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Self affine sets

@ Let {fi(x) = Aix + ;}, be a finite collection contractive affine
maps on some Euclidean space RY. We refer to the A, as the
linear parts and to t; as the translations.
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Self affine sets

@ Let {fi(x) = Aix + ;}, be a finite collection contractive affine
maps on some Euclidean space RY. We refer to the A, as the
linear parts and to t; as the translations.

@ It is well known that there exists a unique nonempty compact set
X = X(fy,...,fn) such that

m
X=JHX)={JAX+t.
i=1 i=1
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Dimension of self-affine sets: bad news

® There is no hope of finding a general formula for the dimension of
a self-affine set.
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® The Hausdorff and box counting dimensions of a self-similar set
may be different (e.g. McMullen carpets).
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® The Hausdorff and box counting dimensions of a self-similar set
may be different (e.g. McMullen carpets).

® Both the Hausdorff and box counting dimensions are
discontinuous as a function of the generating maps.
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Dimension of self-affine sets: bad news

® There is no hope of finding a general formula for the dimension of
a self-affine set.

® The Hausdorff and box counting dimensions of a self-similar set
may be different (e.g. McMullen carpets).

® Both the Hausdorff and box counting dimensions are
discontinuous as a function of the generating maps.

@ All of the above remains true even if we assume that the pieces
fi(X) are separated (SSC/OSC).
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Subadditive pressure

Let (Aix + t1,...,AmX + tm) be a self-affine IFS. There exists a very
important pressure function P(Aq, ..., Amn; s) with the following
properties:
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Let (Aix + t1,...,AmX + tm) be a self-affine IFS. There exists a very
important pressure function P(Aq, ..., Amn; s) with the following
properties:

@ It depends on the linear parts of the affine maps and a
nonnegative number s > 0; the translations do not come in.
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Subadditive pressure

Let (Aix + t1,...,AmX + tm) be a self-affine IFS. There exists a very
important pressure function P(Aq, ..., Amn; s) with the following
properties:

@ It depends on the linear parts of the affine maps and a
nonnegative number s > 0; the translations do not come in.

Q@ Forfixed A= (Ay,...,Amn), P(A, s) is a strictly decreasing function
of s. Moreover, P(A,0) =logm > 0 and lims_,», P(A, s) = —oc.
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Subadditive pressure

Let (Aix + t1,...,AmX + tm) be a self-affine IFS. There exists a very
important pressure function P(Aq, ..., Amn; s) with the following
properties:

@ It depends on the linear parts of the affine maps and a
nonnegative number s > 0; the translations do not come in.

Q@ Forfixed A= (Ay,...,Amn), P(A, s) is a strictly decreasing function
of s. Moreover, P(A,0) =logm > 0 and lims_,», P(A, s) = —oc.

© Hence, there is a unique sy = sg(A) such that P(A, sg) = 0. This
value sq is known as the singularity, singular value or affinity
dimension.
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Singularity dimension and dimension: good news

© (Douady and Osterle; Falconer) dimy(X) < dimg(X) < s for all
self-affine sets.
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Singularity dimension and dimension: good news

© (Douady and Osterle; Falconer) dim(X) < dimg(X) < s, for all
self-affine sets.

© (Falconer; Solomyak) If the norms of the A; are < 1/2, then for
a.e. choice of translation t,, . . ., tn, we have

dimy(X) = dimg(X) = sp.
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© (Douady and Osterle; Falconer) dimy(X) < dimg(X) < s for all
self-affine sets.

© (Falconer; Solomyak) If the norms of the A; are < 1/2, then for
a.e. choice of translation ty, ..., ty, we have

dimy(X) = dimg(X) = sp.

© (Falconer; Hueter and Lalley; Kdenmaki and S.) There are various
explicit conditions on the A;, t; which guarantee that the Hausdorff
and/or the box counting dimensions of X equal sy.
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Singularity dimension and dimension: good news

© (Douady and Osterle; Falconer) dimy(X) < dimg(X) < s for all
self-affine sets.

© (Falconer; Solomyak) If the norms of the A; are < 1/2, then for
a.e. choice of translation ty, ..., ty, we have

dimgy(X) = dimp(X) = sp.

