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1 - Introduction

Non-differentiable Riemann function:

R2 was proposed by Riemann in the 1850’s as an example of continuous but
nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood,
Gerver, Itatsu, Jaffard).
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1 - Introduction

Non-differentiable Riemann function:

R2 was proposed by Riemann in the 1850’s as an example of continuous but
nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood,
Gerver, Itatsu, Jaffard).

Deep connections with Diophantine approximation:

o Differentiable only at rationals p/q where p and g are both odd.
o The local regularity of Rz at = depends on a sort of Diophantine type of x.
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1 - Introduction

Non-differentiable Riemann function:

R2 was proposed by Riemann in the 1850’s as an example of continuous but
nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood,
Gerver, Itatsu, Jaffard).

Deep connections with Diophantine approximation:
o Differentiable only at rationals p/q where p and g are both odd.
o The local regularity of Rz at = depends on a sort of Diophantine type of x.

Local Hélder exponent of a L>°-function f: When hy(z) <1,

1 h) —
(@)  tim i @) = @)
h—0t log h

(when f is differentiable, introduce a Taylor polynomial)
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Multifractal Spectrum of Ry (Jaffard, 1999):
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dg, ()

Multifractal Spectrum of Ry (Jaffard, 1999):

12 34 32

Idea: e Use the wavelet ¢ (x) = (z +i)~2 and compute the wavelet transform of

Ro:
Wk, (a,b) /R2 ( )dx

and prove (graduate-level complex analysis) that
Wr,(a,b) =a(2-60(b+ia) — 1),

2
where 0(z Z €"™"% is the Theta Jacobi function.
nez
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Multifractal Spectrum of Ry (Jaffard, 1999):

12 34 32

Idea: e Use the wavelet ¢ (x) = (z +i)~2 and compute the wavelet transform of

Ro:
Wk, (a,b) /R2 ( )dx

and prove (graduate-level complex analysis) that
Wr,(a,b) =a(2-60(b+ia) — 1),

2
where 0(z Z €"™"% is the Theta Jacobi function.
nez

o Intuitively, from harmonic analysis theorems, if Wg, (a,b) ~ a™ when a — 07,
then the local exponent of Ry at b is h.
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Multifractal Spectrum of Ry (Jaffard, 1999):

0 12 34 32

Idea: e Use the wavelet ¢ (x) = (z +i)~2 and compute the wavelet transform of

Ro:
Wk, (a,b) /R2 ( )dx

and prove (graduate-level complex analysis) that
Wr,(a,b) =a(2-60(b+ia) — 1),

2
where 0(z Z €"™"% is the Theta Jacobi function.
nez

o Intuitively, from harmonic analysis theorems, if Wg, (a,b) ~ a™ when a — 07,
then the local exponent of Ry at b is h.

o Use the Theta group (6(z +2) = 0(z) and 0(—1/z) = 0(z)) to study Wg, (a,b)
when a — 0.
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Intro.

Questions:

e What if we change the exponent:
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Questions:

e What if we change the exponent:
>\ sin(wk2x)
Ro(@) =3 —
k=1

Differences when 1/2 < s <1 and s > 1.
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Questions:

e What if we change the exponent:
_ i sin(mk?z)
k=1 ke
Differences when 1/2 < s <1 and s > 1.

e What if we change the numerator:

where P(k) is a polynomial of degree > 3.
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Questions:

e What if we change the exponent:
_ i sin(mk?z)
k=1 ke
Differences when 1/2 < s <1 and s > 1.

e What if we change the numerator:
where P(k) is a polynomial of degree > 3.

e What if we change both:

sin(wP(k)x) .
ks

8

Rf(z) =
k

Il
—

Comparable to the preceding question.
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Questions:

e What if we change the exponent:

Differences when 1/2 < s <1 and s > 1. Subject of this talk: better understand
the convergence.

e What if we change the numerator:

o0 .
P,y sin(wP(k)x)
R (z) = Z k2 ’
k=1
where P(k) is a polynomial of degree > 3.
e What if we change both:
o0 .
Py sin(wP(k)x)
B (o) = 3 S0P W)
k=1

Comparable to the preceding question.
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Questions:

e What if we change the exponent:

Differences when 1/2 < s <1 and s > 1. Subject of this talk: better understand
the convergence.

e What if we change the numerator:

RP(z) = i sin(wP(k)x)

3 )
! k

ol
Il

where P(k) is a polynomial of degree > 3. Few is known.

e What if we change both:

oo

_ sin(wP(k)x)
I

-

Comparable to the preceding question. Few is known.
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Intro.

