Connectedness of Self-affine Sets Associated with 3-digit Sets

K. S. Leung¹ J. J. Luo²

The Hong Kong Institute of Education¹

Shantou University²

International Conference on Advances on Fractals and Related Topics, December 10-14, 2012, Organized by Dept of Math, CUHK

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Abstract

Let $A \in M_2(\mathbb{Z})$ be expanding (all its eigenvalues have modulii >1) with characteristic polynomial $f(x) = x^2 + px \pm 3$. Let

 $D = \{0, v, kAv + lv\} \subset \mathbb{Z}^2$ be a 3-digit set where $v \in \mathbb{Z}^2 \setminus \{0\}$ and $\{v, Av\}$ is linearly independent. It is well-known that there exists a unique

compact set
$$T$$
 satisfying $T = A^{-1}(T + D) = \left\{\sum_{i=1}^{\infty} A^{-i} v_i : v_i \in D\right\}$

We study the connectedness of T and give a complete characterization of T for the two cases (i) k = 0 and (ii) l = 0, in terms of l and k respectively.

Introduction

- Let A ∈ M₂(Z) be expanding (all its eigenvalues have modulii >1) with char. poly. f(x) = x² + px + q.
- Let $\mathscr{D} = \{d_1, d_2, \dots, d_{|q|}\} \subset \mathbb{Z}^2$. \mathscr{D} is called a |q|-digit set.
- Let $D = \{0, 1, 2, ..., |q| 1\}$ and $\mathscr{D} = Dv$, where $v \in \mathbb{Z}^2 \setminus \{0\}$, \mathscr{D} is called a *consecutive collinear (CC) digit set*.
- $\exists ! \text{ compact set } T = T(A, \mathscr{D}) \text{ satisfying}$ $T = A^{-1}(T + \mathscr{D}) = \left\{ \sum_{i=1}^{\infty} A^{-i} v_i : v_i \in \mathscr{D} \right\}.$ T is said to be *self-affine*.

- If $intT \neq \emptyset$, then T is called a *self-affine tile*.
- The above definitions and results can be generalized to \mathbb{R}^n .

Some known results

- Any T with a 2-digit set is always pathewise connected (Hacon et al).
- Height Reducing Property of f(x) (monic and expanding): $\exists g(x)$ (monic) s.t. $h(x) = g(x)f(x) = x^m + c_{m-1}x^{m-1} + \dots + c_1x + c_0$ with $|c_0| = |f(0)|$ and $|c_i| < |f(0)|(i \neq 0)$.
- Any planar *T* with a CC digit set is connected (Kirat and Lau). They conjectured that *T* (in higher dim.) with a CC digit set is connected. Akiyama and Gjini solved it up to deg. 4.
- Laarakker and Curry considered the connectedness of *T* generated by *A* with rational eigenvalues and a *centered canonical* digit set.
- Deng and Lau, and Kirat studied a class of planar self-affine tiles generated by *product digit set*.
- Applying results of Bandt and Wang, Leung and Lau proved that: T with a CC digit set is *disklike* (homeo. to the closed unit disk) iff 2|p| ≤ |q+2|. Akiyama and Loridant re-established this result by parametrizing ∂T.

Our problem

- Let $A \in M_2(\mathbb{Z})$ be expanding with char. poly. $f(x) = x^2 + px \pm 3$.
- Let $\mathscr{D} = \{0, v, kAv + lv\} \subset \mathbb{Z}^2$ be a 3-digit set where $v \in \mathbb{Z}^2 \setminus \{0\}$ and $\{v, Av\}$ is lin. indep.