© (Falconer; Hueter and Lalley; Kdenmaki and S.) There are various
explicit conditions on the A;, t; which guarantee that the Hausdorff
and/or the box counting dimensions of X equal sy.

© (Many people) Many generalizations to nonlinear situations,
measures (instead of sets), multifractal problems, countably many
maps, random settings, etc.
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Summary so far

® The problem of calculating the dimension of a specific self-affine
set is untractable.
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Summary so far

® The problem of calculating the dimension of a specific self-affine
set is untractable.

© However, the singularity dimension is in some sense the
“expected” value of the Hausdorff/box dimension (it is always an
upper bound, it is typically the dimension and also in concrete
classes of examples).
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Summary so far

® The problem of calculating the dimension of a specific self-affine
set is untractable.

© However, the singularity dimension is in some sense the
“expected” value of the Hausdorff/box dimension (it is always an
upper bound, it is typically the dimension and also in concrete
classes of examples).

@ The singularity dimension sy(Ayq, ..., An) is defined by the

condition P(A¢,...,Am; Sp) = 0.
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The question and the result

Question (Folklore, Solomyak, Falconer and Sloan)

Is the singularity dimension continuous as a function of Ay, ..., An?

More generally, is the subadditive pressure P(Aq, ..., Am; S) jointly
continuous?
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The question and the result

Question (Folklore, Solomyak, Falconer and Sloan)

Is the singularity dimension continuous as a function of Ay, ..., An?
More generally, is the subadditive pressure P(Aq, ..., Am; S) jointly
continuous?

Theorem (D-J Feng and P.S.)

Yes, the subadditive pressure is continuous and hence so is the
singularity dimension as a function of the defining linear maps.
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Estimating the Hausdorff measure of X in R?

In order to estimate the s-dimensional Hasudorff measure of X, we

use that
XC U fl1 ’k
(i1 ---ik)
This is a cover of X by ellipses.
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Estimating the Hausdorff measure of X in R?

In order to estimate the s-dimensional Hasudorff measure of X, we

use that
XcC U fl1 ’k
(it ---ik)
This is a cover of X by ellipses.
We can cover each ellipse by disks separately (this may not be optimal

if the ellipses overlap substantially or are aligned in a pattern that
makes it better to cover many at once).
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Estimating the Hausdorff measure of X in R?

In order to estimate the s-dimensional Hasudorff measure of X, we

use that
XC U fl1 ’k
(i1 ---ik)
This is a cover of X by ellipses.

We can cover each ellipse by disks separately (this may not be optimal
if the ellipses overlap substantially or are aligned in a pattern that
makes it better to cover many at once).

How to cover a very eccentric ellipse efficiently?
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Singular value function

The singular value function (SVF) ¢°(A) is the contribution to
s-dimensional Hausdorff measure of the ellipse A(B)
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Singular value function

The singular value function (SVF) ¢°(A) is the contribution to
s-dimensional Hausdorff measure of the ellipse A(B)

Given A € GLy4(R), ay(A) > --- > ag4(A) > 0 are the singular values of

A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the
eigenvalues of A*A.)
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Singular value function

The singular value function (SVF) ¢°(A) is the contribution to
s-dimensional Hausdorff measure of the ellipse A(B)

Given A € GLy4(R), ay(A) > --- > ag4(A) > 0 are the singular values of
A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the
eigenvalues of A*A.)

Then
P(A) = a1(A) - am(A)af, ]
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Singular value function

The singular value function (SVF) ¢°(A) is the contribution to
s-dimensional Hausdorff measure of the ellipse A(B)

Given A € GLy4(R), ay(A) > --- > ag4(A) > 0 are the singular values of
A (i.e. the semi-axes of the ellipsoid A(B), or the square roots of the
eigenvalues of A*A.)

Then
65(A) = a1 (A) - am(A)a,,T.
If d =2, then
¢°(A) = a1 (A)° if 5] =1,
$°(A) = a1 (A)az(A)* if 5] = 2.
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Subadditive pressure

Definition

Let A= (Aj,...,An) € (GLy(R))™. Given s > 0, the subadditive

topological pressure P(A, s) is defined as

P(A,s) = Jim_ —Iog (Z (A, -

...In
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Some earlier partial continuity results

Theorem (Folklore, Falconer-Sloan, Kaenmaki-S.)

