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Intro. Convergence conditions Approximate equation Even fractions Questions

1 - Introduction

Non-differentiable Riemann function:

R2(x) =
∞∑
k=1

sin(πk2x)

k2

1.2657

-1.2657
0 2

R2 was proposed by Riemann in the 1850’s as an example of continuous but
nowhere differentiable function (Riemann, Weierstrass, Hardy and Littlewood,
Gerver, Itatsu, Jaffard).

Deep connections with Diophantine approximation:

Differentiable only at rationals p/q where p and q are both odd.

The local regularity of R2 at x depends on a sort of Diophantine type of x.

Local Hölder exponent of a L∞-function f : When hf (x) < 1,

hf (x) = lim inf
h→0+

log |f(x+ h)− f(x)|
log h

(when f is differentiable, introduce a Taylor polynomial)
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Intro. Convergence conditions Approximate equation Even fractions Questions

Multifractal Spectrum of R2 (Jaffard, 1999):

Idea: • Use the wavelet ψ(x) = (x+ i)−2 and compute the wavelet transform of
R2:

WR2
(a, b) =

1

a

∫
R
R2(x)ψ

(
x− b
a

)
dx

and prove (graduate-level complex analysis) that

WR2
(a, b) = a (2 · θ(b+ ia)− 1),

where θ(z) =
∑
n∈Z

eiπn
2z is the Theta Jacobi function.

• Intuitively, from harmonic analysis theorems, if WR2
(a, b) ∼ ah when a→ 0+,

then the local exponent of R2 at b is h.

• Use the Theta group (θ(z + 2) = θ(z) and θ(−1/z) = θ(z)) to study WR2
(a, b)

when a→ 0+.
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Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

Multifractal Spectrum of R2 (Jaffard, 1999):

Idea: • Use the wavelet ψ(x) = (x+ i)−2 and compute the wavelet transform of
R2:

WR2
(a, b) =

1

a

∫
R
R2(x)ψ

(
x− b
a

)
dx

and prove (graduate-level complex analysis) that

WR2
(a, b) = a (2 · θ(b+ ia)− 1),

where θ(z) =
∑
n∈Z

eiπn
2z is the Theta Jacobi function.

• Intuitively, from harmonic analysis theorems, if WR2
(a, b) ∼ ah when a→ 0+,

then the local exponent of R2 at b is h.

• Use the Theta group (θ(z + 2) = θ(z) and θ(−1/z) = θ(z)) to study WR2
(a, b)

when a→ 0+.
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Intro. Convergence conditions Approximate equation Even fractions Questions

Questions:

• What if we change the exponent:

Rs(x) =
∞∑
k=1

sin(πk2x)

ks
.

Differences when 1/2 < s ≤ 1 and s ≥ 1.

• What if we change the numerator:

RP (x) =
∞∑
k=1

sin(πP (k)x)

k2
,

where P (k) is a polynomial of degree ≥ 3.

• What if we change both:

RPs (x) =
∞∑
k=1

sin(πP (k)x)

ks
.

Comparable to the preceding question.
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Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

Questions:

• What if we change the exponent:

Rs(x) =
∞∑
k=1

sin(πk2x)

ks
.

Differences when 1/2 < s ≤ 1 and s ≥ 1.

• What if we change the numerator:

RP (x) =
∞∑
k=1

sin(πP (k)x)

k2
,

where P (k) is a polynomial of degree ≥ 3.

• What if we change both:

RPs (x) =
∞∑
k=1

sin(πP (k)x)

ks
.

Comparable to the preceding question.
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Theorem (F. Chamizo and A. Ubis, preprint 2012)

Let

RPs (x) =

+∞∑
n=1

eiπP (n)x

ns
,

where P is of degree k, then if 1 + k/2 < s < k one has

(ν0 + 2)β ≤ dRPs

(
β +

α− 1

k

)
≤


2β

2−k+β
if 0 ≤ β < 1

k2−k

3
2
−
√
k+4
4k
− 2β if 1

k2−k
≤ β < 1

2k
,

where ν0 is the greatest multiplicity of the zeros of P ′.
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2 - Hardy-Littlewood series

For (x, t) ∈ R2 and s ∈ R+, we study

Fs(x, t) =
∞∑

k=1

eiπk2x+2iπkt

ks
and Fs(x) = Fs(x,0) =

∞∑
k=1

eiπk2x

ks
.