•
$$\exists ! \text{ compact set } T \text{ satisfying } T = A^{-1}(T + \mathscr{D}) = \left\{ \sum_{i=1}^{\infty} A^{-i} v_i : v_i \in \mathscr{D} \right\}$$

- Find conditions (in terms of k, l and f(x)) for T to be connected.
- We solved the problem for the two cases: (i) $k = 0(l \neq 0)$ and (ii) $l = 0(k \neq 0)$.
- If $f(x) = x^2 x 3$ and $\mathscr{D} = \{0, 1, b\}v$, then T is connected if $8/5 \le b \le 8/3$ and discon. if $b < (\sqrt{13} 1)/2$ or $b > (\sqrt{13} + 5)/2$ (Tan).
- 10 eligible char. poly.: $x^2 \pm 3$; $x^2 \pm x + 3$; $x^2 \pm 2x + 3$; $x^2 \pm 3x + 3$; $x^2 \pm x - 3$ (Bandt and Gelbrich)

Main result 1

Theorem

If $\mathscr{D} = \{0, 1, m\}v$ where $2 \le m \in \mathbb{Z}$, then (i) when m = 2, T is always a connected tile; (ii) when $m \ge 4, T$ is always a disconnected set; (iii) when m = 3, T is connected if $f(x) = x^2 \pm 2x + 3$ or $x^2 \pm 3x + 3$ or $x^2 \pm x - 3$ and discon. if $f(x) = x^2 \pm 3$ or $x^2 \pm x + 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

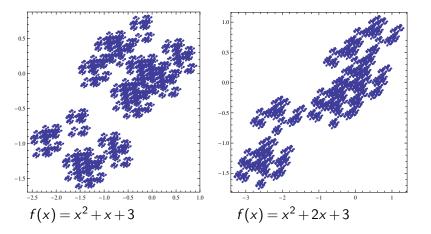
Main result 2

Theorem

If $\mathscr{D} = \{0, 1, b\}v$ where b > 1, then Case 1: $f(x) = x^2 \pm x + 3$ T is discon. if $b \ge 67/25$ or $b \le 67/42$; Case 2: $f(x) = x^2 \pm 2x + 3$ T is discon. if $b \ge 37/10$ or $b \le 37/27$; Case 3: $f(x) = x^2 \pm 3x + 3$ T is discon. if $b \ge 33/10$ or $b \le 33/23$; Case 4: $f(x) = x^2 \pm x - 3$ T is discon. if b > 19/5 or b < 19/14.

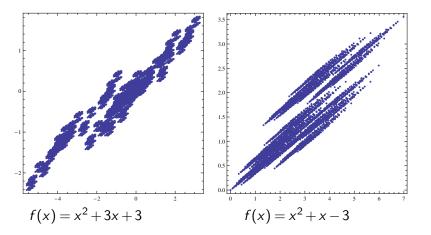
We conjecture that ∃c ≥ 2 (dependent on f(x)) s.t. T is connected iff c/(c-1) < b ≤ c.

Some figures ($p \neq 0, m = 4$)



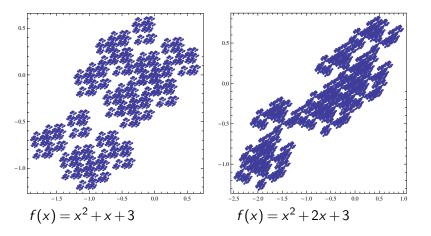
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some figures ($p \neq 0, m = 4$)



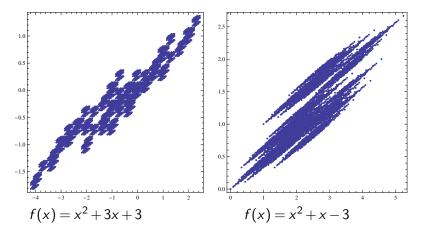
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで、

Some figures ($p \neq 0, m = 3$)



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで、

Some figures ($p \neq 0, m = 3$)



▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q (2)

Results on |detA| > 3

Let $f(x) = x^2 + px \pm q, p > 0, q \ge 2$ and $\mathscr{D} = Dv$ be a collinear q-digit set s.t. $D = \{0 = d_1, d_2, \dots, d_q\} \subset \mathbb{Z}$ in incr. order with $d_{i+1} - d_i = 1$ or 2 for all i, $d_{j+1} - d_j = 1$ for at least one j and $d_{k+1} - d_k = 2$ for at least one k.

