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Are (the interiors) of disk-like fractal tiles
quasidisks?



Fractal tiles

(a) self-affine tiles: T = T (A,D) — the compact set satisfying

T =
⋃
d∈D

A−1(T + d)

with A ∈ M(2, R) expanding, (|eigenvalues| > 1), digit set
D = {di , i = 0, . . . ,N − 1} ⊂ R2, | det(A)| = N and T ◦ 6= ∅.

Figure: A disk like self-affine tile T = T (A,D): A = [0, 1;−15, 8],
D = {di = (i , 0)t , i = 0, . . . , 14}.



(b) Self-similar tiles:

T =
N−1⋃
i=0

fi (T ) =
N−1⋃
i=0

[riRi (T ) + bi ],

where the contraction ratios ri ∈ (0, 1), Ri orthogonal, bi ∈ R2,
{fi} satisfies the OSC, and T ◦ 6= ∅.



Quasidisk

(a) S ⊂ R2 — open bounded simply connected.
[a, b] — (rectilinear) cross-cut of S .
V — the smaller half (smaller diameter) of S \ [a, b].
If there is a K > 0 such that for all crosscut [a, b] and V ,

diam V

|a− b|
≤ K ,

S is a John Domain.

Figure: not a John domain.



(b) If there is a K > 0 such that for all c , d ∈ S ,

inf{diam(ĉd) : ĉd ⊂ S}
|c − d |

≤ K ,

then S is a linearly connected domain.

Figure: not a linearly connected domain.

(c) quasidisk — both John and linearly connected.



Quasidisks have many characterizing properties. e.g. Gehring
(1982).

• Geometric properties: uniform domain, ∂T is a quasicircle,
etc.

• Function theoretic properties: Sobolev extension domain,
BMO extension domain.



Results

Theorem 1. A self-affine tile need not be a quasidisk.



Results

• T — a self-similar tile.

• T — a tiling constructed by blowing up T by an f ∈ IFS.
(T = {f −k(level-k pieces of T ), k = 1, 2, . . .}.)

• vertex of T — a point in R2 belonging to ≥ 3 tiles in T .

Theorem 2. Suppose m := inf{dist(u, v), u, v vertices of T } > 0.
Then T is a quasidisk.

Corollary T periodic or quasi-periodic ⇒ T is a quasidisk.



Proof of Theorem 1: not all SA tiles are quasidisks

The higher level pieces can get sharper and sharper.

Hence not John.



Find an integral planar self-affine tile with consecutive
collinear digit set that’s not a quasidisk.

p, q ∈ Z such that
A = [0, 1;−q,−p] expanding,
D = {0, d1, . . . , d|q|−1}, di = (i , 0)t ,

T = T (A,D) =

|q|−1⋃
i=0

A−1(T + di ).

T is disklike iff |2p| ≤ |q + 2|. (Leung-Lau 2007)



(a) (b)

Figure: (a) Yellow: the (p, q)’s with disklike tiles, Green: non-disklike
tiles. (b) Inside the parabolic region: A has complex eigenvalues.

Our example: (p, q) = (−8, 15)



Polygonal approx of disklike integral SA tiles (A having real
eigenvalues.

Let
p0 = (0, 0)

p1 = 2q(q−1)

(p2+p
√

p2−4q−2q)(p+q+1)

(
1,

−p−
√

p2−4q
2

)
p2 = (q − 1)(A− I )−1d1 = q−1

p+q+1 (−p − 1, q)

p3 = p2 − p1

T = T (A,D) ⊂ closed bounding parallelogram P with vertices
p0, p1, p2, p3.

Sides parallel to A−1d1 and ‘the large eigendirection’.

p0, p2 ∈ T .



Figure: The bounding parallelogram P of T = T (A,D), where
A = [0, 1;−15, 8], D = {di = (i , 0)t , i = 0, . . . , 14}



Iterate to get higher level polygonal approximations.

Fk(P) =
14⋃

i1,...,ik=0

A−kP + ikA−kd1 + . . . + i1A
−1d1

:=
14⋃

i1,...,ik=0

Pi1···ik .

Pi1...ik — level-k parallelograms;

sides of Pi1...ik — parallel to v =‘the large eigendirection’ of A−1,
and A−kd1(direction → v) and

Fk(P)— the level-k approx. of T ; Fk(P) ⊂ Fk−1(P).



(a) F1(P) (b) zoom... (c) zoom further

Figure: (a) The level-1 approx F1(P). (b) Zoom. The level-1
parallelogram P0 ⊂ F1(P) has its tip exposed.



(a) F2(P) (b) Zoom (c) Zoom further (d) Tip of P00 exposed

Figure: The level-2 approximation F2(P) of T . The level-2 parallelogram
P00 ⊂ F2(P) has its tip exposed.



Figure: Inside the level-k parallelogram P0···0 ⊂ Fk(P).
diam V k

|ak−bk | ≥
hk

|gk−`k | →∞.

(a) The sides of the level-k parallelogram P0···0 ⊂ Fk(P) are
parallel to A−kd1 and v1, the ‘large eigendirection’ of A−1.
(b) the direction of A−kd1 → the direction of v1 as k →∞.



Proof of Theorem 2.

• T — self-similar tile.

• T — the (partial) tiling constructed by blowing up T by an
f ∈ IFS. (T = {f −k(level-k pieces of T ), k = 1, 2, . . .}.)

Theorem 2. Suppose m := inf{dist(u, v), u, v vertices of T } > 0.
Then T is a quasidisk.



Terminology, convention.

• For simplicity, assume constant contraction ratio r .

• D := diamT .

