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Are (the interiors) of disk-like fractal tiles
quasidisks?



Fractal tiles

(a) self-affine tiles: T = T(A, D) — the compact set satisfying
T=JANT+d)
deD
with A € M(2,R) expanding, (|eigenvalues| > 1), digit set
D={d;,i=0,...,N—1} C R?, |det(A)] = N and T° # 0.

Figure: A disk like self-affine tile T = T(A,D): A=]0,1;—15,8],
D = {d; = (i,0)%,i =0,...,14}.



(b) Self-similar tiles:

N—-1

N—-1
T=|JA(T)= JIrR(T)+ bil,
i=0

i=0

where the contraction ratios r; € (0,1), R; orthogonal, b; € R?,
{f;} satisfies the OSC, and T° # 0.



(a) S € R? — open bounded simply connected.

[a, b] — (rectilinear) cross-cut of S.

V' — the smaller half (smaller diameter) of S\ [a, b].

If there is a K > 0 such that for all crosscut [a, b] and V,

diam V

<K

la—b] =

S is a John Domain.

Figure: not a John domain.



(b) If there is a K > 0 such that for all ¢,d € S,

inf{diam(cd) : cd C S}
c —d|

then S is a linearly connected domain.

<K,

Figure: not a linearly connected domain.

(c) quasidisk — both John and linearly connected.



Quasidisks have many characterizing properties. e.g. Gehring
(1982).

e Geometric properties: uniform domain, 0T is a quasicircle,
etc.

e Function theoretic properties: Sobolev extension domain,
BMO extension domain.



Theorem 1. A self-affine tile need not be a quasidisk.



e T — a self-similar tile.

e 7 — a tiling constructed by blowing up T by an f € IFS.
(T = {f~*(level-k pieces of T),k=1,2,...}.)

e vertex of 7 — a point in R? belonging to > 3 tiles in 7.

Theorem 2. Suppose m := inf{dist(u, v), u, v vertices of 7} > 0.
Then T is a quasidisk.

Corollary 7 periodic or quasi-periodic = T is a quasidisk.



Proof of Theorem 1: not all SA tiles are quasidisks

The higher level pieces can get sharper and sharper.

Hence not John.



Find an integral planar self-affine tile with consecutive
collinear digit set that’s not a quasidisk.

p,q € Z such that
= [0,1; —q, —p] expanding,
D =1{0,dy,...,dg-1}, di = (i,0)",

lql-1
T = UA (T + d;).

T is disklike iff |2p| < |q + 2|. (Leung-Lau 2007)



(b)
Figure: (a) Yellow: the (p, q)'s with disklike tiles, Green: non-disklike
tiles. (b) Inside the parabolic region: A has complex eigenvalues.

Our example: (p, q) = (-8, 15)




Polygonal approx of disklike integral SA tiles (A having real
eigenvalues.

Let
po = (0,0)

p1 = 2q(g—1) 1, 2PV P4

(P2+p\/PP—49—29)(p+q+1) 2
pp=(q—1)(A-N)"td =35 (—p—1,9)
pP3=p2—p1

T = T(A, D) C closed bounding parallelogram P with vertices
PO, P1, P2, P3-

Sides parallel to A~1d; and ‘the large eigendirection’.

Po, p2 € T.
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Figure: The bounding parallelogram P of T = T(A, D), where
A=1[0,1;-15,8], D = {d; = (i,0),i = 0,...,14}



Iterate to get higher level polygonal approximations.

14
FP)y = |J AFPriAFd+.. A
i1yenyig=0
14
= Pil"‘ik‘
il ..... Ik:0
Pi,...i;, — level-k parallelograms;

sides of P; _j — parallel to v ="the large eigendirection’ of AL
and A~*dy(direction — v) and

FK(P)— the level-k approx. of T; F¥(P) c Fx~1(P).



(a) F1(P) (b) zoom... (c) zoom further

Figure: (a) The level-1 approx F1(P). (b) Zoom. The level-1
parallelogram Py C F1(P) has its tip exposed.
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(a) F3(P) (b) Zoom (c) Zoom further (d) Tip of Py exposed

Figure: The level-2 approximation F2(P) of T. The level-2 parallelogram
Poo C F2(P) has its tip exposed.



Figure: Inside the level-k parallelogram Py..q C F*(P).
diam V¥
lak—bi] = \gk

7] — OQ.

(a) The sides of the level-k parallelogram Py..o C F*(P) are
parallel to A=¥d; and vq, the ‘large eigendirection’ of A~L.
(b) the direction of A=%d; — the direction of v; as k — oo.



Proof of Theorem 2.

o T — self-similar tile.

e 7 — the (partial) tiling constructed by blowing up T by an
f € IFS. (T = {f~*(level-k pieces of T), k =1,2,...}.)

Theorem 2. Suppose m := inf{dist(u, v), u, v vertices of 7} > 0.
Then T is a quasidisk.