We denote its n-th partial sum by

Fs,n(x, t) =
n∑
k=1

eiπk
2x+2iπkt

ks
and Fs,n(x) =

n∑
k=1

eiπk
2x

ks
.

Both are periodic functions of period 2 in x and 1 in t.

For s = 2 and t = 0 the imaginary part of Fs(x) is indeed R2.

Absolute convergence if s > 1, and the multifractal properties are the same as
those of R2.

Almost-everywhere convergence if 1/2 < s ≤ 1 (Carleson’s theorem), but not
everywhere.

Convergence?

Local regularity? (distinguish the points)

Exploit the modular forms to rewrite Fs(x, t) in a more explicit form in terms
of the Diophantine properties of x (more precisely in terms of the even
continued fraction expansion).
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Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

2 - Hardy-Littlewood series

For (x, t) ∈ R2 and s ∈ R+, we study

Fs(x, t) =
∞∑

k=1

eiπk2x+2iπkt

ks
and Fs(x) = Fs(x,0) =

∞∑
k=1

eiπk2x

ks
.

We denote its n-th partial sum by

Fs,n(x, t) =
n∑
k=1

eiπk
2x+2iπkt

ks
and Fs,n(x) =

n∑
k=1

eiπk
2x

ks
.

Both are periodic functions of period 2 in x and 1 in t.

For s = 2 and t = 0 the imaginary part of Fs(x) is indeed R2.

Absolute convergence if s > 1, and the multifractal properties are the same as
those of R2.

Almost-everywhere convergence if 1/2 < s ≤ 1 (Carleson’s theorem), but not
everywhere.

Convergence?

Local regularity? (distinguish the points)

Exploit the modular forms to rewrite Fs(x, t) in a more explicit form in terms
of the Diophantine properties of x (more precisely in terms of the even
continued fraction expansion).
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Theorem (Rivoal, S.)

Let x = (Pk/Qk)k≥0 (its continued fraction) be an irrational number in (0, 1),
and let t ∈ R.

(i) If s ∈ ( 1
2
, 1), then Fs(x, t) is absolutely convergent when

∞∑
k=0

(Qk+1)
1−s
2

(Qk)
s
2

<∞.

(ii) If s = 1, then F1(x, t) is absolutely convergent when
∞∑
k=0

log(Qk+1)

(Qk)1/2
<∞.

Based on the celebrated “approximate functional equation for the theta series” of

Hardy and Littlewood, concerning the growth of the ”curlicues”
∑N
n=1 e

iπn2x

(Mordell, Weyl, Klopp, ...)

Hence, if µ(x) = sup

{
µ ≥ 1 :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q1+µ
for i.m. q ≥ 1

}
, then

If 1/2 < s < 1, Fs(·, t) does not converge on a set of Hausdorff dimension
1− s
s

(real numbers with Diophantine exponent µ(x) ≥ s
1−s ).

F1(·, t) does not converge only on a subset of the Liouville numbers
(dimension 0).
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(dimension 0).

Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

3 - Approximate Modular Equation

The modular nature of Fs(x, t) implies that the map of [−1, 1] \ {0} given by

T (x) = −
1

x
mod 2

is more natural than Gauss’ here. We will obtain another expression for Fs(x, t).

Theorem (Rivoal, S.)

For any x ∈ (0, 1], t ∈ R, s ≥ 0, we have the estimate when n→∞

Fs,n(x, t)−ei
π
4 e−iπ

{t}2
x |x|s−

1
2 Fs,bn|x|c

(
−

1

x
,
{t}
x

)
= Ωs(x, t)+O

(
1

ns
√
|x|

)
.