Theorem (F. Chamizo and A. Ubis, preprint 2012)

Let

T inP(n)z
RP(z) = Z &

n=1

where P is of degree k, then if 1 + k/2 < s < k one has

ns ’

_ =2 if0< B < ==
(Vo+2)6§ngv(ﬂ+a—l)< =R TR

- 3] k+4 . 1 1
k 3Var 2 <A<

where vg is the greatest multiplicity of the zeros of P’.

dp(3)
1 ’///O
(v +2)/2k

f(a—1)/k (a—1/2)/k
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Convergence conditions

2 - Hardy-Littlewood series

For (z,t) € R? and s € Rt, we study

o eiwk2x+2i7rkt X o
Fs(x,t) = Z ST a— and Fs(x) =Fs(x,0) = Z
k=1 k=1
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Convergence conditions

2 - Hardy-Littlewood series

For (z,t) € R? and s € Rt, we study

el eiﬂk2x+2i7rkt el 171'k2
Fs(x,t) = Z ST a— and Fs(x) =Fs(x,0) = Z
k=1 k=1
We denote its n-th partial sum by
n 17rk2x+2171'kt n eiﬂkzcc
Fs n(z,t) Z and Fs p(x) = Z Pr
k=1 k=1
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Convergence conditions

2 - Hardy-Littlewood series

For (z,t) € R? and s € Rt, we study

el eiﬂk2x+2i7rkt el 171'k2
Fs(x,t) = Z ST a— and Fs(x) =Fs(x,0) = Z
k=1 k=1
We denote its n-th partial sum by
n 17rk2x+2171'kt n eiﬂkzcc
Fs n(z,t) Z and Fs p(x) = Z Pr
=1 k=1

@ Both are periodic functions of period 2 in  and 1 in .
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Convergence conditions

2 - Hardy-Littlewood series

For (z,t) € R? and s € Rt, we study

el eiﬂk2x+2i7rkt el 171'k2
Fs(x,t) = Z ST a— and Fs(x) =Fs(x,0) = Z
k=1 k=1
We denote its n-th partial sum by
n 17rk2x+2171'kt n eiﬂkzcc
Fs n(z,t) Z and Fs p(x) = Z Pr
=1 k=1

@ Both are periodic functions of period 2 in  and 1 in .

e For s = 2 and ¢ = 0 the imaginary part of Fs(z) is indeed Ra.
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Convergence conditions

2 - Hardy-Littlewood series

For (z,t) € R? and s € Rt, we study

el eiﬂk2x+2i7rkt el 171'k2
Fs(x,t) = Z ST a— and Fs(x) =Fs(x,0) = Z
k=1 k=1
We denote its n-th partial sum by
n 17rk2x+2171'kt n eiﬂkzcc
Fs n(z,t) Z and Fs p(x) = Z Pr
=1 k=1

@ Both are periodic functions of period 2 in  and 1 in .
e For s = 2 and ¢ = 0 the imaginary part of Fs(z) is indeed Ra.

@ Absolute convergence if s > 1, and the multifractal properties are the same as
those of Rao.
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Convergence conditions

2 - Hardy-Littlewood series

For (z,t) € R? and s € Rt, we study

el eiﬂk2x+2i7rkt el 171'k2
Fs(x,t) = Z ST a— and Fs(x) =Fs(x,0) = Z
k=1 k=1
We denote its n-th partial sum by
n 17rk2x+2171'kt n eiﬂkzcc
Fs n(z,t) Z and Fs p(x) = Z Pr
=1 k=1
@ Both are periodic functions of period 2 in  and 1 in .
e For s = 2 and ¢ = 0 the imaginary part of Fs(z) is indeed Ra.

@ Absolute convergence if s > 1, and the multifractal properties are the same as
those of Rao.

o Almost-everywhere convergence if 1/2 < s < 1 (Carleson’s theorem), but not
everywhere.

