Countable fundamental groups of Rauzy fractals

Timo Jolivet Université Paris Diderot, France University of Turku, Finland

Joint work with Benoît Loridant and Jun Luo

Advances on Fractals and Related Topics December 14, 2012 香港中文大學

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

$$\sigma: \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{cases} \qquad \qquad M_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\sigma: \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{cases} \qquad M_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{cases} \qquad \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
12345112

$$\sigma: \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{cases} \qquad \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
12345112123

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{cases} \qquad \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
123451121231234

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad \mathbf{M}_{\sigma} = \left(\begin{array}{c} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

1234511212312341234512345112345112123451 ····

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

 $1234511212312341234512345112345112123451 \cdots$

- Cubic Pisot eigenvalue $\beta \approx 1.325$, with $\beta', \beta'' \approx -0.662 \pm 0.562i$
- \blacktriangleright Two other eigenvalues $\approx 0.5\pm 0.866i$

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

 $1234511212312341234512345112345112123451\cdots$

- Cubic Pisot eigenvalue $\beta \approx$ 1.325, with $\beta', \beta'' \approx -0.662 \pm 0.562i$
- Two other eigenvalues pprox 0.5 \pm 0.866i

Action of M_{σ} on \mathbb{R}^5 :

 \blacktriangleright Expanding line $\mathbb E$ spanned by eigenvector u_β

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

 $1234511212312341234512345112345112123451\cdots$

- Cubic Pisot eigenvalue $\beta \approx$ 1.325, with $\beta', \beta'' \approx -0.662 \pm 0.562i$
- Two other eigenvalues pprox 0.5 \pm 0.866i

Action of M_{σ} on \mathbb{R}^5 :

- Expanding line \mathbb{E} spanned by eigenvector u_{β}
- ► Contracting plane ℙ spanned by eigenvectors u_{β'}, u_{β''}

$$\sigma: \left\{ \begin{array}{ccccc} 1 & \mapsto & 12 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 4 \\ 4 & \mapsto & 5 \\ 5 & \mapsto & 1 \end{array} \right. \qquad M_{\sigma} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

 $1234511212312341234512345112345112123451\cdots$

- Cubic Pisot eigenvalue $\beta \approx 1.325$, with $\beta', \beta'' \approx -0.662 \pm 0.562i$
- Two other eigenvalues pprox 0.5 \pm 0.866i

Action of M_{σ} on \mathbb{R}^5 :

- \blacktriangleright Expanding line $\mathbb E$ spanned by eigenvector u_β
- ► Contracting plane ℙ spanned by eigenvectors u_{β'}, u_{β''}
- ► (Supplementary space H spanned by the other eigenvectors)

Rauzy fractal of $12 \mapsto 1, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 5, 5 \mapsto 1$ 12345112123123412345123451123 $\pi =$ projection from \mathbb{R}^5 $\pi(e_1) + \pi(e_2) + \pi(e_3)$ to \mathbb{P} along $\mathbb{E} \oplus \mathbb{H}$ $\pi(e_3)$ $\pi(e_5)$ $\pi(e_1)$ 0.5 $\pi(e_4)$ -1 -0.5 0.5 1.5 -0.5

-1

Basic facts

- ▶ Dynamical properties (domain exchange), number theory, tilings, ...
- Topology:
 - Compact, locally connected
 - Equal to the closure of the interior
 - Graph-directed IFS, self-similar structure
 - $dim_H(boundary) \in]1, 2[$, computable

• Cut points, connectedness, intersection of tiles, etc.

Cut points

• Cut points, connectedness, intersection of tiles, etc.