• A patch P of T :

Figure: (a) A patch is a collection of tiles P ⊂ T , and (b)
sometimes also refer to their union P = ∪T∈PT .

• cross-cut of a disk-like patch; the smaller half V of
P◦ \ [a, b].



Hypothesis (H)(a property of T or equivalently T .)

There is a θ > 0 such that for any disklike patch P and any
cross-cut [a, b] of P◦ with |a− b| ≤ θ,

• (H1) the smaller half V of P◦ \ [a, b] does not contain the
entire interior of a tile, and

• (H2) the tiles T ′ ∈ P with (T ′)◦ ∩ [a, b] 6= ∅ share a common
vertex.



‘Simplest’ appearances of Hypothesis (H):

Figure: (H1) the resulting smaller half does not contain (the interior of)
a whole tile, and (H2) tiles with interior intersecting the crosscut share a
common vertex.



Consequence of Hypothesis (H):
a bound for diam(V ): |a− b| ≤ θ ⇒ diam(V ) ≤ 2D.

(H1) ⇒ V ⊂ ∪{T ′ ∈ P : (T ′)◦ ∩ [a, b] 6= ∅}. Then (H2) ⇒
diamV ≤ 2D.

For really short cross-cuts [a, b], blow-up the whole patch before
using this estimate to get a really good bound on diam(V ):

|a− b| ≤ rnθ ⇒ diam(V ) ≤ 2rnD.



A 2-step proof of Theorem 2

• Positive minimal vertex distance:
m := inf{dist(u, v), u, v vertices of T } > 0.

• Select θ so that
(i) θ < m/3;
(ii) when a cross cut [a, b] of a tile T ′ is of length |a− b| ≤ θ,
the smaller half V of T ′ \ [a, b] has diam(V ) < m/4. (follows
from disklikeness.)

Proposition 1 Positive minimal vertex distance m > 0 ⇒ T
satisfies Hypothesis (H). In particular, (H1) and (H2) holds with
the above choice of θ.

Proposition 2 T satisfies Hypothesis (H) ⇒ T is a quasidisk.



Proof of Prop. 2: hypothesis (H)⇒ quasidisk

(i) Hypothesis (H) ⇒ John domain:

C — the set of all cross-cuts of T .

Subclasses:

C0 := {[a, b] ∈ C : rθ < |a− b|}, r — contraction ratio

C1 := {[a, b] ∈ C : r2θ < |a− b| ≤ rθ}
...

Ck := {[a, b] ∈ C : rk+1θ < |a− b| ≤ rkθ}, k ≥ 1,
...



Figure: How Hypothesis (H) helps to control the ratio.

[a0, b0] ∈ C0,
diamV0
|a0−b0| ≤

D
rθ ;

[a1, b1] ∈ C1,
diamV1
|a1−b1| = diamV0

|a0−b0| ≤
D
rθ ;

[c , d ] ∈ C1,
diamV
|c−d | = diamf −1V

|f −1[c,d ]| ≤
2D
rθ , by the consequence of

hypothesis (H).



k ≥ 1:
[ak , bk ] ∈ Ck , entirely contained in some level-k piece of T :
magnified k times (apply f −k) to get

diam(V )

|ak − bk |
=

diamf −k(V )

|f −k [ak , bk ]|
≤ D

rθ
;

[c , d ] ∈ Ck , intersecting the interior of ≥ 2 level-k pieces: magnify
k times to get a cross-cut of length ≤ θ of a disklike patch.

diam(V )

|c − d |
=

diamf −1(V )

|f −k [c , d ]|
≤ 2D

rθ
,

by the consequence of hypothesis (H).

Hence {ratios} bounded, ⇒ John.

Step (ii): Similar argument ⇒ linearly connected.

Prop. 2 proved.



Proof of Prop 1: m > 0 ⇒ hypothesis (H)

Recall:

• Positive minimal vertex distance:
m := inf{dist(u, v), u, v vertices of T } > 0.

• Select θ so that
(i) θ < m/3;
(ii) when a cross cut [a, b] of a tile T ′ is of length |a− b| ≤ θ,
the smaller half V of T ′ \ [a, b] has diam(V ) < m/4.
(iii) diam(T ′) > m (as ∂T ′ has ≥ 2 vertices).
(iv) diam(T ′ \ V ) > 3m/4



This θ guarantees (H2) vertex sharing. Example:

Figure: Suppose |a− b| ≤ θ. This picture is excluded by the choice of θ.

(a) A and B cannot be both the smaller halves of the cross-cuts
[a1, a2] and [b1, b2] of T 3. (Otherwise, |x − a1|, |y − b2| < m/4,
and |a1 − b2| < |a− b| < m/3, ⇒ |x − y | < m, contradiction.)

(b) Suppose T 3 \ B is the smaller half of (T 3)◦ \ [b1, b2]. Then
p, x ∈ T 3 \ B ⇒ |x − p| < m/4 < m, contradiction.



How the choice of θ guarantees (H1): the smaller half of
P \ [a, b] does not contain an entire tile.

Figure: Suppose |a− b| ≤ θ. Then this picture is impossible.

(a) A, B are the smaller halves of (T 1)◦ \ [a1, a2] and (T 2)◦\
[b1, b2]. (Otherwise, a different pair of halves share a vertex.)
(b) The component C of P◦ \ [a, b] containing A and B has
diam(C ) = diam(co(A,B)) ≤ diam(A) + diam(B) < m/2.
(c) diam(tile) ≥ m > 0. Hence C can’t contain an entire tile. (tile
has ≥ 2 vertices on its boundary)



Thank you.
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