Stéphane Seuret Hardy-Littlewood series



Convergence conditions

2 - Hardy-Littlewood series

For (z,t) € R? and s € Rt, we study

el eiﬂk2x+2i7rkt el 171'k2
Fs(x,t) = Z ST a— and Fs(x) =Fs(x,0) = Z
k=1 k=1
We denote its n-th partial sum by
n 17rk2x+2171'kt n eiﬂkzcc
Fs n(z,t) Z and Fs p(x) = Z Pr
=1 k=1

@ Both are periodic functions of period 2 in  and 1 in .
e For s = 2 and ¢ = 0 the imaginary part of Fs(z) is indeed Ra.

@ Absolute convergence if s > 1, and the multifractal properties are the same as
those of Rao.
o Almost-everywhere convergence if 1/2 < s < 1 (Carleson’s theorem), but not
everywhere.
e Convergence?
o Local regularity? (distinguish the points)

o Exploit the modular forms to rewrite Fs(z,t) in a more explicit form in terms
of the Diophantine properties of x (more precisely in terms of the even
continued fraction expansion).
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Conve e cond

rem (Rivoal, S.)

Let © = (P /Qr)k>0 (its continued fraction) be an irrational number in (0, 1),
and let t € R.

(@) If s € (%, 1), then Fs(z,t) is absolutely convergent when
1—s

i (Qrt1) 2

3 < 00
k=0 (Qk)§
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Conve e cond

rem (Rivoal, S.)

Let © = (P /Qr)k>0 (its continued fraction) be an irrational number in (0, 1),
and let t € R.
(@) If s € (%, 1), then Fs(z,t) is absolutely convergent when

1—s

= (Qr+41) 2
,;;; (Qr)?

(i1) If s =1, then Fi(z,t) is absolutely convergent when

< 00

i log(Qr+1)

ZQuir =%
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rem (Rivoal, S.)

Let © = (P /Qr)k>0 (its continued fraction) be an irrational number in (0, 1),
and let t € R.

(@) If s € (%, 1), then Fs(z,t) is absolutely convergent when

& (Qui1)
,;;; (Qr)?

(i1) If s =1, then Fi(z,t) is absolutely convergent when

< 00

i log(Qr+1) e

k=0 (Qk)1/2

Based on the celebrated “approximate functional equation for the theta series” of

.9
Hardy and Littlewood, concerning the growth of the ”curlicues” 27]:]:1 ermne
(Mordell, Weyl, Klopp, ...)
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rem (Rivoal, S.)

Let © = (P /Qr)k>0 (its continued fraction) be an irrational number in (0, 1),

and let t € R.
(@) If s € (%, 1), then Fs(z,t) is absolutely convergent when
oo 1—s
2
) (Qk+1)é <o
im0 (Qr)Z2

(i1) If s =1, then Fi(z,t) is absolutely convergent when

i log(Qr+1) e

k=0 (Qk)1/2

Based on the celebrated “approximate functional equation for the theta series” of
.2
Hardy and Littlewood, concerning the growth of the ”curlicues” 27]:]:1 ermne

(Mordell, Weyl, Klopp, ...)

1
r——| < —— forim. ¢ > 1},then

Hence, if u(z) = sup {,u >1: prer

|
o If 1/2 < s < 1, Fs(+,t) does not converge on a set of Hausdorff dimension

1-s
—— (real numbers with Diophantine exponent u(z) > 2-).
s
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rem (Rivoal, S.)

Let © = (P /Qr)k>0 (its continued fraction) be an irrational number in (0, 1),

and let t € R.
(@) If s € (%, 1), then Fs(z,t) is absolutely convergent when
oo 1—s
2
) (Qk+1)é <o
im0 (Qr)Z2

(i1) If s =1, then Fi(z,t) is absolutely convergent when

i log(Qr+1) e

k=0 (Qk)1/2

Based on the celebrated “approximate functional equation for the theta series” of
.2
Hardy and Littlewood, concerning the growth of the ”curlicues” 27]:]:1 ermne

(Mordell, Weyl, Klopp, ...)

1
r——| < —— forim. ¢ > 1},then

Hence, if u(z) = sup {,u >1: prer

A
o If 1/2 < s < 1, Fs(+,t) does not converge on a set of Hausdorff dimension
1-s
—— (real numbers with Diophantine exponent u(z) > 2-).
s
e Fi(-,t) does not converge only on a subset of the Liouville numbers
(dimension 0).
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Approximate equation

3 - Approximate Modular Equation

The modular nature of Fs(x,t) implies that the map of [—1,1] \ {0} given by
1
T(x) =—— mod 2
x
is more natural than Gauss’ here. We will obtain another expression for Fi(z,t).
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Approximate equation

3 - Approximate Modular Equation
The modular nature of Fs(x,t) implies that the map of [—1,1] \ {0} given by
1
T(x) =—— mod 2
x

is more natural than Gauss’ here. We will obtain another expression for Fi(z,t).