Terminology, convention.

e For simplicity, assume constant contraction ratio r.
e D :=diamT.

e A patch P of T:

(b)

Figure: (a) A patch is a collection of tiles P C 7, and (b)
sometimes also refer to their union P = U7cp T.

e cross-cut of a disk-like patch; the smaller half V of
P°\ [a, b].



Hypothesis (H)(a property of 7 or equivalently T.)

There is a 6 > 0 such that for any disklike patch P and any
cross-cut [a, b] of P° with |a — b| < 6,
e (H1) the smaller half V of P°\ [a, b] does not contain the

entire interior of a tile, and

e (H2) the tiles T" € P with (T')° N [a, b] # 0 share a common
vertex.



‘Simplest’ appearances of Hypothesis (H):

Figure: (H1) the resulting smaller half does not contain (the interior of)
a whole tile, and (H2) tiles with interior intersecting the crosscut share a
common vertex.



Consequence of Hypothesis (H):
a bound for diam(V): |a — b| < 6 = diam(V) < 2D.

(H) = VcCcU{T' e P:(T')°NJa,b] #0}. Then (H2) =
diamV < 2D.

For really short cross-cuts [a, b], blow-up the whole patch before
using this estimate to get a really good bound on diam(V):

la—b| < r"0 = diam(V) < 2r"D.



A 2-step proof of Theorem 2

e Positive minimal vertex distance:
m := inf{dist(u, v), u, v vertices of 7} > 0.

e Select 6 so that
(i) 8 <m/3;
(ii) when a cross cut [a, b] of a tile T’ is of length |a— b| < 6,
the smaller half V of T'\ [a, b] has diam(V) < m/4. (follows
from disklikeness.)

Proposition 1 Positive minimal vertex distance m >0 = 7T
satisfies Hypothesis (H). In particular, (H1) and (H2) holds with
the above choice of 6.

Proposition 2 7 satisfies Hypothesis (H) = T is a quasidisk.



Proof of Prop. 2: hypothesis (H)= quasidisk

(i) Hypothesis (H) = John domain:

C — the set of all cross-cuts of T.

Subclasses:
Co = {[a,b]eC:rf <|a—b|}, r— contraction ratio
Ci = {[abl€C:r*0<|a—b| <rb}

Cx = {lableC:r"o<|a—b <rko}, k>1,



Figure: How Hypothesis (H) helps to control the ratio.

diam V; :
[a0, bo] € Co, T5o2pt < L.

diamVj __ diamVj D.
[a1, b1] € C1, 25 = Taomhol < 74

diamV _ diamf~'V _ 2D
[c,d] € Cq, ‘lcaind‘ = |;ainf[c7d]| < <7 by the consequence of

hypothesis (H).




k> 1:
[ak, bk] € Ck, entirely contained in some level-k piece of T:
magnified k times (apply f~¥) to get

diam(V)  diamf~%(V)
|ak = bl |F*{ak b]|

D
< —;
—rf

[c, d] € Ck, intersecting the interior of > 2 level-k pieces: magnify
k times to get a cross-cut of length < 6 of a disklike patch.

diam(V)  diamf (V) 2D
lc—d|  |fKc,d]| ~ ro’

by the consequence of hypothesis (H).

Hence {ratios} bounded, = John.

Step (ii): Similar argument = linearly connected.

Prop. 2 proved.



Proof of Prop 1: m > 0 = hypothesis (H)

Recall:

e Positive minimal vertex distance:
m := inf{dist(u, v), u, v vertices of 7} > 0.

e Select 6 so that
(i) <m/3;
(i) when a cross cut [a, b] of a tile T' is of length |a— b| < 0,
the smaller half V of T'\ [a, b] has diam(V) < m/4.
(iii) diam(T") > m (as 0T’ has > 2 vertices).
(iv) diam(T’"\ V) > 3m/4



This 6 guarantees (H2) vertex sharing. Example:

Figure: Suppose |a — b| < 6. This picture is excluded by the choice of 6.

(a) A and B cannot be both the smaller halves of the cross-cuts
[a1, a2] and [b1, by] of T3. (Otherwise, |x — a1, |y — ba| < m/4,
and |a; — bo| < |a— b| < m/3, = |x — y| < m, contradiction.)

(b) Suppose T3\ B is the smaller half of (T3)°\ [b1, by]. Then
p,x € T3\ B = |x — p| < m/4 < m, contradiction.



How the choice of ¢ guarantees (H1): the smaller half of
P\ [a, b] does not contain an entire tile.

,“
-/

Figure: Suppose |a — b| < 6. Then this picture is impossible.

(a) A, B are the smaller halves of (T1)°\ [a1, a2] and (T2)°\

[b1, bo]. (Otherwise, a different pair of halves share a vertex.)

(b) The component C of P°\ [a, b] containing A and B has
diam(C) = diam(co(A, B)) < diam(A) + diam(B) < m/2.

(c) diam(tile) > m > 0. Hence C can’t contain an entire tile. (tile

hac > 9 varticee Aan 1+e harnindars)



Thank you.
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