Fluctuations of recentered maxima of discrete Gaussian Free Fields on a class of recurrent graphs

Takashi Kumagai (Kyoto)

Joint work with O. Zeitouni (Minnesota and Weizmann)

http://www.kurims.kyoto-u.ac.jp/~kumagai/

11 December, 2012

Advances on fractals and related topics at CUHK

1 Introduction

Gaussian free field (GFF) in a d-dim box of size (2N+1) (D-bd cond) $V_N := ([-N,N] \cap \mathbb{Z})^d$, $\partial V_N = V_N \setminus V_{N-1}$ $\{w_n\}_n$: simple RW on V_N killed at $\tau_N := \min\{n \geq 0 : w_n \in \partial V_N\}$ $g_N(x,y) := E^x[\sum_{m=0}^{\tau_N} 1_{\{w_m=y\}}]/\mu_y \quad (\mu_y: \sharp \text{ of bonds that contains } y)$ $\{X_x^N\}_{x \in V_N}$: zero-mean GFF, i.e. each X_x^N is centered Gaussian, covariance g_N , $X_x^N = 0$ for $x \in \partial V_N$

Set
$$X_N^* := \max_{x \in V_N} X_x^N$$
.

(Q) Is
$$\{X_N^* - EX_N^*\}_{N \ge 1}$$
 tight?

$$E[X_N^*] \simeq \begin{cases} \sqrt{N} & \text{for } d = 1\\ \log N & \text{for } d = 2\\ (\log N)^{1/2} & \text{for } d \ge 3 \end{cases}$$

Fluctuations of X_N^* : $\sqrt{N} (\approx E[X_N^*])$ for d=1

O(1) for d=2 (long time open prob \Rightarrow Bramson-Zeitouni '12)

O(1) for $d \geq 3$ (use transience of SRW and Borell's ineq.)

* Borell's ineq.: $P(X_N^* - EX_N^* > \lambda) < 2\exp(-\frac{1}{2}\lambda^2/\sigma_N^2), \quad \sigma_N^2 = \sup_x E[(X_x^N)^2].$

So, (A) $\{X_N^* - EX_N^*\}_{N \ge 1}$ is tight iff $d \ge 2$.

Now

(Q) For a general graph, when is $\{X_N^* - EX_N^*\}_{N\geq 1}$ tight?

2 Framework

Weighted graphs

G = (V(G), E(G)): con. loc. fnt. graphs

$$\mu^G: V(G) \times V(G) \to \mathbb{R}_+ \text{ weight: } \mu_{xy} = \mu_{yx}, \ \mu_{xy}^G > 0 \Leftrightarrow \{x,y\} \in E(G)$$

For $B \subset G$ with $B \neq G$ and for $x \neq y \in V(G)$, not both in B, define resistance by

$$R_B(x,y)^{-1} := \inf\{\frac{1}{2} \sum_{w,z \in V(G)} (f(w) - f(z))^2 \mu_{wz}^G : f(x) = 1, f(y) = 0, f|_B = \text{constant}\}.$$

(Set
$$R_B(x,x) = 0$$
, $R_B(x,y) = 0$ if $x,y \in B$ and, for $x \in V(G) \setminus B$.)

$$\mu^G$$
: meas on G s.t. $\mu^G(A) = \sum_{x \in A} \mu_x^G$, where $\mu_x^G := \sum_{y \in V(G)} \mu_{xy}^G$.

 $\{w_m^G\}_{m\geq 0}$: corresp. (discrete time) Markov chain with D-bd on B, i.e.

$$P(w_{m+1}^G = y | w_m^G = x) = \mu_{xy}^G / \mu_x^G, \qquad \forall x, y \in V(G), \ x \notin B,$$

and w_m^G is killed upon hitting B.