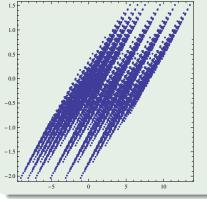
Theorem

(i) Let $f(x) = x^2 + px + q$ with 2p > q + 2 and $\{0, \pm 1, \pm 2, \dots, \pm q\} \subset \triangle D$. Then T is connected if $2p - 2 \in \triangle D$ and $2q - p \in \triangle D$. (ii) Let $f(x) = x^2 + px - q$ with 2p > q - 2 and $\{0, \pm 1, \pm 2, \dots, \pm (q - 1)\} \subset \triangle D$. Then T is connected if $2p + 1 \in \triangle D$ and $2q - p - 2 \in \triangle D$.

Example

Let A be the companion matrix of
$$f(x) = x^2 + 5x + 6$$
, $v = \begin{bmatrix} 0\\1 \end{bmatrix}$,

 $D = \{0, 1, 2, 4, 6, 8\}$. *T* is connected.



Example

Let A be the companion matrix of
$$f(x) = x^2 + 4x - 6, v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
,
 $D = \{0, 1, 3, 5, 7, 9\}$. T is connected.

- -

(ロ)、(型)、(E)、(E)、 E) の(()

Tool #1

- $\mathscr{E} := \{ (d_i, d_j) : (T + d_i) \cap (T + d_j) \neq \emptyset, d_i, d_j \in \mathscr{D} \}$, the set of edges for \mathscr{D} .
- d_i and d_j are said to be \mathscr{E} -connected if \exists a finite sequence $\{d_{j_1}, ..., d_{j_k}\} \subset \mathscr{D}$ s.t. $d_i = d_{j_i}, d_j = d_{j_k}$ and $(d_{j_l}, d_{j_{l+1}}) \in \mathscr{E}, 1 \leq l \leq k-1\}.$
- $(d_i, d_j) \in \mathscr{E}$ iff $d_i d_j = \sum_{k=1}^{\infty} A^{-i} v_i$, where $v_i \in \bigtriangleup \mathscr{D} := \mathscr{D} \mathscr{D}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• T is connected iff any two $d_i, d_j \in \mathcal{D}$ are \mathscr{E} -connected.

Tool #2

- Define α_i, β_i by $A^{-i}v = \alpha_i v + \beta_i A v, i = 1, 2, ...,$ where $\{v, Av\}$ is lin. indep.
- $q\alpha_{i+2} + p\alpha_{i+1} + \alpha_i = 0$ and $q\beta_{i+2} + p\beta_{i+1} + \beta_i = 0$, $\alpha_1 = -p/q, \alpha_2 = (p^2 - q)/q^2; \beta_1 = -1/q, \beta_2 = p/q^2$
- α_i, β_i can also be expressed in terms of the roots of $qx^2 + px + 1 = 0$. • $\tilde{\alpha} := \sum_{i=1}^{\infty} |\alpha_i|, \tilde{\beta} := \sum_{i=1}^{\infty} |\beta_i|$. • $\tilde{\alpha} \le \sum_{i=1}^{n-1} |\alpha_i| + \frac{2q^{-(n-1)/2}}{(1-q^{-1/2})(4q-p^2)^{1/2}}$, $\tilde{\beta} \le \sum_{i=1}^{n-1} |\beta_i| + \frac{2q^{-n/2}}{(1-q^{-1/2})(4q-p^2)^{1/2}}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Tool #3

