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1 Introduction

Gaussian free field (GFF) in a d-dim box of size (2N + 1) (D-bd cond)
Vv = ([-N,NINZ)", 0Vy = Vi \ VN1
{w, },: simple RW on Vi killed at 7 :== min{n > 0 : w, € OVy}
gy (@, y) = B[N Loy, —nl/1y (1 8§ of bonds that contains y)
{X ¥} evy: zero-mean GFF, ie. each X2 is centered Gaussian,
covariance gy, Xév = (0 for x € OVy

Set Xy = max,cy, XN
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VN ford=1
EIXy| =<4 log N for d = 2
(log N)'/?2  ford >3

\

Fluctuations of X3: +N(x E[X%]) ford =1
O(1) for d = 2 (long time open prob = Bramson-Zeitouni '12)
O(1) for d > 3 (use transience of SRW and Borell’s ineq.)
* Borell's ineq.: P(X% — EXY > A) < 2exp(—iA2/02), 0% = sup, E[(XY
So, (A) { XN — EX} >t is tight iff d > 2.

Now



2 Framework

Weighted graphs
G = (V(G), E(G)): con. loc. fnt. graphs
pe VI(G) x V(G) — Ry weight: fray = pye, pS, >0 < {z,y} € E(G)
For B C G with B # G and for z # y € V(G), not both in B, define resistance by

Ro(e,y) " =nf{5 3 (fw) ~ (=), : @) =1, f(y) = 0, fl = constant}.

w,zeV(G)
(Set Rg(x,x) =0, Rg(x,y) =0if x,y € B and, for x € V(G) \ B.)

1&: meas on G s.t. p(A) =S 4 pub, where p& = DyeV (G us.

{wS},,>0: corresp. (discrete time) Markov chain with D-bd on B, i.e.
P(wp gy = ylwy, = ) = 115,/ 165, o,y € V(G), v ¢ B,

and w¢ is killed upon hitting B.



GFF on weighted graphs

{GY}v=1: seq. of fnt con. graphs s.t. |GY] > 2 and limy . |G| = oo.
1 weight, BY ¢ GV (BN £ GN) boundary: assume GV \ BY is con.
{fw¥},,50: corresp. MC with D-bd cond. on BY, 7% := min{m > 0 : ng c BN},

N

gy(z,y) = (u?]j)_lEéN[Z;:O 1{wg§N:y}] for x,y € V(GY)\ BY,

{Xév}zév<GN): GFF on GV with D-bd on B" i..

zero-mean Gaussian field with covariance gy(-,-), XY =0 for z € BY.

Lemma 2.1

E[(XY — X)) = Rgn(a,y).



D D G W W W v

Examples: 2-dimensional Sierpinski gasket graph and carpet graph



3 Main theorem

h N — N: strict incr. with A(0) =0s.t. 0 < 38; < 38 < oo and C' > 0

B B2
! <5> < hR) §C<§> 0 < Vr <VR < .

r h(r) r

Assumption 3.1 da > 0 and ¢y, co,c3 > 0 s.t. the following hold VN large:
(i) Rpv(z,y) < cahldon(x,y)), Vo,y € GV,
(i) max,. v Rpv(z, BY) > comax, v h(dgv(z, BY)), Vo € GV,

(iii) Neon(6dD ) < 307, V6 € (0,1]  where d) . == max, v dev(z, BY) and

max

Nen(€): minimal § of dn-balls of radius € needed to cover G

N

ar — 00 as N — o0.

Furthermore, d



Let X5 := max,cpgm XN, Xy = X% /oy, where oy = (max_ v E[(XN)?])1/2.

[Note: 6% = max, v Rgv(z, BY) ]

Theorem 3.2 Under Assumption 3.1, 4A, B, A" > 0 and g : (0,00) — (0,1) s.t.
P(Xy <A)>B, P(Xy>c) >gle) Ve>0, EXy)<A VN large. (2)

In particular, { X% — EX 5 }n>1is NOT tight (since they fluctuate with order & ).



Normalized local time at BY at cover time

G": shorting, i.e. making BY to a point {b}. Modified weight function

7

ugyN, r € V(GN), y e VI(GM)\ {b},
S gyl e VIGM)\ {b}, y =b.
\

{w;" }+>0: (non-killed) cont. time MC with jump rates ue (holding time exp(1/ ,uGN)).

~N
e, =4

| I
Define L = =% / Liv_yds ((weight normalized) local time at z),
py o Jo
N = mf{t > 0: L7 >0, Ve e GV} (Cover time).