GFF on weighted graphs

 $\{G^N\}_{N\geq 1}$: seq. of fnt con. graphs s.t. $|G^N|\geq 2$ and $\lim_{N\to\infty}|G^N|=\infty$. μ^{G^N} : weight, $B^N\subset G^N$ ($B^N\neq G^N$) boundary: assume $G^N\setminus B^N$ is con. $\{w_m^N\}_{m\geq 0}$: corresp. MC with D-bd cond. on B^N , $\tau^N:=\min\{m\geq 0: w_m^{G^N}\in B^N\}$, $g_N(x,y):=(\mu_y^N)^{-1}E_{G^N}^x[\sum_{m=0}^{\tau^N}1_{\{w_m^{G^N}=y\}}]$ for $x,y\in V(G^N)\setminus B^N$,

 $\{X_z^N\}_{z\in V(G^N)}$: GFF on G^N with D-bd on B^N , i.e.

zero-mean Gaussian field with covariance $g_N(\cdot,\cdot)$, $X_z^N \equiv 0$ for $z \in B^N$.

Lemma 2.1

$$E[(X_x^N - X_y^N)^2] = R_{B^N}(x, y).$$

Examples: 2-dimensional Sierpinski gasket graph and carpet graph

3 Main theorem

 $h: \mathbb{N} \to \mathbb{N}$: strict incr. with h(0) = 0 s.t. $0 < \exists \beta_1 \leq \exists \beta_2 < \infty$ and C > 0

$$C^{-1} \left(\frac{R}{r}\right)^{\beta_1} \le \frac{h(R)}{h(r)} \le C \left(\frac{R}{r}\right)^{\beta_2} \quad 0 < \forall r \le \forall R < \infty. \tag{1}$$

Assumption 3.1 $\exists \alpha > 0$ and $c_1, c_2, c_3 > 0$ s.t. the following hold $\forall N$ large:

- (i) $R_{B^N}(x,y) \le c_1 h(d_{G^N}(x,y)), \ \forall x,y \in G^N.$
- (ii) $\max_{x \in G^N} R_{B^N}(x, B^N) \ge c_2 \max_{x \in G^N} h(d_{G^N}(x, B^N)), \forall x \in G^N.$
- (iii) $\mathcal{N}_{G^N}(\delta d_{max}^N) \leq c_3 \delta^{-\alpha}$, $\forall \delta \in (0,1]$ where $d_{max}^N := \max_{x \in G^N} d_{G^N}(x,B^N)$ and $\mathcal{N}_{G^N}(\varepsilon)$: minimal \sharp of d_{G^N} -balls of radius ε needed to cover G^N .

 Furthermore, $d_{max}^N \to \infty$ as $N \to \infty$.

Let $X_N^* := \max_{z \in V(G^N)} X_z^N$, $\tilde{X}_N := X_N^* / \bar{\sigma}_N$, where $\bar{\sigma}_N = (\max_{z \in G^N} E[(X_z^N)^2])^{1/2}$.

[Note: $\bar{\sigma}_N^2 = \max_{x \in G^N} R_{B^N}(x, B^N)$.]

Theorem 3.2 Under Assumption 3.1, $\exists A, B, A' > 0$ and $\exists g : (0, \infty) \to (0, 1)$ s.t.

$$P(\tilde{X}_N < A) > B$$
, $P(\tilde{X}_N > c) \ge g(c) \quad \forall c > 0$, $E(\tilde{X}_N) \le A' \quad \forall N \text{ large.}$ (2)

In particular, $\{X_N^* - EX_N^*\}_{N \ge 1}$ is NOT tight (since they fluctuate with order $\bar{\sigma}_N$).

Normalized local time at B^N at cover time

 \bar{G}^N : shorting, i.e. making B^N to a point $\{b\}$. Modified weight function

$$\mu_{xy}^{\bar{G}^N} = \begin{cases} \mu_{xy}^{\bar{G}^N}, & x \in V(\bar{G}^N), \ y \in V(\bar{G}^N) \setminus \{b\}, \\ \sum_{z \in B^N} \mu_{xz}^{G^N}, & x \in V(\bar{G}^N) \setminus \{b\}, \ y = b. \end{cases}$$

 $\{\bar{w}_t^N\}_{t\geq 0}$: (non-killed) cont. time MC with jump rates $\mu^{\bar{G}^N}$ (holding time $\exp(1/\mu^{\bar{G}^N})$).