- $L := \{\gamma v + \delta A v : \gamma, \delta \in \mathbb{Z}\}$ the *lattice* generated by $\{v, Av\}$.
- For $l \in L \setminus \{0\}$, T + l is called a neighbour of T if $T \cap (T + l) \neq \emptyset$.
- Let $\mathscr{D} = Dv$ be a collinear digit set. T + I is a nb. of T iff $I = \sum_{i=1}^{\infty} b_i A^{-i} v \in T T$, where $b_i \in \triangle D$.
- If T + l is a nb. of T, where $l = \gamma v + \delta A v = \sum_{i=1}^{\infty} b_i A^{-i} v$, then $|\gamma| \le \max_i |b_i| \tilde{\alpha}, |\delta| \le \max_i |b_i| \tilde{\beta}$. Moreover, T + l' is also a nb. of T, where $l' = Al - b_1 v = \gamma' v + \delta' A v = -(q\delta + b_1)v + (\gamma - p\delta)A v$.
- Let $T_1 = T(A, \mathcal{D})$ and $T_2 = T(-A, \mathcal{D})$. Then $T_1 + I$ is a nb. of T_1 iff $T_2 + I$ is a nb. of T_2 .
- If the char. poly. of A is x² + px + q and that of B is x² px + q. Then T(A, 𝒴) is connected iff T(B, 𝒴) is connected.

Proof of main result 1 (p = 0)

When p = 0

- Consider the case $f(x) = x^2 q(q \ge 2)$ only.
- $f(A) = 0 \Rightarrow A^{-2} = q^{-1}I \Rightarrow A^{-2}v = q^{-1}v$
- Let $y = \sum_{i=1}^{\infty} a_i A^{-i} v \in T$, where $a_i \in D = \{0 = d_1, d_2, \dots, d_q\} \subset \mathbb{Z}$. Then $y = (\sum_{i=1}^{\infty} a_{2i-1} q^{-i}) A v + (\sum_{i=1}^{\infty} a_{2i} q^{-i}) v$.
- T connected $\Rightarrow \{\sum_{i=1}^{\infty} a_{2i-1}q^{-i} : a_{2i-1} \in D\}$ and $\{\sum_{i=1}^{\infty} a_{2i}q^{-i} : a_{2i} \in D\}$ are intervals $\Rightarrow D = \{0, 1, 2, ..., q-1\}a$ for some a > 0.

• $D = \{0, 1, 2, \dots, q-1\}a \Rightarrow T$ connected (HRP)

Proof of main result 1 ($p \neq 0, m \geq 4$)

- Consider p > 0 only.
- Prove that T ∩ (T + mv) = Ø and (T + v) ∩ (T + mv) = Ø. Hence T is disconnected.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proof of main result 1 ($p \neq 0, m = 3$)

- Consider p > 0 only.
- Prove that $T \cap (T+2v) = \emptyset$ and $(T+v) \cap (T+3v) = \emptyset$ for $f(x) = x^2 \pm 2x + 3$ or $x^2 \pm 3x + 3$ or $x^2 \pm x 3$. Hence T is disconnected.
- For the other cases, show that $T \cap (T + v) \neq \emptyset$ and $(T + v) \cap (T + 3v) \neq \emptyset$ (equivalently, $T \cap (T + 2v) \neq \emptyset$).
- Example: $f(x) = x^2 x 3$. $0 = f(A) = A^2 - A - 3I \Rightarrow v = -2A^{-1}v + 3A^{-2}v \in T - T \Rightarrow$ $T \cap (T + v) \neq \emptyset$. $0 = f(A)(2A - I) = (2A - 3I)(A^2 - I) - 3A \Rightarrow 2A - 3I = 3\sum_{i=1}^{\infty} A^{-2i-1} \Rightarrow$ $2v = 3A^{-1}v + 3\sum_{i=1}^{\infty} A^{-2i}v \in T - T \Rightarrow (T + v) \cap (T + 3v) \neq \emptyset$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof of main result 2

- Consider $b \ge 2$ only. If 1 < b < 2, then b/(b-1) > 2. Replace \mathscr{D} by $\mathscr{D}' = \{0, 1, b/(b-1)\}v$.
- Example: $f(x) = x^2 + x + 3$
- *T* is connected $\Rightarrow (b-y)v = \sum_{i=1}^{\infty} b_i A^{-i}v$ holds for y = 0 or 1, where $b_i \in \triangle D = \{0, \pm 1, \pm (b-1), \pm b\}$ $\Rightarrow T + (b-y)v$ is a nb. of $T \Rightarrow T + A(b-y)v - b_1v$ is a nb. of $T \Rightarrow T + A^2(b-y)v - b_1Av - b_2v$ is a nb. $\Rightarrow T - (3(b-y) + b_2)v - (b-y+b_1)Av$ is a nb. $\Rightarrow |3(b-y) + b_2| < \tilde{\alpha}b$ and $|3(b-y) + b_2| \ge 3(b-1) - b = 2b - 3 \Rightarrow b < 67/25$. On the other hand, $b/(b-1) < 67/25 \Rightarrow b > 67/42$.