Just for fun: the function Ωs(x, t) is Ωs(x, t)=

{
Is(x, t) when x > 0

Is(−x,−t) when x < 0
,

where:

Is(x, t) =

1/2+ρ∞∫
1/2−ρ∞

eiπz
2x+2iπz{t}

zs(1− e2iπz)
dz

+ ρxs
∞∫
−∞

e−πxu
2

( ∞∑
k=1

e−iπ(k−{t})
2/x

(
1

(ρxu+ k − {t})s
−

1

ks

))
du.
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Now we focus on t = 0: In this case, the formula becomes:

Fs,n(x)− eiσ(x)
π
4 |x|s−

1
2 Fs,bn|x|c

(
−

1

x

)
= Ωs(x) +O

(
1

ns
√
|x|

)
.

As n→ +∞, the resulting “modular” equation is (when it exists!!):

Fs(x)− ei
π
4
σ(x)xs−

1
2 Fs

(
−

1

x

)
= Ωs(x),

Important: σ(x) is the sign of x.

Given s > 1/2 and t ∈ [0, 1), this holds at least for almost every x ∈ (0, 1).

For s = 2, it holds everywhere.

Now, what is the behavior of Ωs(x)?

Theorem

(i) When 0 ≤ s ≤ 1, x 7−→ Ωs(x) is continuous on R \ {0}, differentiable at p/q
with p, q both odd, and

Ωs(x)−
ρ1−sΓ( 1−s

2
)

2π
1−s
2

|x|
s−1
2 (0 ≤ s < 1) and Ω1(x)− log(1/

√
|x|)

are bounded on R.

(ii) When s > 1, x 7−→ Ωs(x) is continuous on R and differentiable on R \ {0}.
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6.382

-6.382
0 2

Plot of Im(F0.7,100(x)) =
100∑
k=1

sin(πk2x)

k0.7
on [0, 2]

1.2099

0.43046
0.01 2

Plot of Im(F0.7,1000(x)− eiπ/4x0.2F0.7,b1000xc(−1/x)) on [0, 2]
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4 - Even continued fractions

Idea: Iterate the modular equation.

Recall that T (x) = − 1
x

mod 2.

Start with the initial modular equation, with t = 0 (σ(x) is the sign of x):

Fs,n(x) − eiσ(x)
π
4 |x|s−

1
2 Fs,bn|x|c

(
−

1

x

)
= Ωs(x) + O

(
1

ns
√
|x|

)
.

The key point is that bn|x|c < n. We iterate:

Fs,bn|x|c

(
T (x)

)
− eiσ(T (x))π

4 |T (x)|s−
1
2 Fs,bbn|x|c|T(x)|c

(
T 2(x)

)
= Ωs(T (x)) +O

(
1

bn|x|cs
√
|T (x)|

)
.

and so on...

Starting with a given integer n, then the integer bb· · · bbn|x|c|T (x)|c · · · c|T `(x)|c
tends to zero, and we get an empty sum.

At the end, one gets

Fs,n(x) =

K(n,x)∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 Ωs

(
T j(x)

)
for some integer K(n, x) that tends to infinity when n tends to infinity.
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4 - Even continued fractions
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x

mod 2.
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√
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Theorem

Let s ∈ ( 1
2
, 1). If x ∈ (−1, 1) is an irrational number such that

∞∑
j=0

|xT (x) · · ·T j−1(x)|s−
1
2

|T j(x)|
1−s
2

<∞,

then Fs(x) is also convergent and the following identity holds:

Fs(x) =
∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 Ωs

(
T j(x)

)
.

Theorem

If
∞∑
j=0

√
|xT (x) · · ·T j−1(x)|

(
1 + log

( 1

|T jx|

))
<∞,

then F1(x) is also convergent and the following identity holds:

F1(x) =

∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)√
|xT (x) · · ·T j−1(x)|Ω1

(
T j(x)

)
.
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Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

Theorem

Let s ∈ ( 1
2
, 1). If x ∈ (−1, 1) is an irrational number such that

∞∑
j=0

|xT (x) · · ·T j−1(x)|s−
1
2

|T j(x)|
1−s
2

<∞,

then Fs(x) is also convergent and the following identity holds:

Fs(x) =
∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 Ωs

(
T j(x)

)
.