LY = /L', : the square-root of the normalized local time at BY at cover time,
cov

“L" should behave similarly to | X5%|.”

Gener. Ray-Knight Isom. thm: {Lf +3X2: z € G} law {(3(X,+V2t)?* :x € G}, m=inf{s: L > t}.

Proposition 3.3 Assumption 3.1 = Theorem 3.2 hold with L /oy replacing Xn.



4 Examples

2-dim Sierpinski gasket and carpet graphs: G

Detailed heat kernel estimates (Jones '96, Barlow-Bass '99):

d dy 1/(dy—1)
pr(z,y) < etk exp (—62 ( (:Y) ) Yo,y € Gk >0,

k

d dy 1/(dw—1)
Pr(, y) + prea(m,y) > sk~ exp (—64 ( (x,ky) ) VEk > d(z,y).

Here dy: volume growth, d,, > 2: walk dimension (note d,, > dy).
= csRY < u(B(z, R)) < R, Yz € G,R>1,

R(z,y) < crd(x, )™, R(x,B‘(z,R)) > sR™™ ", Vz,y e G, VR> 1.

{GY, BV ns9 G¥: N-level box containing 0, BY = L¥Vj: L™! contraction rate

= Assumption 3.1 holds with h(s) = s™ "% o = d; so {X — EX%}n>1 is NOT tight!



Homogeneous random Sierpinski carpet graph: G
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Example of 2-dimensional homogeneous random Sierpinski carpet graph




I:={1,--- 0} Forcach k € I, {)*} % family of Lj-similitudes that construct SC

For € = (ky,--+,kp,--+) € I, n € N, write &|y = (ki,---, ky) € I, and let

k k
V(GgN) = U Ly - Ly Yool (Vo),  Ge = U V(GéV‘N).
ije{lf"’Kk"}’ N=1
1<j<N”
B, = Ly, - -- Ly, (space scale), M, .= K, -- - K}, (mass scale), T, :== R,, M, (time scale)
 log M,  logT,

df(ﬂ) = logB , dw(n) = logB .

Let Vy(z,r) be § of vertices in B(x,r) w.r.t. graph distance. Then

crdr < Valx,r) < cor®rM if B <p< Bni1, x € Gg.
Define 7 : [1,00) — [1,00) (time scale) and h : [1,00) — [1, 00) (resistance scale) as

7(s) = s%  p(s) = sw=dr)if T < s < Ty, 7(0) =h(0)=0.



Detailed heat kernel estimates (Cont. version Hambly-Kusuoka-K-Zhou "00):

C3 T(d(x,y))\1/(3-1)
pr(z,y) < Vi(z, 7 1(k)) exp(—ca( I ) ’ )
e, y) + praa (2, y) > —— for k> cor(d(z,y))

Va(z, 771(k))
for k € N, z,y € G¢. If the following limits exist and the inequality holds

dy:= lim d¢(n), d,:= lim d,(n), d, > dy,

n—oo n—aoo

then (by Barlow-Coulhon-K ’05), we have

r(d(z,v)
Vil da ) = =

8 T(d(z,y))
Valz, d(z,y))’

C

Vx,y € Ge.

N7

= Assumption 3.1 holds so { X% — EX%}n>1 18 NOT tight!

)



< <Checking (3): introduce randomness>>

(IN, F,P): Borel prob. space PP is stationary and ergodic (w.r.t. the shift)
= by the sub-additive ergodic thm, 3 the first two limits in (3) P-a.e. £.

Further, if d’, > d? for all 7 € I (Hdff and walk dim for Gy, i = (¢,4,4,-- ),

then the third inequality in (3) P-a.e. . also holds for G¢ for P-a.e. &.

[Special case] d=3,¢ =2, P: Bernoulli with P(,;, =1) =p, P(§,=2)=1—p.
Take carpets in such a way that d’ > d} and d2, < d?c.

= dp. € (0,1) s.t. (3) holds P-a.e. for all p < p,.

NOBERBIOBI 1 { X} — 52X} v tight when p = p,??

~Related question: Can one construct 'deterministic’ carpet with d,, = d¢?



Remark:

772 case:

Bolthausen-Deuschel-Zeitouni ("11): tightness holds along 3 subseq.
(Soft arguments, applicable for fractals as well.)

In the paper, they also showed that
(%) EXoy < EXN+C, VN =2" = tightness for full seq.

Bramson-Zeitouni ('12) proved

EX, = (2y/2]mlog2)n — (3/2]m)logn + O(1),

which certainly implies ().

Method, NOT robust.