Proof of results on |detA| > 3

• Find two expressions for v: $v = \sum_{i=1}^{\infty} b_i A^{-i} v$ (*) and $v = \sum_{i=1}^{\infty} b'_i A^{-i} v$ (**).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

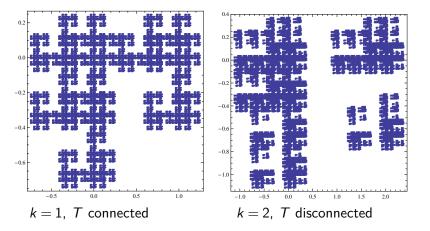
• Adding them to give an expression for 2v.

Non-collinear 3-digit sets

Theorem

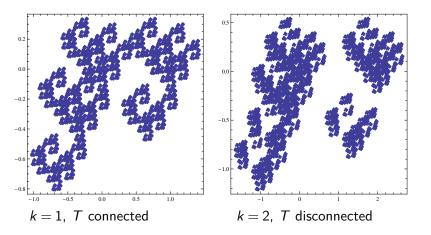
Let A be a 2×2 integral expanding matrix with |detA| = 3, and let $\mathscr{D} = \{0, v, kAv\}$ be a digit set where $k \in \mathbb{Z} \setminus \{0\}$ and $v \in \mathbb{R}^2$ s.t. $\{v, Av\}$ is linearly independent. Then $T(A, \mathscr{D})$ is connected iff $k = \pm 1$.

$$f(x) = x^2 + 3, v = (1,0)^t$$

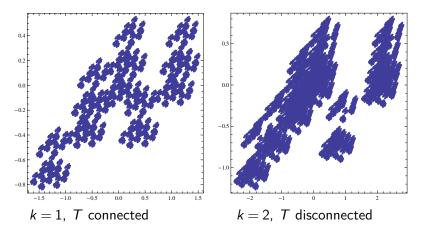


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$$f(x) = x^2 + x + 3, v = (1, 0)^t$$

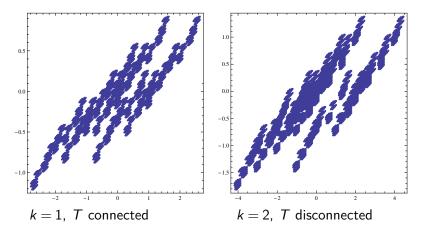


$$f(x) = x^2 + 2x + 3, v = (1,0)^t$$



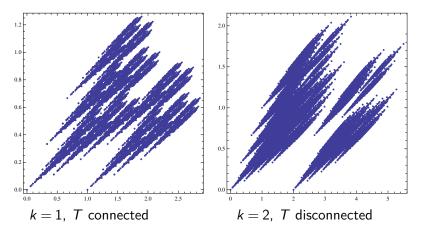
▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - の々で

$$f(x) = x^2 + 3x + 3, v = (1,0)^t$$



▲口▶▲圖▶▲臣▶▲臣▶ 臣 のなぐ

$$f(x) = x^2 + x - 3, v = (1, 0)^t$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Proof of Theorem (non-collinear 3-digit set)(i)

Proof.

$$f(x) = x^{2} + x + 3$$
(i) $k = 1$, i.e., $\mathscr{D} = \{0, v, Av\}$ and $\bigtriangleup \mathscr{D} = \{0, \pm v, \pm (Av - v), \pm Av\}$.

$$0 = f(A)(A - I) \Rightarrow v = \sum_{i=1}^{\infty} A^{-3i}(-2Av + 2v) =$$

$$\sum_{i=1}^{\infty} A^{-3i}(A^{-2}(-v) + A^{-3}(v - Av) + A^{-4}(Av)) \Rightarrow T \cap (T + v) \neq \emptyset$$
Moreover,
 $Av = \sum_{i=1}^{\infty} A^{-3i}(A^{-1}(-v) + A^{-2}(v - Av) + A^{-3}(Av)) \Rightarrow T \cap (T + Av) \neq \emptyset$.
Hence T is connected.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof of Theorem (non-collinear 3-digit set)(ii)

Proof.