Theorem

If
∞∑
j=0

√
|xT (x) · · ·T j−1(x)|

(
1 + log

( 1

|T jx|

))
<∞,

then F1(x) is also convergent and the following identity holds:

F1(x) =
∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)√
|xT (x) · · ·T j−1(x)|Ω1

(
T j(x)

)
.
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Intro. Convergence conditions Approximate equation Even fractions Questions

Now we need to understand the convergence of sums like

∞∑
j=0

|xT (x) · · ·T j−1(x)|s−
1
2

|T j(x)|
1−s
2

.

([−1, 1], T ) is a dynamical system
with parabolic points −1 and 1.

Infinite ergodic measure.

As with Gauss G(x) = 1/x mod 1, using T one can associate with each irrational
real number x ∈ [−1, 1] \ {0} a kind of continued fraction:

Proposition

x has a unique even continued fraction (ECF) expansion x =
e1

a1 +
e2

a2 +
e3

a3 + ...

,

aj the unique even integer such that T j(x)− aj ∈ (−1, 1)

ej = σ(T j(x)) ∈ {−1, 1}.

Schweiger, Kraaikamp, Lopes, Sinai (and students)...
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Intro. Convergence conditions Approximate equation Even fractions Questions

We define the n-th convergent and the n-th remainder respectively as

pn

qn
:=

1

a1 +
e1

a2 +
e2

. . . +
en−1

an

and xn :=
en

an+1 +
en+1

an+2 +
en+2

. . .

.

(small letters pn/qn for ECF, and capital letters Pn/Qn for SCF)

ECF expansions are obtained from the classical expansions via an iterative
method: for any positive integers (A,B,C) and any γ ≥ 0, observe that

A+
1

B +
1

C + γ

= (A+ 1) +
−1

2 +
−1

2 + ....+
−1

2 +
−1

(C + 1) + γ

,

where the term
−1

2 + ...
appears exactly B − 1 times.

From x :=
1

A1 +
1

A2 +
1

. . . +
1

An + ...

, we apply the singularization each time

we have an odd An.

If all the An’s are even, then this expansion is indeed the ECF of x.
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Intro. Convergence conditions Approximate equation Even fractions Questions

Proposition

For every irrational x ∈ [0, 1] and every j ≥ 1, we have

qn+1 > qn, lim
n→+∞

(qn+1 − qn) = +∞

1

2qn+1
≤ |xT (x) · · ·Tn(x)| =

1

|qn+1 + en+1xn+1qn|
≤

1

qn+1 − qn
.

But...

Major difference with Gauss: There is no uniform growth of qn+1− qn !!!

Recall that

Fs(x) =

∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 Ωs

(
T j(x)

)
.

The series ∑
n≥1

|xT (x) · · ·Tn(x)|α

may diverge (Aaronson, Sinai and students studied convergence in probability),
while ∑

n≥1

|xG(x) · · ·Gn(x)|α

always converges, since |xG(x) · · ·Gn(x)| ≤
1

Qn
.
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Intro. Convergence conditions Approximate equation Even fractions Questions

µ(x) = sup

{
µ ≥ 1 :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q1+µ
for infinitely many integers q ≥ 1

}
.

Theorem

Let Ω be a bounded function, differentiable at 1 and −1. The series
∞∑
j=1

|xT (x) · · ·T j−1(x)|α Ω
(
T j(x)

)

converges if
∞∑
n=1

Qn+1

Qα+1
n

<∞ (i.e. when µ(x) ≤ 1 + α).

Theorem

For any α > 0 and β ≥ 0, and any irrational number x ∈ (0, 1), the series

∞∑
j=0

|xT (x) · · ·T j−1(x)|α

|T j(x)|β

converges if

∞∑
n=1

Qβ+1
n+1

Qα+β+1
n

<∞
(

i.e. when µ(x) ≤ 1 + α
β+1

)
.
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Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

µ(x) = sup

{
µ ≥ 1 :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q1+µ
for infinitely many integers q ≥ 1

}
.