Define $L_t^{x,N} := \frac{1}{\mu_x^{\bar{G}^N}} \int_0^t \mathbf{1}_{\{\bar{w}_s^N = x\}} ds \quad \text{((weight normalized) local time at } x\text{)},$ $\tau_{\text{COV}}^N := \inf\{t > 0 : L_t^{x,N} > 0, \, \forall x \in \bar{G}^N\} \quad \text{(Cover time)}.$

 $L^N:=\sqrt{L^b_{ au^N_{ ext{COV}}}}$: the square-root of the normalized local time at B^N at cover time, " L^N should behave similarly to $|X_N^*|$."

Gener. Ray-Knight Isom. thm: $\{L_{\tau_t}^x + \frac{1}{2}X_x^2 : x \in G\} \stackrel{\text{law}}{=} \{\frac{1}{2}(X_x + \sqrt{2t})^2 : x \in G\}, \ \tau_t = \inf\{s : L_s^b > t\}.$

Proposition 3.3 Assumption 3.1 \Rightarrow Theorem 3.2 hold with $L^N/\bar{\sigma}_N$ replacing \tilde{X}_N .

4 Examples

2-dim Sierpinski gasket and carpet graphs: G

Detailed heat kernel estimates (Jones '96, Barlow-Bass '99):

$$p_k(x,y) \le c_1 k^{-d_f/d_w} \exp\left(-c_2 \left(\frac{d(x,y)^{d_w}}{k}\right)^{1/(d_w-1)}\right) \quad \forall x,y \in G, k > 0,$$

$$p_k(x,y) + p_{k+1}(x,y) \ge c_3 k^{-d_f/d_w} \exp\left(-c_4 \left(\frac{d(x,y)^{d_w}}{k}\right)^{1/(d_w-1)}\right) \quad \forall k > d(x,y).$$

Here d_f : volume growth, $d_w > 2$: walk dimension (note $d_w > d_f$).

$$\Rightarrow c_5 R^{d_f} \le \mu(B(x,R)) \le c_6 R^{d_f}, \quad \forall x \in G, R \ge 1,$$

$$R(x,y) \le c_7 d(x,y)^{d_w - d_f}, \quad R(x,B^c(x,R)) \ge c_8 R^{d_w - d_f}, \quad \forall x,y \in G, \ \forall R \ge 1.$$

 $\{G^N, B^N\}_{N\geq 0}$ G^N : N-level box containing 0, $B^N = L^N V_0$: L^{-1} contraction rate

 \Rightarrow Assumption 3.1 holds with $h(s) = s^{d_w - d_f}$, $\alpha = d_f$ so $\{X_N^* - EX_N^*\}_{N \ge 1}$ is NOT tight!

Homogeneous random Sierpinski carpet graph: G

Example of 2-dimensional homogeneous random Sierpinski carpet graph

 $I := \{1, \dots, \ell\}$. For each $k \in I$, $\{\psi_i^k\}_{i=1}^{K_k}$: family of L_k -similates that construct SC

For $\xi = (k_1, \dots, k_n, \dots) \in I^{\infty}$, $n \in \mathbb{N}$, write $\xi|_N := (k_1, \dots, k_N) \in I^N$, and let

$$V(G_{\xi|_{N}}^{N}) := \bigcup_{\substack{i_{j} \in \{1, \dots, K_{k_{j}}\},\\1 \leq i \leq N}} L_{k_{1}} \cdots L_{k_{N}} \psi_{i_{N}}^{k_{N}} \circ \dots \circ \psi_{i_{1}}^{k_{1}}(V_{0}), \quad G_{\xi} := \bigcup_{N=1}^{\infty} V(G_{\xi|_{N}}^{N}).$$

 $B_n := L_{k_1} \cdots L_{k_n}$ (space scale), $M_n := K_{k_1} \cdots K_{k_n}$ (mass scale), $T_n := R_n M_n$ (time scale)

$$d_f(n) := \frac{\log M_n}{\log B_n}, \qquad d_w(n) := \frac{\log T_n}{\log B_n}.$$

Let $V_d(x,r)$ be \sharp of vertices in B(x,r) w.r.t. graph distance. Then

$$c_1 r^{d_f(n)} \le V_d(x, r) \le c_2 r^{d_f(n)}$$
 if $B_n \le r < B_{n+1}, x \in G_{\xi}$.