(cont'd) (ii)
$$k = -1$$
, i.e., $\mathscr{D} = \{0, v, -Av\}$ and
 $\Delta \mathscr{D} = \{0, \pm v, \pm Av, \pm (Av + v)\}.$
 $0 = f(A) \Rightarrow I = (-A - 2I)(A^2 + I)^{-1}$
 $\Rightarrow v = -A^{-1}v - 2A^{-2}v + A^{-3}v + 2A^{-4}v - A^{-5}v - 2A^{-6}v + A^{-7}v + 2A^{-8}v - \dots = A^{-2}(-Av - v) + A^{-3}(-Av) + A^{-4}(Av + v) + A^{-5}(Av) + A^{-6}(-Av - v) + A^{-7}(-Av) + A^{-8}(Av + v) + A^{-9}(Av) + \dots \in T - T$
 $\Rightarrow T \cap (T + v) \neq \emptyset.$
Multiply the above by A ,
 $Av = A^{-1}(-Av - v) + A^{-2}(-Av) + A^{-3}(Av + v) + A^{-4}(Av) + A^{-5}(-Av - v) + A^{-6}(-Av) + A^{-7}(Av + v) + A^{-8}(Av) + \dots \in T - T$
 $\Rightarrow T \cap (T + Av) \neq \emptyset.$
Hence T is connected.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof of Theorem (non-collinear 3-digit set)(iii)

Proof.

 $\begin{array}{l} (\operatorname{cont'd}) \text{ (iii) } |k| > 1, \text{ i.e., } \mathscr{D} = \{0, v.kv\} \text{ and } \bigtriangleup \mathscr{D} = \{0, \pm v, \pm (k-1)v, kv\}. \\ A \text{ pt. in } \mathcal{T} - \mathcal{T} \text{ can be written as} \\ \mathcal{X} = \sum_{i=1}^{\infty} \mathcal{A}^{-i} (k_i \mathcal{A} v + l_i v), k_i \mathcal{A} v + l_i \in \bigtriangleup \mathscr{D}. \text{ Using } \mathcal{A}^{-i} v = \alpha_i v + \beta_i \mathcal{A} v, \mathcal{X} \\ \text{ can be rewritten as} \\ \mathcal{X} = (k_1 + \sum_{i=1}^{\infty} (k_{i+1} + l_i)\alpha_i) v + (\sum_{i=1}^{\infty} (k_{i+1} + l_i)\beta_i) \mathcal{A} v := \mathscr{L} v + \mathscr{K} \mathcal{A} v. \\ |l_i + k_{i+1}| \leq 1 + |k| \text{ and} \\ \widetilde{\beta} < 0.63 \Rightarrow |\mathscr{K}| < 0.63(1 + |k|) < |k| \Rightarrow \mathcal{T} \cap (\mathcal{T} + k\mathcal{A} v) = \emptyset \text{ and} \\ (\mathcal{T} + v) \cap (\mathcal{T} + k\mathcal{A} v) = \emptyset \Rightarrow \mathcal{T} \text{ diconnected.} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Further questions

- How about $\mathcal{D} = \{0, v, kAv + lv\}(k \neq 0, l \neq 0)?$
- How about \mathscr{D} with more than three elements?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

References

K.S. Leung and J.J. Luo, *Connectedness of planar self-affine sets associated with non-consecutive collinear digits*, J. Math. Anal. Appl. 395 (2012) 208-217. http://arxiv.org/pdf/1208.3759v1.pdf

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you