Theorem (Rivoal, S.)

For any x € (0,1], t € R, s > 0, we have the estimate when n — oo

;T —iﬂﬁ =4 1 t
F'.s,n(xvt)_e24 € x |Z‘| 2 Fs,Ln\xH (_;7 %) = Qs(xv t)-|—O <

)
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Approximate equation

3 - Approximate Modular Equation
The modular nature of Fs(x,t) implies that the map of [—1,1] \ {0} given by
1
T(x) =—— mod 2
x

is more natural than Gauss’ here. We will obtain another expression for Fi(z,t).

Theorem (Rivoal, S.)

For any x € [—1,0), t € R, s > 0, we have the estimate when n — co

1 {-t}

_am g {=t}? 1
Fon(z,t)—e "G = |z|° 2Fs,[n\xu(

1
= Qs(x, — O ——
) =9z, -0+ (n m)

T
x x
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Approximate equation

3 - Approximate Modular Equation

The modular nature of Fs(x,t) implies that the map of [—1,1] \ {0} given by
1
T(x) =—— mod 2
x

is more natural than Gauss’ here. We will obtain another expression for Fi(z,t).

Theorem (Rivoal, S.)

For any x € [—1,0), t € R, s > 0, we have the estimate when n — co

1 {-t}

_am g {=t}? 1
Fon(z,t)—e "G = |z|° 2Fs,[n\xu(

T
x x

1
= Qs(x, — O ——
) =9z, -0+ (n m)

Is(z,t) whenx >0

Just for fun: the function Qg (z,t) is Qs(z,t)=<¢ ____ ~ ~ ,
Is(—z,—t) whenx <0
where:
1/2+poo

eiﬂz21+2i7rz{t}
La(@,t) = / 1 ey 2

1/2—poo
o =)
s —rau? —in(k—{t})?/z 1 _ i d
+ pz / e <kz_:1 e (ot h—{)° ks u
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Approximate equation

Now we focus on ¢t = 0: In this case, the formula becomes:

1) =Q(z)+ 0

T

Fs,n(x) _ eio‘(m)% I

3F, o

n®y/|x|
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Approximate equation

Now we focus on ¢t = 0: In this case, the formula becomes:

. x 1 1
Fs,n(ﬂ?) — elg(m)zm‘s_%Fs,[n\xH ( - ;) = Qs(x) +0 <> .

nsy/|x|
As n — +o00, the resulting “modular” equation is (when it exists!!):
iTo(x), s—% 1
Fy(x) —e'a7\ g 2F§<_7):Qs(1’)7
T

Important: o(z) is the sign of z.
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Approximate equation

Now we focus on ¢t = 0: In this case, the formula becomes:

i@ E =% <_ l) - 1
Fyn(z) — 00 2P 2 By np (= 2 ) = Qs(@) + O /il )
As n — +o00, the resulting “modular” equation is (when it exists!!):

Fy(@) - 5703 py (- l) = Qs (2),
X

Important: o(z) is the sign of z.
Given s > 1/2 and t € [0, 1), this holds at least for almost every z € (0,1).
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Approximate equation

Now we focus on ¢t = 0: In this case, the formula becomes:

. x 1 1
Fs,n(ﬂ?) — elg(m)zm‘s_%Fs,[n\xH ( - ;) = Qs(x) +0 <> .

nsy/|x|
As n — +o00, the resulting “modular” equation is (when it exists!!):
iTo(x), s—% 1
Fy(x) —e'a7\ g 2F§<_7):Qs(1’)7
T

Important: o(z) is the sign of z.
Given s > 1/2 and t € [0, 1), this holds at least for almost every z € (0,1).

For s = 2, it holds everywhere.
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Approximate equation

Now we focus on ¢t = 0: In this case, the formula becomes:

. x 1 1
Fs,n(ﬂ?) — elg(m)zm‘s_%Fs,[n\xH ( - ;) = Qs(x) +0 <> .

n®y/|x|

As n — +o00, the resulting “modular” equation is (when it exists!!):
iTo(x), s—% 1
Fy(x) —e'a7\ g 2F§<_7):Qs(1’)7
T

Important: o(z) is the sign of z.
Given s > 1/2 and t € [0, 1), this holds at least for almost every z € (0,1).

