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I Isodiametric problem in Rn asks for convex domains C ⊂ Rn

of diameter |C| = 1 that have maximum volume.

I (Bieberbach, 1915) proved that for any compact domain Ω ⊂ Rn

Volume(Ω) ≤ Volume(Ball of diameter 1)

(
|Ω|
2

)n
and that equality holds if and only if Ω is a ball.

I Therefore, the ball B ⊂ Rn of diameter one is the unique solution

of classical isodiametric problem in Rn.

I This is “isodiametric problem with respect to Lebesgue measure”.

How about replacing Lebesgue measure by Hausdorff measure

restricted to a self-similar set with OSC ?





I For a self-similar set E ⊂ Rn with OSC, it is known that

sup

{
Hs(X ∩ E)

|X|s
: |X| > 0

}
= 1.

I Isodiametric Problem on E then asks for compact convex domain

Ω ⊂ Rn with

Hs(Ω ∩ E)

|Ω|s
= 1.

I We call such a domain Ω an extremal set.

AIM to find extremal sets Ω for specific E and to study structure of Ω.

1. “Shape” of Ω

2. “Relative location” of Ω in E

3. Diameter |Ω| of Ω



I When Hausdorff dimension s of E is smaller than or equal to 1, there

are many examples of E for which an extremal set Ω is found.

· · · · · · · · ·

I When Hausdorff dimension s of E is strictly greater than 1,

every known example of E s.t. an extremal set Ω has been found

satisfies the following 2 properties:

(1) s ∈ Z;

(2) Hs|E and Lebesgue measure on E differ by a constant.

I We will consider concrete self-similar sets E of dimension s in

(1,∞) \ Z and try to find extremal sets Ω.

I Current Talk is about a family of self-similar fractals E on R2. We

can determine the shape and location of extremal sets Ω.



I Let Fλ = Eλ × R for 0 < λ < 1
2 , where Eλ denotes the middle

(1− 2λ) Cantor set.

I By Marstrand’s formula the set Fλ has Hausdorff dimension

s = 1− ln 2
lnλ ∈ (1, 2).

I Observations:

1. Hs(X ∩ Fλ) ≤ |X|s for any compact set X.

2. For 0 < λ < 1
2 , there is an extremal set Ω for IP on Fλ.

Theorem

I If λ ≤ 1
5 , Ω is a copy of some extremal set Ωλ with [0, 1] ⊂ proj1(Ωλ)

such that M◦ S (Ωλ) ∩ Fλ = Disk ∩ Fλ.

I Hs(X ∩ Fλ) = Hs(Eλ × [0, 1])Hs−1×H1(X) for compact X ⊂ R2.









Theorem

If λ ≤ 1
5 diameter tλ of Ωλ (> 2√

3
) is determined by

2

∫ λ

0

tdFλ(x)√
t2 − (1− 2x)2

=
sf(λ, t)

t
(1)

where Dt is a disk of diameter t ≥ 2√
3

centered on the line x = 1
2 ,

Fλ(x) = Hs−1(Eλ ∩ [0, x]), f(λ, t) = Hs−1 ×H1(Dt ∩ Fλ) =

4

∫ λ

0

√
t2

4
−
(

1

2
− x
)2

dFλ(x) = 2

∫ λ

0

√
t2 − (1− 2x)2dFλ(x)

and

ϕt(λ, t) =
ft(λ, t)

ts
− sf(λ, t)

ts+1
= t−s

[
2

∫ λ

0

tdFλ(x)√
t2 − (1− 2x)2

− sf(λ, t)

t

]




lower bound : fL(t, λ, n) = 4

2n
∑
x∈An

√
t2

4 −
(
1
2 − x

)2
upper bound : fU (t, λ, n) = 4

2n
∑
x∈An

√
t2

4 −
(
1
2 − x− λn

)2
Key fact: |fU − fL| ≤ 3λn. Considering the case n = 4, we have

Value of Upper Bound Lower Bound Interval containing

λ of ϕ(λ, tλ) of ϕ(λ, tλ) Hs(Eλ × [0, 1])

1
5 0.702626 0.701483 (1.423232, 1.425551)

1
6 0.706784 0.706297 (1.414859, 1.415835)

1
7 0.711554 0.711314 (1.405375, 1.405849)

1
8 0.716226 0.716096 (1.396207, 1.396461)

1
9 0.720599 0.720522 (1.387734, 1.387825)

1
10 0.724629 0.724581 (1.3800165, 1.38010795)



Thank you !
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