∣ î− ∣∣∣∣ 2 5
1 3

∣∣∣∣ ̂+ ∣∣∣∣ 2 3
1 2

∣∣∣∣ k̂
= −î− ĵ + k̂

Find~b× ~a and~b×~b.

Cross product has the following properties.

Proposition 1.14. Let ~a,~b,~c ∈ R3, α, β ∈ R. Then

1. ~a× ~a = ~0

2. ~a×~b = −~b× ~a

3. (α~a+ β~b)× ~c = α~a× ~c+ β~b× ~c

4. Let θ be the angle between ~a,~b.

‖~a×~b‖ = ‖~a‖ ‖~b‖ sin θ = Area of the parallelogram spanned by ~a and~b.

5. (~a×~b) · ~a = (~a×~b) ·~b = 0.
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We will prove property 4 below. The other properties can be proved by straight-
forward computations or properties of determinant.

Remark. From property 4 above,

~a×~b = ~0 ⇔ Area of parallelogram = 0

⇔ ~a,~b lie on the same line
⇔ {~a,~b} is linearly dependent.

Hence, two non-zero vectors have zero cross product if and only if they are point-
ing the same or opposite directions.

Moreover:

• Area of the triangle spanned by ~a and~b =
1

2
‖~a×~b‖.

• If ~c, ~d ∈ R2, then

Area of the parallelogram spanned by ~c and ~d =

∣∣∣∣det [ c1 c2
d1 d2

]∣∣∣∣
Proof of Proposition 1.14. By direct expansion,

‖~a×~b‖2 = ‖~a‖2‖~b‖2 − (~a ·~b)2

= ‖~a‖2‖~b‖2(1− cos2 θ)

= ‖~a‖2‖~b‖2 sin2 θ
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Since 0 ≤ θ ≤ π, we have sin θ ≥ 0 and so

‖~a×~b‖ = ‖~a‖ ‖~b‖| sin θ| = ‖~a‖ ‖~b‖ sin θ

Suppose ~a ×~b are non-zero. Then ~a and ~b are both non-zero. From property
5 above, ~a × ~b is perpendicular to both ~a and ~b. It can be shown that ~a,~b,~a × ~b
satisfy the right hand rule.

Example 1.15. Let A = (1, 2, 1), B = (1,−1, 0) and C = (2, 3, 2) be points on a
plane P . Find a normal vector of P , i.e. a vector perpendicular to P .

Solution. The line segments AB and AC both lie on P . Hence, the cross product−→
AB ×

−→
AC is perpendicular to P .
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−→
AB = (1,−1, 0)− (1, 2, 1) = (0,−3,−1)
−→
AC = (2, 3, 2)− (1, 2, 1) = (1, 1, 1)

−→
AB ×

−→
AC =

∣∣∣∣∣∣
î ĵ k̂
0 −3 −1
1 1 1

∣∣∣∣∣∣
=

∣∣∣∣ −3 −11 1

∣∣∣∣ î− ∣∣∣∣ 0 −11 1

∣∣∣∣ ĵ + ∣∣∣∣ 0 −31 1

∣∣∣∣ k̂
= [(−3)(1)− (−1)(1)] î− [(0)(1)− (−1)(1)] ĵ + [(0)(1)− (−3)(1)] k̂
= −2̂i− ĵ + 3k̂

Therefore, (−2,−1, 3) ⊥ P .

Another product closely related to cross product is also defined for vectors in
R3.

Definition 1.16. The triple product of ~a,~b,~c ∈ R3 is defined to be ~a · (~b× ~c).

From this definition, it is easy to see that

~a · (~b× ~c) = (a1, a2, a3) ·

∣∣∣∣∣∣
î ĵ k̂
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= (a1, a2, a3) ·

( ∣∣∣∣b2 b3
c2 c3

∣∣∣∣ ,− ∣∣∣∣b1 b3
c1 c3

∣∣∣∣ , ∣∣∣∣b1 b2
c1 c2

∣∣∣∣ )
= a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2 ∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣
=

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
It follows from this formula that a triple product depends on the order of its factors.
From properties of determinant,

~a · (~b×~c) = ~b · (~c×~a) = ~c · (~a×~b) = −~a · (~c×~b) = −~b · (~a×~c) = −~c · (~b×~a)

Proposition 1.17. Three vectors ~a,~b and ~c in R3 determine a parallelepiped as
below.
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Its volume can be computed using triple product:

|~a · (~b× ~c)| = Volume of parallelepiped spanned by ~a,~b,~c.

Proof of Proposition 1.17. Consider the parallelogram spanned by ~b and ~c as the
base of the parallelopiped. Let α be the angle between ~a and ~b × c. Suppose
α 6 π/2.

Then:

~a · (~b× ~c) = ‖~a‖‖~b× ~c‖ cosα
= ‖~b× ~c‖h
= Base Area × height
= Volume of parallelepiped

The case for π/2 < α 6 π can be done similarly. In that case,

~a · (~b× ~c) = − Volume of parallelepiped
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Remark.

~a · (~b× ~c) =

∣∣∣∣∣∣
a1 a1 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = 0⇐⇒ Volume of parallelepiped = 0

⇐⇒ {~a,~b,~c} is linearly dependent

Consider a tetrahedron with vertices A,B,C,D ∈ R3. To find a formula
of its volume, we compare the tetrahedron with the parallelopiped spanned by−→
AB,
−→
AC,
−−→
AD.

Volume of Tetrahedron =
1

3
· Area(4ABC) · height

=
1

3
· 1
2
· (Area of parallelogram spanned by

−→
AB,
−→
AC) · height

=
1

6
· Volume of Parallelepiped

=
1

6

∣∣∣−→AB · (−→AC ×−−→AD)
∣∣∣

Example 1.18. Let A = (1, 0, 1), B = (1, 1, 2), C = (2, 1, 1), D = (2, 1, 3). Find
the volume of the tetrahedron ABCD.

Solution.
−→
AB = (1, 1, 2)− (1, 0, 1) = (0, 1, 1)
−→
AC = (2, 1, 1)− (1, 0, 1) = (1, 1, 0)
−−→
AD = (2, 1, 3)− (1, 0, 1) = (1, 1, 2)

Their triple product is:

(
−→
AB ×

−→
AC) ·

−−→
AD =

∣∣∣∣∣∣
0 1 1
1 1 0
1 1 2

∣∣∣∣∣∣ = −2
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and so:
Volume of the tetrahedron ABCD =

1

6
· |2| = 1

3
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