For s = 2, it holds everywhere.

Now, what is the behavior of Qg(x)?
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Approximate equation

Now we focus on ¢t = 0: In this case, the formula becomes:

io(x) T s—1 1 1
Fon(z) — @ T|2|*"2F, |4 ( - ;) =Qs(z) +O (n*) .

Vx|
As n — +o00, the resulting “modular” equation is (when it exists!!):
iZo(x) s—2 1
Fy(x) —e'a7\ g 2F§<_7):Qs(1’)7
T

Important: o(z) is the sign of z.
Given s > 1/2 and t € [0, 1), this holds at least for almost every z € (0,1).

For s = 2, it holds everywhere.
Now, what is the behavior of Qg(x)?

Theorem

(3) When 0 < s <1, z— Qs(z) is continuous on R\ {0}, differentiable at p/q
with p,q both odd, and

0 e NG Iy
s(@) - ——2"Jz] = (0<s<1) and Qi(z)—log(1/+/|z])

2m 2

are bounded on R.
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Approximate equation

Now we focus on ¢t = 0: In this case, the formula becomes:

io(x) T s—1 1 1
Fon(z) — @ T|2|*"2F, |4 ( - ;) =Qs(z) +O (n*) .

Vx|
As n — +o00, the resulting “modular” equation is (when it exists!!):
iZo(x) s—2 1
Fy(x) —e'a7\ g 2F§<_7):Qs(1’)7
T

Important: o(z) is the sign of z.
Given s > 1/2 and t € [0, 1), this holds at least for almost every z € (0,1).

For s = 2, it holds everywhere.
Now, what is the behavior of Qg(x)?

Theorem

(3) When 0 < s <1, z— Qs(z) is continuous on R\ {0}, differentiable at p/q
with p,q both odd, and

0 e NG Iy
s(@) - ——2"Jz] = (0<s<1) and Qi(z)—log(1/+/|z])

2m 2

are bounded on R.

(it) When s > 1, x — Qs () is continuous on R and differentiable on R\ {0}.
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Approximate equation
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Approximate equation

Plot of Im(Fo.7,1000(z) — e”/4m0‘2F0'77L1000xJ (=1/z)) on [0, 2]
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation.
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

io(x) T s—1 1 1
Fon(x) — €7@zl ’-’Fs,Ln|xu(‘;) = Q@) + O(WW)
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

io(z) X, |s—% 1
Fs,n(z) - € ( >4|x‘ QFS,Ln\xU (T('E)) = Qg(l‘) + O (Wm) .
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

io(z) X, |s—% 1
Fs,n(z) - € ( >4|x‘ QFS,Ln\xU (T('E)) = Qg(l‘) + O (Wm) .

The key point is that |n|x|| < n.
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

io(z) X, |s—% 1
Fs,n(z) - € ( >4|x‘ QFS,Ln\xU (T('E)) = Qg(l‘) + O (Wm) .

The key point is that |n|x|| < n. We iterate:

Stéphane Seuret Hardy-Littlewood series



Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

o 1
Fon(@) — €@ F|g1~3F, 1 (T = Q@) + O .
n(@) — e 22 F, i) (7)) @) /Tl
The key point is that |n|x|| < n. We iterate:
: . 1
Fy tale  (T@)) =TT 1 T(2) 5= 2 F, et im0o (T2(2)) = Qu(T(@)+Of ——
et (T@)) —e T@I*2 Fu a0 (72(2)) = 2T @) +0| T
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

o 1
Fon(@) — €@ F|g1~3F, 1 (T = Q@) + O .
n(@) — e 22 F, i) (7)) @) /Tl
The key point is that |n|x|| < n. We iterate:
: . 1
Fy tale  (T@)) =TT 1 T(2) 5= 2 F, et im0o (T2(2)) = Qu(T(@)+Of ——
et (T@)) —e T@I*2 Fu a0 (72(2)) = 2T @) +0| T

and so on...
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

o 1
Fon(@) — €@ F|g1~3F, 1 (T = Q@) + O .
n(@) — e 22 F, i) (7)) @) /Tl
The key point is that |n|x|| < n. We iterate:
: . 1
Fy tale  (T@)) =TT 1 T(2) 5= 2 F, et im0o (T2(2)) = Qu(T(@)+Of ——
et (T@)) —e T@I*2 Fu a0 (72(2)) = 2T @) +0| T

and so on...

