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Finite orbits for multivalued maps

g(x) = 2x mod 1

All orbits of 1
2
are �nite, g(1

2
) = {0, 1} = gn(1

2
).



Finite orbits for multivalued maps

g1(x) = βx , g2(x) = βx + 1− β, β =
√
3.

The orbit of 1
β+1

is �nite, g1(
1

β+1
) = β
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and g2(
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) = 1
β+1
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De�nition (BDS)

I A branching dynamical system is given by a set of mappings:
B = {gj : Ij → I | Ij ⊂ I ⊂ R, j = 1, . . . , k}.

I The set of successors of nth generation is given by

Bn(x) = B(Bn−1(x)), where B(x) = {gj(x) | x ∈ Ij}.

I The set of successors produced by x is given by

B∞(x) =
∞⋃
n=0

Bn(x).

When is B∞(x) a �nite set?
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Finite orbits in branching dynamical systems

g1(x) = 2x , g2(x) = 2x − 1, g3(x) = 2x − 1
2
.

B∞(1
3
) = {1
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Related work on β-expansions and Bernoulli convolutions

Study of log |Bn(x)|
n

for n→∞.

I De-Jun Feng and Nikita Sidorov
2011 (Monatsh. Math.)

I Simon Baker
2012 (arXiv: 1208.6195v1)

I Tom Kempton
2012 (preprint)



Finite orbits in linear branching dynamical systems

Theorem
Let B = {gj : Ij → I | Ij ⊂ I ⊂ R, j = 1, . . . , k} a BDS with

gj(x) = βdj x + zj , β > 1, dj ∈ N, zj ∈ R.

If

I β is a Pisot number (algebraic integer, whose conjugates are

less than 1 in modulus) and

I zj ∈ Q(β),

then B∞(x) is a �nite set for all x ∈ Q(β).

Special case:
Klaus Schmidt, 1980 (Bull. London Math. Soc.).
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Slices and BDS

A slice is an intersection of a self-similar set and a hyperplane in Rn.

For the hyperplane holds: H = H(a, α1, . . . , αn−1).
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Proposition: Orthogonal slices through Sierpinski gasket.

I Consider the BDS consisting of the mappings
g1(x) = 2x , g2(x) = 2x − 1, g3(x) = 2x − 1

2
,

which are surjections on [0, 1],

I and the graph describing the orbit of a.

If B∞(a) is �nite, the graph is the Mauldin-Williams graph of h∩ S .
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Si = fi (S), i = 1, 2, 3. The BDS produces intercepts of lines.
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Related work:
I Slicing the Sierpi«ski Gasket

Balás Bárány, Andrew Ferguson, Károly Simon
2011 (preprint)

I Dimension of Slices through the Sierpinski Carpet
Anthony Manning, Károly Simon
2010 (appears in TAMS)

I On the Dimensions of Sections through the Graph-diricted Sets
Zhi-Ying Wu, Li-Feng Xi

2010 (Ann. Acad. Scient. Finnicæ Math., Vol. 35)



Slices and BDS

I Let the self-similar set F be given by

fj(x) =
1

βj
(x + vj), βj > 1, vj ∈ Rn

I and H(a, α1, . . . , αn−1) a hyperplane intersecting F .



Slices and BDS

I Let the self-similar set F be given by

fj(x) =
1

βj
(x + vj), βj > 1, vj ∈ Rn

I and H(a, α1, . . . , αn−1) a hyperplane intersecting F .

Then the maps of the BDS producing the graph of intersection are
given by

gj(x) = βjx + 〈


−1

cotα1

...
cotαn−1

 , vj〉

and the vertex set is given by B∞(a).



Slices of �nite type

De�nition
A slice is of �nite type if the corresponding graph possesses �nite
many nodes (⇔ B∞(a) is a �nite set.)
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Proposition (Slices through Sierpinski gasket)

The slice g(a, α) ∩ S is of �nite type

⇔

The numbers
√
3
2
cotα and a are rational.



Theorem (Su�cient conditions for Pisot-fractals)

I Let F ⊂ Rn a self-similar set given by

fj(x) = β−dj (x + vj), where β > 1, dj ∈ N, vj ∈ Rn

I and let H(a, α1, ..., αn−1) a hyperplane intersecting F .

Assume that the following conditions are ful�lled:

I β is a Pisot number,

I 〈


−1

cotα1

...

cotαn−1

 , vj〉 ∈ Q(β) ∀j ,

I a ∈ Q(β).

Then the slice H ∩ F is of �nite type.
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The golden dodecahedron (Mai The Duy, 2011)

50 maps with overlaps,
2 scaling factors

Generated with "IFS Builder 3d v. 1.7.6", A. Kravchenko, D.
Mekhontsev, Novosibirsk State University, (C) 1999-2011
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