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Backgrounds

Poincaré Recurrence Theorem
Let (X,B, µ, T ) be a measure-preserving dynamical system
(probability space) and B ⊂ X with positive measure. Then

µ{x ∈ B : Tnx ∈ B infinitely often (i.o.)} = µ(B).

Birkhoff ergodic theorem
Assume that µ is ergodic, then

µ{x ∈ X : Tnx ∈ B i.o.} = 1.

dynamical Borel-Cantelli Lemma or shrinking target problem
Let {Bn}n≥1 be a sequence of measurable sets with µ(Bn)
decreasing to 0 as n→∞. Consider the metric properties of the
following set

{x ∈ X : Tnx ∈ Bn i.o.}
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well-approximable set
Let d be a metric on X consistent with the probability space
(X,B, µ). Given a sequence of balls B(y0, rn) with center y0 ∈ X
and shrinking radius {rn}, the set

F (y0, {rn}) := {x ∈ X : d(Tnx, y0) < rn i.o.}

is called the well-approximable set.

inhomogeneous Diophantine approximation
Let Sα : x 7→ x+ α be the irrational rotation map on the circle with
α /∈ Q. The classic inhomogeneous Diophantine approximation can
be written as {

α ∈ Qc : |Snα0− y0| < rn, i.o. n ∈ N
}
.
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beta-transformations

β > 1

β-transformation Tβ : [0, 1]→ [0, 1]

Tβ(x) = βx− bβxc,

where bβxc denotes the integer part of βx.

Example : β = 1+
√
5
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the orbit of 1 under Tβ is crucial (we will see later)
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Main problem

well-approximable set
Fix a point x0 ∈ [0, 1] and a given sequence of integers {`n}n≥1.

E
(
{`n}n≥1, x0

)
=
{
β > 1 : |Tnβ 1− x0| < β−`n , i.o.

}
Question :

dimHE
(
{`n}n≥1, x0

)
=?

(Persson and Schmeling, 2008)
When x0 = 0 and `n = γn(γ > 0), then

dimH E({γn}n≥1, 0) =
1

1 + γ
.
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Main result

Theorem

Let x0 ∈ [0, 1] and let {`n}n≥1 be a sequence of integers such that
`n →∞ as n→∞. Then

dimH E
(
{`n}n≥1, x0

)
=

1

1 + α
, where α = lim inf

n→∞

`n
n
.
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β-transformation and β-expansion
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Recall beta-transformations

β > 1

β-transformation Tβ : [0, 1]→ [0, 1]

Tβ(x) = βx− bβxc,

where bβxc denotes the integer part of βx.

Example : β = 1+
√
5
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Invariant measure

(Rényi 1957)
When β is not an integer, there exists a unique invariant measure µβ
which is equivalent to the Lebesgue measure.

1− 1

β
≤ dµβ

dL
(x) ≤ 1

1− 1
β

Equivalent invariant measure µβ (Parry 1960 and Gel’fond 1959)

dµβ
dL

(x) =
1

F (β)

∑
n≥0

x<Tn
β

(1)

1

βn

where F (β) =
∫ 1

0

∑
n≥0x<Tnβ (1) 1/βndx is a normalizing factor.
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β-expansion

digit set

A =

{
{0, 1, . . . , β − 1} when β is an integer

{0, 1, . . . , bβc} otherwise.

digit function

ε1(·, β) : [0, 1]→ A as x 7→ bβxc

εn(x, β) := ε1(Tn−1β x, β)

β-expansion (Rényi, 1957)

x =
ε1(x, β)

β
+
ε2(x, β)

β2
+ · · ·+ εn(x, β)

βn
+ · · ·

notation :

ε(x, β) = (ε1(x, β), ε2(x, β), . . . , εn(x, β), . . . )
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admissible sequence

admissible sequence/word
Σβ = {ω ∈ AN : ∃ x ∈ [0, 1) such that ε(x, β) = ω}

Σnβ = {ω ∈ An : ∃ x ∈ [0, 1) such that εi(x, β) = ωi for all i = 1, · · · , n}

β is an integer

Σβ = AN (except countable points)

Example : β0 =
√
5+1
2

Σβ0 = {ω ∈ {0, 1}N : the word 11 dosen’t appear in ω}

number of admissible words of length n

βn ≤ ]Σnβ ≤
βn+1

β − 1
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admissible sequence

the infinite expansion of the number 1

ε∗(1, β) =



ε(1, β) if there are infinite many

εn(1, β) 6= 0 in ε(1, β)(
ε1(1, β), · · · , (εn(1, β)− 1)

)∞
otherwise, where εn(1, β) is

the last non-zero element

in ε(1, β).

Theorem (Parry, 1960)

Let β > 1 be a real number and ε∗(1, β) the infinite expansion of the
number 1. Then ω ∈ Σβ if and only if

σk(ω) ≺ ε∗(1, β) for all k ≥ 0,

where ≺ means the lexicographical order.
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self-admissible sequence

Corollary (Parry, 1960)

w is the β-expansion of 1 for some β ⇐⇒ σk(w) � w for all k ≥ 0

self-admissible sequence

σk(w) � w for all k ≥ 0
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distribution of full cylinders

cylinder of order n ((ε1, ε2, · · · , εn) ∈ Σnβ)

In(ε1, ε2, · · · , εn) = {x ∈ [0, 1) : εk(x) = εk, 1 ≤ k ≤ n}
full cylinder ∣∣In(w1, · · · , wn)

∣∣ = β−n

Theorem

Every n+ 1 consecutive cylinders of order n contains a full cylinder.