Starting with a given integer n, then the integer ||--- | [n|z|]|T(z)|]--- ||T*(z)|]
tends to zero, and we get an empty sum.
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Even fractions

4 - Even continued fractions

Idea: Iterate the modular equation. Recall that T'(z) = —% mod 2.
Start with the initial modular equation, with ¢ = 0 (o(z) is the sign of x):

io(z) X, |s—% 1
Fs,n(z) - € (>4|x‘ QFS,Ln\xU (T('E)) = Qg(l‘) + O<ns\/m>

The key point is that |n|x|| < n. We iterate:
io (T s -1 2 1
Fy (njx)) (T(@)) =" T T @) "5 F, | e (T (I)>=QS(T($))+O<LH|X|JS T(M)

and so on...

Starting with a given integer n, then the integer ||--- | [n|z|]|T(z)|]--- ||T*(z)|]
tends to zero, and we get an empty sum.

At the end, one gets

K(n,z)

Fs,n(x) = Z

=0

j—1
iT Y o(Tte) . .
g =0 z |mT(m)_,,Tﬂfl(x)IS—% Qs (TJ(JC))

for some integer K (n,z) that tends to infinity when n tends to infinity.
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Even fractions

Theorem

Let s € (%, 1). If x € (—1,1) is an irrational number such that

then Fs(z) is also convergent and the following identity holds:

j=1
O iZY o(Ttx)
£=0

€T () - T9~ 1 (2)|*~ % Qs (T (2)).
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Even fractions

Theorem

Let s € (%, 1). If x € (—1,1) is an irrational number such that

Z #T@)- T s i

— < oo,
\Tﬂ(m)l 2

then Fs(z) is also convergent and the following identity holds:

j—1
> o(Tta)

Fs(z) = iei% =0 eT(a) - T9~ (x)|*~ 2 Qs (T7 ().
j=0
If
= - 1
S et T 1+ o () <

then Fi(z) is also convergent and the following identity holds:

oo igjilaw%) , _
Fi(z)=) e " &=0 V2T (@) - Ti=1(z)| Q1 (T (2)).

0

Stéphane Seuret Hardy-Littlewood series
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Even fractions

Theorem

Let s € (%, 1). If x € (—1,1) is an irrational number such that

Z #T@)- T s i

— < oo,
\Tﬂ(m)l 2

then Fs(z) is also convergent and the following identity holds:

j—1
> o(T )

Ze TE [oT(2) - TI 7} (2)|*~ % Q4 (T ().
1f
= - 1
5 fertr (1 + e () <

then Fi(z) is also convergent and the following identity holds:

:Z = 2T (@) - - - TI=1 ()| Q1 (TV ().

j=0
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Even fractions

Now we need to understand the convergence of sums like

&, T (a) - T~ (@)]* "2
i ‘

3=0 T3 (x)| 2
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Now we need to understand the convergence of sums like
1

= 2T (@) 19 (@)%

. 1—s
=0 T ()| 2
. ",’ ( "! o
- e
([-1,1],T) is a dynamical system ‘ ’/ /
with parabolic points —1 and 1. . . ”/ ’/ [/
- / { {
/ | |
Gt | i
// )l

Infinite ergodic measure.
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Now we need to understand the convergence of sums like
1

o |2T(x) - T7 " (2)|"" 2
. 1—s N
=0 T (x)| 2

N

([-1,1],T) is a dynamical system ’

with parabolic points —1 and 1. . /
. /

/ | ‘ ’ |

Infinite ergodic measure.
e

As with Gauss G(z) = 1/z mod 1, using T one can associate with each irrational
real number = € [—1,1] \ {0} a kind of continued fraction:
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Now we need to understand the convergence of sums like

&, T (a) - T~ (@)]* "2
1—s N

T ()| 2

=0

([-1,1],T) is a dynamical system /
with parabolic points —1 and 1. . /
- /o

Infinite ergodic measure.
N e !

As with Gauss G(z) = 1/z mod 1, using T one can associate with each irrational

real number = € [—1,1] \ {0} a kind of continued fraction:

z has a unique even continued fraction (ECF) expansion x =
a1 + €3

o a; the unique even integer such that T (z) —a; € (—1,1)

o ¢j =o(T7(z)) € {-1,1}.