A — P(A,s) is always upper semicontinuous. Under each of the
following assumptions, A is a point of continuity of map P(-,s):
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Some earlier partial continuity results

Theorem (Folklore, Falconer-Sloan, Kdenmaki-S.)
A — P(A,s) is always upper semicontinuous. Under each of the
following assumptions, A is a point of continuity of map P(-,s):

@ (A4,...,An) satisfies certain strong irreducibility condition.
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Theorem (Folklore, Falconer-Sloan, Kdenmaki-S.)
A — P(A,s) is always upper semicontinuous. Under each of the
following assumptions, A is a point of continuity of map P(-, s):

@ (A4,...,An) satisfies certain strong irreducibility condition.

@ Ay =.-- = Anp is an upper triangular map.
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Some earlier partial continuity results

Theorem (Folklore, Falconer-Sloan, Kdenmaki-S.)
A — P(A,s) is always upper semicontinuous. Under each of the
following assumptions, A is a point of continuity of map P(-, s):

@ (A4,...,An) satisfies certain strong irreducibility condition.

@ Ay =.-- = Anp is an upper triangular map.

@ All A; map a projective closed convex set into its interior (cone
condition) and s < 1.

P. Shmerkin (Surrey) Continuity of subadditive pressure CUHK, 11 December 2012 13/20




Some earlier partial continuity results

Theorem (Folklore, Falconer-Sloan, Kdenmaki-S.)
A — P(A,s) is always upper semicontinuous. Under each of the
following assumptions, A is a point of continuity of map P(-, s):

@ (A4,...,An) satisfies certain strong irreducibility condition.

@ Ay =.-- = Anp is an upper triangular map.

@ All A; map a projective closed convex set into its interior (cone
condition) and s < 1.

@ All exterior powers of A; satisfy the cone condition.
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Some generalizations

We prove continuity of more general subadditive pressures arising in:

@ The study of dimension of certain non-affine, non-conformal
repellers,
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Some generalizations

We prove continuity of more general subadditive pressures arising in:

@ The study of dimension of certain non-affine, non-conformal
repellers,

@ The multifractal spectrum of Gibbs measures on self-affine sets,
@ Some randomized models of self-affine sets.

Our result also implies that equilibrium measures for P(A, s) are
continuous as a function of A.
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Variational principle

Theorem (A. Kdenmaki)
Given A, s,

P(A, s) = max {hﬂ + nIi_}moo % / log ¢5(A, - - .A,-n)du(i)} ,

where the maximum is over all ergodic measures j on {1,..., m}%,
and h,, is measure-theoretical entropy.
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P(A, s) = max {hﬂ + nIi_}moo % / log ¢5(A, - - .A,-n)du(i)} ,

where the maximum is over all ergodic measures j on {1,..., m}%,
and h,, is measure-theoretical entropy.

Definition
A measure p achieving the maximum is called an equilibrium measure.

v
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Variational principle

Theorem (A. Kdenmaki)
Given A, s,

P(A, s) = max {hﬂ + nIi_)moo % / log ¢5(A, - - .A,-n)dy(i)} ,

where the maximum is over all ergodic measures j on {1,..., m}%,
and h,, is measure-theoretical entropy.

Definition
A measure p achieving the maximum is called an equilibrium measure.

v

Question
Is the set of ergodic equilibrium measures always finite?
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Oseledets Theorem
Theorem

Given an ergodic measure i, there exist Ay > ... > Ag and di, ..., dx,
such that for u-almost all i there exists a measurable decomposition

k
R = (P Ej(i)
j=1

such that for u-a.e. i,

v
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such that for u-almost all i there exists a measurable decomposition

k
R = (P Ej(i)
j=1

such that for u-a.e. i,
Q dimE(i) = d),
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Oseledets Theorem
Theorem

Given an ergodic measure i, there exist Ay > ... > Ag and di, ..., dx,
such that for u-almost all i there exists a measurable decomposition

k
& = D ()
j=1
such that for u-a.e. i,
Q dimE(i) = d),
Q Ej(oi)) = A, E(i) for all j,
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Oseledets Theorem
Theorem