The quantities n+ 1 can be improved, for example, if Sβ satisfies
the specification property, then n+ 1 can be optimally improved to a
constant just depends on β and independent of n. But for the other
β’s, we still do not the optimal estimate for this quantity.

Corollary

Let β > 1. For any y ∈ [0, 1] and an integer ` ∈ N, the ball B(y, β−`) can
be covered by at most 4(`+ 1) cylinders of order ` in the β-expansion.
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cylinders in parameter space

Recall :
a word w = (ε1, · · · , εn) is called self-admissible if σiw � w for all
1 ≤ i < n, that is,

σi(ε1, · · · , εn) � ε1, · · · , εn.

Definition

Let (ε1, · · · , εn) be self-admissible. A cylinder in the parameter space is
defined as

IPn (ε1, · · · , εn) =
{
β > 1 : ε1(1, β) = ε1, · · · , εn(1, β) = εn

}
,

i.e., the collection of β for which the β-expansion of 1 begins with
ε1, · · · , εn.
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cylinders in parameter space

(Schmeling, 1997)
The cylinder IPn (ε1, · · · , εn) is a half-open interval [β0, β1). The left
endpoint β0 is given as the only solution in (1,∞) to the equation

1 =
ε1
β

+ · · ·+ εn
βn
.

The right endpoint β1 is given as the limit of the solutions
{βN}N≥1 in (1,∞) to the equations

1 =
ε1
β

+ · · ·+ εn
βn

+
εn+1

βn+1
+ · · ·+ εN

βN
,

where (ε1, . . . , εn, εn+1, . . . , εN ) is the maximal self-admissible word
beginning with ε1, · · · , εn in the lexicographical order. Moreover,∣∣IPn (ε1, . . . , εn)

∣∣ ≤ β−n1 .

Remark : If the left endpoint of IPn (ε1, · · · , εn) is 1, then the

cylinder will be an open interval. For example, IP2 (1, 0) = (1, 1+
√
5

2 ).
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maximal self-admissible sequence

Definition

Let w = (ε1, · · · , εn) be a word of length n. The recurrence time τ(w) of
w is defined as

τ(w) := inf
{
k ≥ 1 : σk(ε1, · · · , εn) = ε1, · · · , εn−k

}
.

If such an integer k does not exist, then τ(w) is defined to be n and w is
said to be of full recurrence time.

Theorem

Then the periodic sequence

(ε1, · · · , εk)∞

is the maximal self-admissible sequence beginning with ε1, · · · , εn.
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lengths of cylinders in parameter space

Theorem

Let w = (ε1, · · · , εn) be self-admissible with τ(w) = k. Let β0 and β1 be
the left and right endpoints of IPn (ε1, · · · , εn). Then we have

∣∣IPn (ε1, · · · , εn)
∣∣ ≥

 Cβ−n1 , when k=n ;

C

(
εt+1

βn+1
1

+ · · ·+ εk+1

β
(`+1)k
1

)
, otherwise.

where C := (β0 − 1)2 is a constant depending on β0 ; the integers t and `
are given as `k < n ≤ (`+ 1)k and t = n− `k.

regular cylinder
When (ε1, · · · , εn) is of full recurrence time, the length

Cβ−n1 ≤ |IPn (ε1, · · · , εn)| ≤ β−n1 ,

in this case, IPn (ε1, · · · , εn) is called regular cylinder.
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distribution of regular cylinders in parameter space

Proposition

Let w1, w2 be two self-admissible words of length n. Assume that
w2 ≺ w1 and w2 is next to w1 in the lexicographic order. If τ(w1) < n,
then

τ(w2) > τ(w1).

Denote by CPn the collection of cylinders of order n in parameter
space.

Corollary

Among any n consecutive cylinders in CPn , there is at least one with full
recurrence time, hence with regular length.

This corollary was established for the first time by Persson and
Schmeling (2008).
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Recall main result

Theorem

Let x0 ∈ [0, 1] and let {`n}n≥1 be a sequence of integers such that
`n →∞ as n→∞. Then

dimH E
(
{`n}n≥1, x0

)
=

1

1 + α
, where α = lim inf

n→∞

`n
n
.

The generality of {`n}n≥1 arises no extra difficulty compared with
special {`n}n≥1.
The difficulty comes from that x0 6= 0 has no uniform β-expansion
for different β.
When x0 6= 1, the set E({`}n≥1, x0) can be regarded as a type of
shrinking target problem. While x0 = 1, it becomes a type of
recurrence properties.
The notion of the recurrence time of a word in symbolic space is
introduced to characterize the lengths and the distribution of
cylinders in the parameter space {β ∈ R : β > 1}.
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Thanks for your attention !
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