Define $\tau:[1,\infty)\to[1,\infty)$ (time scale) and $h:[1,\infty)\to[1,\infty)$ (resistance scale) as

$$\tau(s) = s^{d_w(n)}, \ h(s) = s^{d_w(n) - d_f(n)} \quad \text{if} \quad T_n \le s < T_{n+1}, \ \tau(0) = h(0) = 0.$$

Detailed heat kernel estimates (Cont. version Hambly-Kusuoka-K-Zhou '00):

$$p_k(x,y) \le \frac{c_3}{V_d(x,\tau^{-1}(k))} \exp(-c_4(\frac{\tau(d(x,y))}{k})^{1/(\beta_1-1)}),$$

$$p_k(x,y) + p_{k+1}(x,y) \ge \frac{c_5}{V_d(x,\tau^{-1}(k))} \quad \text{for } k \ge c_6\tau(d(x,y))$$

for $k \in \mathbb{N}$, $x, y \in G_{\xi}$. If the following limits exist and the inequality holds

$$d_f := \lim_{n \to \infty} d_f(n), \quad d_w := \lim_{n \to \infty} d_w(n), \quad d_w > d_f, \tag{3}$$

then (by Barlow-Coulhon-K '05), we have

$$c_7 \frac{\tau(d(x,y))}{V_d(x,d(x,y))} \le R(x,y) \le c_8 \frac{\tau(d(x,y))}{V_d(x,d(x,y))}, \quad \forall x,y \in G_{\xi}.$$

 $\{G_{\xi|_N}^N, B^{\xi|_N}\}_{N\geq 0}$ where $B^{\xi|_N} = B_N V_0$

 \Rightarrow Assumption 3.1 holds so $\{X_N^* - EX_N^*\}_{N \ge 1}$ is NOT tight!

<<Checking (3): introduce randomness>> $(I^{\mathbb{N}}, \mathcal{F}, \mathbb{P})$: Borel prob. space \mathbb{P} is stationary and ergodic (w.r.t. the shift)

 \Rightarrow by the sub-additive ergodic thm, \exists the first two limits in (3) \mathbb{P} -a.e. ξ . Further, if $d_w^i > d_f^i$ for all $i \in I$ (Hdff and walk dim for $G_{\mathbf{i}}$, $\mathbf{i} = (i, i, i, \cdots)$), then the third inequality in (3) \mathbb{P} -a.e. ξ . also holds for G_{ξ} for \mathbb{P} -a.e. ξ .

[Special case] $d = 3, \ell = 2, \mathbb{P}$: Bernoulli with $\mathbb{P}(\xi_1 = 1) = p, \mathbb{P}(\xi_1 = 2) = 1 - p$. Take carpets in such a way that $d_w^1 > d_f^1$ and $d_w^2 < d_f^2$. $\Rightarrow \exists p_* \in (0,1) \text{ s.t. } (3) \text{ holds } \mathbb{P}\text{-a.e. for all } p < p_*$.

(Open problem) Is $\{X_N^* - EX_N^*\}_{N\geq 1}$ tight when $p = p_*$??

-Related question: Can one construct 'deterministic' carpet with $d_w = d_f$?

Remark:

 \mathbb{Z}^2 case:

Bolthausen-Deuschel-Zeitouni ('11): tightness holds along ∃ subseq.

(Soft arguments, applicable for fractals as well.)

In the paper, they also showed that

(*)
$$EX_{2N}^* \le EX_N^* + C$$
, $\forall N = 2^n \implies \text{tightness for full seq.}$

Bramson-Zeitouni ('12) proved

$$EX_{2^n}^* = (2\sqrt{2/\pi}\log 2) n - (\frac{3}{4}\sqrt{2/\pi})\log n + O(1),$$

which certainly implies (*).

Method, NOT robust.