Given an ergodic measure i, there exist Ay > ... > Ag and di, ..., dx,
such that for u-almost all i there exists a measurable decomposition

K
R = P Ej(i)
j=1
such that for u-a.e. i,
@ dim E(i) = d;
Q Ej(oi)) = A, Ej(i) for all j,
© For each nonzero v € E(i),

.1
n||—>moo E |Og |A,',7 200 A,'1 V| = )‘j'

v
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Idea of proof |

@ From now on assume d = 2 for simplicity (the ideas are the same
in higher dimensions, but there are substantial technical issues).

P. Shmerkin (Surrey) Continuity of subadditive pressure CUHK, 11 December 2012 17/20



Idea of proof |

@ From now on assume d = 2 for simplicity (the ideas are the same
in higher dimensions, but there are substantial technical issues).

@ Suppose p is an ergodic measure with different Lyapunov
exponents \* > A\~. Write R? = E*(i) @ E—(i) for the Oseledets
decomposition.
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Idea of proof |

@ From now on assume d = 2 for simplicity (the ideas are the same
in higher dimensions, but there are substantial technical issues).

@ Suppose u is an ergodic measure with different Lyapunov
exponents \* > A\~. Write R? = E*(i) @ E—(i) for the Oseledets
decomposition.

@ Key observation: suppose that for some i and some large n,
E*(i) ~ ET(o"i) and E~ (i) ~ E~(¢"i). Then A;,--- A, maps a
narrow cone around E7 (i) into itself.
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Idea of proof Il

@ We consider the space X of all splittings R2 = E+ @ E~, which
has a natural metric.
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Idea of proof Il

@ We consider the space X of all splittings R2 = E+ @ E~, which
has a natural metric.

@ The push-down of the measure p under the Oseledets splitting is
ameasure on X. Let ¥ = (E™, E~) be a point in the support.
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Idea of proof Il

@ We consider the space X of all splittings R2 = E+ @ E~, which
has a natural metric.

@ The push-down of the measure p under the Oseledets splitting is
ameasure on X. Let ¥ = (E™, E~) be a point in the support.

@ Let X be the ¢ neighborhood of ¥. By the ergodic theorem (or
Poincaré recurrence), for p-a.e. i for which the splitting is in A,
there are infinitely many n > 1 such that the splitting of ¢"i is also
in X..
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Idea of proof Il

@ We consider the space X of all splittings R2 = E+ @ E~, which
has a natural metric.

@ The push-down of the measure p under the Oseledets splitting is
ameasure on X. Let ¥ = (E™, E~) be a point in the support.

@ Let X be the ¢ neighborhood of ¥. By the ergodic theorem (or
Poincaré recurrence), for p-a.e. i for which the splitting is in A%,
there are infinitely many n > 1 such that the splitting of ¢"i is also
in X..

@ By the key remark, when this happens we know that A;, --- A;,
maps the cone C(E*, ) into its interior.
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Idea of proof Il

We know that ;{B : i € Az} > 0. By the ergodic theorem and the
previous remarks, we can find arbitrarily large n and a collection of
words [ = {(in, ..., i1)} such that:
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We know that ;{B : i € Az} > 0. By the ergodic theorem and the
previous remarks, we can find arbitrarily large n and a collection of
words [ = {(in, ..., i1)} such that:

Q@ X iyernlin. . i] > c(e) > 0.

© Thereis a cone C(Eﬂe) which is mapped into its interior by
A,’n'--A,'1 for (Inl1) el
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Idea of proof Il

We know that ;{B : i € Az} > 0. By the ergodic theorem and the
previous remarks, we can find arbitrarily large n and a collection of
words [ = {(in, ..., i1)} such that:

© Thereis a cone C(Eﬂe) which is mapped into its interior by
A,’n'--A,'1 for (Inl1) el

It follows that the IFS {A;, --- A, : (in...i1) € I} has pressure arbitrarily
close to that of the original IFS (after normalization) and satisfies the
cone condition. QED.
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The end
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Thanks!
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