Schweiger, Kraaikamp, Lopes, Sinai (and students)...
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Even fractions

We define the n-th convergent and the n-th remainder respectively as
1 e
Pn = &1 and x, = n
dn @+ ey Gn4+1 +
a2 + ——— Gn2 +
€n—1

En+t1
En+t2

Qn

(small letters pyn/gn for ECF, and capital letters P, /Qy for SCF)
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Even fractions

We define the n-th convergent and the n-th remainder respectively as
1 e
Pn . &1 and x, = n
dn @+ ey Gn4+1 +
a2 + ——— Gn2 +
€n—1

En+t1
En+t2

Qn
(small letters pyn/gn for ECF, and capital letters P, /Qy for SCF)
ECF expansions are obtained from the classical expansions via an iterative
method: for any positive integers (A, B,C) and any v > 0, observe that

—1
T :(A+1)+2+ 1 )
—1
C+xy 24 .+ —

24 ———
(C+1)+~v

A+
B+

-1
where the term 7T appears exactly B — 1 times.
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Even fractions

We define the n-th convergent and the n-th remainder respectively as
1 e
Pn = &1 and x, = n
dn @+ ey Gn4+1 +
a2 + ——— Gn2 +
€n—1

En+t1
En+t2

Qn

(small letters pyn/gn for ECF, and capital letters P, /Qy for SCF)
ECF expansions are obtained from the classical expansions via an iterative
method: for any positive integers (A, B,C) and any v > 0, observe that
-1

-1 )

-1
R —
(C+1)+~v

A+
B+

=(A+1)+

1
C+xy

2+
2+ ...+

where the term

appears exactly B — 1 times.

From z := , we apply the singularization each time

1 we have an odd A,,.

. n 1
Ap+ ...

If all the A, ’s are even, then this expansion is indeed the ECE, of x.
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Proposition

For every irrational x € [0,1] and every j > 1, we have

Gn+1 > qn,  lm (gnt1 —gn) = +00
n—-+oo

1 1
< oT(@) - ()] = < .
2gn+1 |gn+1 + ent1Tnt1qn| ~ Gn+1 —qn

But...
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Proposition

For every irrational x € [0,1] and every j > 1, we have

Gn+1 > qn,  lm (gnt1 —gn) = +00
n—-+oo

1 1
< oT(@) - ()] = < .
2gn+1 |gn+1 + ent1Tnt1qn| ~ Gn+1 —qn

But...Major difference with Gauss: There is no uniform growth of ¢,,+1 —gn !!!
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Proposition

For every irrational x € [0,1] and every j > 1, we have

Gn+1 > qn,  lm (gnt1 —gn) = +00
n—-+oo

1 1
< oT(@) - ()] = < .
2gn+1 |gn+1 + ent1Tnt1qn| ~ Gn+1 —qn

But...Major difference with Gauss: There is no uniform growth of ¢,,+1 —gn !!!

Recall that

S RE T
ST ET T ey e (),
7=0
The series
D laT(x)-- T ()|
n>1
may diverge (Aaronson, Sinai and students studied convergence in probability),
while
> l2G(@)---G™(2)*
n>1 1
always converges, since |zG(z)---G"(z)| < )
n
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Even fractions

1
) =supqpu>1: |z— 4 < for infinitely many integers ¢ > 1 5.
q ql-H‘«
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Even fractions

for infinitely many integers q > 1} .

Theorem

Let Q2 be a bounded function, differentiable at 1 and —1. The series

> |2T(@) - T~ (@)|* Q(T(=))
j=1

oo
Q
converges if Z Zii < oo (ie. when p(z) <1+ a).
n=1 ¥n
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Even fractions

p(x):sup{,uZl: ‘xfg'<
q

Theorem

Let Q2 be a bounded function, differentiable at 1 and —1. The series

ZI%T(r)mTj_l(w)la QT ()

for infinitely many integers ¢ > 1 5.
g+

oo
converges if Z QZii < oo (ie. when p(z) <1+ a).
n=1 5

Theorem

For any a > 0 and 8 > 0, and any irrational number x € (0,1), the series

Z |2T(x) - T~ ()|

|TJ (@)I°
) QBJrl
converges if Z aZJBr}H < o0 (i.e. when p(z) <1+ ﬁ)
n=1"'¥n
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Even fractions

. P 1
u(l’)fbup{uzl- ‘m '<q1+u

q

Let Q be a bounded function, differentiable at 1 and —1. The series

for infinitely many integers ¢ > 1} .

ji—1
oo - . 3% ]Z o(T z)
D> laT(z) - T (@)|* QT (x)) e~ =0

=1

converges for any o > 0 and any irrational number z € (0,1).