Theorem

Let Ω be a bounded function, differentiable at 1 and −1. The series

∞∑
j=1

|xT (x) · · ·T j−1(x)|α Ω
(
T j(x)

)
e
iπ
4

j−1∑
`=0

σ(T `x)

converges for any α > 0 and any irrational number x ∈ (0, 1).

Theorem

For any α > 0 and β ≥ 0, and any irrational number x ∈ (0, 1), the series

∞∑
j=0

|xT (x) · · ·T j−1(x)|α

|T j(x)|β

converges if
∞∑
n=1

Qβ+1
n+1

Qα+β+1
n

<∞
(

i.e. when µ(x) ≤ 1 + α
β+1

)
.

Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

µ(x) = sup

{
µ ≥ 1 :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q1+µ
for infinitely many integers q ≥ 1

}
.

Theorem

Let Ω be a bounded function, differentiable at 1 and −1. The series

∞∑
j=1

|xT (x) · · ·T j−1(x)|α Ω
(
T j(x)

)
e
iπ
4

j−1∑
`=0

σ(T `x)

converges for any α > 0 and any irrational number x ∈ (0, 1).

Theorem

For any α > 0 and β ≥ 0, and any irrational number x ∈ (0, 1), the series

∞∑
j=0

|xT (x) · · ·T j−1(x)|α

|T j(x)|β
e
iπ
4

j−1∑
`=0

σ(T `x)

converges if
∞∑
n=1

Qβn+1

Qα+βn

<∞
(

i.e. when µ(x) ≤ 1 + α
β

)
.
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Now, we put things together. Fix s ∈ ( 1
2
, 1):

• Fs(x, t) is convergent when

∞∑
k=0

(Qk+1)
1−s
2

(Qk)
s
2

<∞, i.e. when µ(x) ≤ s
1−s .

• We proved that Fs(x) =
∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 Ωs

(
T j(x)

)
.

holds if
∞∑
j=0

|xT (x) · · ·T j−1(x)|s−
1
2

|T j(x)|
1−s
2

<∞, i.e. when µ(x) ≤ 1 +
s− 1

2

1+ 1−s
2

= 2+s
3−s .

Problem:
2 + s

3− s
<

s

1− s
, so we are not optimal...

Solution: Only a technical detail in the proof forces us to ensure absolute

convergence of the sum
∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 . If we could

replace it with the simple convergence, then we would be optimal.

Stéphane Seuret Hardy-Littlewood series



Intro. Convergence conditions Approximate equation Even fractions Questions

Now, we put things together. Fix s ∈ ( 1
2
, 1):

• Fs(x, t) is convergent when
∞∑
k=0

(Qk+1)
1−s
2

(Qk)
s
2

<∞, i.e. when µ(x) ≤ s
1−s .

• We proved that Fs(x) =
∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 Ωs

(
T j(x)

)
.

holds if
∞∑
j=0

|xT (x) · · ·T j−1(x)|s−
1
2

|T j(x)|
1−s
2

<∞, i.e. when µ(x) ≤ 1 +
s− 1

2

1+ 1−s
2

= 2+s
3−s .

Problem:
2 + s

3− s
<

s

1− s
, so we are not optimal...

Solution: Only a technical detail in the proof forces us to ensure absolute

convergence of the sum
∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|s−
1
2 . If we could

replace it with the simple convergence, then we would be optimal.
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Theorem

The same properties (and the same convergence problem) hold for F1.

Let’s come back to R2:

R2(x) =

∞∑
k=1

sin(πk2x)

k2
= Im

 ∞∑
j=0

e
iπ
4

j−1∑
`=0

σ(T `x)

|xT (x) · · ·T j−1(x)|
3
2 Ω2

(
T j(x)

) ,

where Ω2 is differentiable (except at 0).

The use of T instead of G explains why the regularity depends on the
approximation rate by rationals p/q with p, q both odd.
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5. Questions

• Find some courage to finish the theorem...

• Use the modular expression to completely characterize the multifractal
properties of Rs, for s > 1.

• Distinguish, for Rs with 1/2 < s ≤ 1, the different local behaviors according to
the Diophantine exponent.

• Understand the approximation rate for the even convergents.

• Apply the same techniques to other functions.

• ...
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