Theorem

For any a > 0 and B > 0, and any irrational number z € (0,1), the series

T () - 791 ()|
Z |Ta<w>|6

oo Qﬁ+l
converges if Z uj_;_l’_l < 00 (i‘e. when p(z) <1+ ﬁ)
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Even fractions

1
) =supqpu>1: |z— 4 < for infinitely many integers ¢ > 1 5.
q ql-H‘«

Theorem

Let Q2 be a bounded function, differentiable at 1 and —1. The series

o . z (T x)
S 2T (@) - T ()| QT x)) g

j=1

converges for any o > 0 and any irrational number x € (0,1).

Theorem

For any a > 0 and 8 > 0, and any irrational number x € (0,1), the series

izl )
|$T(CL‘ ijl( )‘ iq [;ln(T!:n)

E e =

|T9 (z)|#

converges if Z :1_13 o0 (i.e when p(z) <1+ “).

n=1 n
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Even fractions

Now, we put things together. Fix s € (%, 1):
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Even fractions

Now, we put things together. Fix s € (%, 1):

= (Qui1) 2
e Fs(x,t) is convergent when Z ixkil) ©

= Q)3

< oo, i.e. when u(z) < 2 .
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Even fractions

Now, we put things together. Fix s € (%, 1):

= (@Quin) 2
e Fs(x,t) is convergent when Z ixkil) ©

= Q)3

s
1—-s °

< 00, i.e. when p(z) <

oo
T
holds if Y [T (=) . .
=0 T3 (z)| 2 5
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Even fractions

Now, we put things together. Fix s € (%, 1):

= (@Quin) 2
e Fs(x,t) is convergent when Z ixkil) ©

= Q)3

s
1—-s °

< 00, i.e. when p(z) <

o0
T(x)---
holds if Y [T (=) . _
=0 T3 ()| = e

24+ s s
<

Problem: —
3—s 1—s

, SO we are not optimal...
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Even fractions

Now, we put things together. Fix s € (%, 1):

= (@Quin) 2
e Fs(x,t) is convergent when Z ixkil) ©

= Q)3

s
1—-s °

< 00, i.e. when p(z) <

oo
T
holds if Y [T (=) . .
=0 T3 (z)| 2 5

24+ s s
<7
3—s 1—s

Problem: , SO we are not optimal...
Solution: Only a technical detail in the proof forces us to ensure absolute

j=1
O LS o(Th) - a1

convergence of the sum Z e (=0 |2T (z)---T77"(x)|°" 2. If we could
3=0

replace it with the simple convergence, then we would be optimal.
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Even fractions

The same properties (and the same convergence problem) hold for F;.

Stéphane Seuret ittlewood seri




Even fractions

The same properties (and the same convergence problem) hold for F;.

Let’s come back to Rao:

oo . ]{32 [e3e] -1'7_ (TK >
Ro(e) =3 S‘“(Ziz’”) =Im| Y e =0 2T () - T9 ()| 2 Q2 (T (2)) |,
k=1 =0

where Qs is differentiable (except at 0).

The use of T instead of G explains why the regularity depends on the
approximation rate by rationals p/q with p, ¢ both odd.
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Questions

5. Questions

e Find some courage to finish the theorem...

e Use the modular expression to completely characterize the multifractal
properties of R, for s > 1.

e Distinguish, for Rs with 1/2 < s < 1, the different local behaviors according to
the Diophantine exponent.

e Understand the approximation rate for the even convergents.

e Apply the same techniques to other functions.
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Questions

5. Questions

e Find some courage to finish the theorem...

e Use the modular expression to completely characterize the multifractal
properties of R, for s > 1.

e Distinguish, for Rs with 1/2 < s < 1, the different local behaviors according to
the Diophantine exponent.

e Understand the approximation rate for the even convergents.

e Apply the same techniques to other functions.

it 18

Stéphane Seuret Hardy-Littlewood series




	Introduction
	Convergence conditions
	Approximate modular equation
	Even continued fractions
	Open questions