Connected

Not connected

- Cut points, connectedness, intersection of tiles, etc.
- Simple connectedness

"Many holes"

- ► Cut points, connectedness, intersection of tiles, etc.
- Simple connectedness

Most of these properties are decidable [Siegel-Thuswaldner 2010]

Fundamental group

- Topological space X, point $x_0 \in X$
- $\pi_1(X, x_0)$ is the fundamental group of X at x_0 , where:
 - elements: loops based at x₀, modulo homotopy
 - composition law: concatenation of loops
- ▶ π₁(X) := π₁(X, x₀) if X path-connected (for any x₀)

Examples:

- $\pi_1(\mathsf{disc}) \cong \{1\}$
- $\pi_1(circle) \cong \mathbb{Z}$
- $\pi_1(2D \text{ torus}) \cong \mathbb{Z}^2$
- $\pi_1(\infty) \cong \pi_1(8) \cong \pi_1(B) \cong F_2 = \text{free group on two elements}$
- $\pi_1(\overset{\otimes}{\circledast}) \cong F_6$

Examples

Trivial FG

Examples

Uncountable FG, very hard to describe...

Doesn't look so bad, but...

Doesn't look so bad, but...uncountable FG

But...

Example with nontrivial countable FG

 $\pi_1(X)\cong F_1\cong \mathbb{Z}$

Prove that the 12 tiles are disklike and compute their neighboring graph [Siegel-Thuswaldner 2009]

- Prove that the 12 tiles are disklike and compute their neighboring graph [Siegel-Thuswaldner 2009]
- Compute a topological complex with the same homotopy type

- Prove that the 12 tiles are disklike and compute their neighboring graph [Siegel-Thuswaldner 2009]
- Compute a topological complex with the same homotopy type

- Prove that the 12 tiles are disklike and compute their neighboring graph [Siegel-Thuswaldner 2009]
- Compute a topological complex with the same homotopy type

Other examples with nontrivial countable FG

Countable FGs of Rauzy fractals, in general

Theorem [J-Loridant-Luo]

- ▶ A nontrivial countable Rauzy fractal FG is always \cong F_k (k ∈ N).
- ▶ k can be computed if all the tiles are discs (and intersect well).

Can we get all F_k ?

Difficulty: control the fractal by working on σ .

- Step 1: cut the tiles into smaller tiles (on σ : "state splittings")
- **Step 2:** shrink some tiles (on σ: conjugate by free group aut.)

- Step 1: cut the tiles into smaller tiles (on σ : "state splittings")
- **Step 2:** shrink some tiles (on σ: conjugate by free group aut.)

- Step 1: cut the tiles into smaller tiles (on σ : "state splittings")
- **Step 2:** shrink some tiles (on σ: conjugate by free group aut.)

Compare σ and $\tau^{-1}\sigma\tau$, with

 $\begin{array}{ll} \mbox{Compare } \sigma \mbox{ and } \tau^{-1} \sigma \tau, \mbox{ with } \sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \\ \mbox{ and } \tau: 1 \mapsto 1, 2 \mapsto 32, 3 \mapsto 3 \end{array}$

$$\tau^{-1}\sigma\tau: \begin{cases} 1 & \mapsto 1 & \mapsto 12 & \mapsto 132 \\ 2 & \mapsto 3^{-1}2 & \mapsto 1^{-1}13 & \mapsto 3 \\ 3 & \mapsto 3 & \mapsto 1 & \mapsto 1 \end{cases}$$

 $\begin{array}{l} \mbox{Compare } \sigma \mbox{ and } \tau^{-1} \sigma \tau, \mbox{ with } \sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \\ \mbox{ and } \tau: 1 \mapsto 1, 2 \mapsto 32, 3 \mapsto 3 \end{array}$

Compare σ and $\tau^{-1}\sigma\tau$, with

$\begin{array}{l} \textbf{Free group automorphisms} \leftrightarrow \textbf{Rauzy fractals} \\ \textbf{Compare } \sigma \text{ and } \tau^{-1} \sigma \tau \text{, with } \sigma = [\ldots] \text{ and } \tau : \left\{ \begin{array}{l} i \mapsto i \text{ if } i \neq 12 \\ 12 \mapsto 5, 12 \end{array} \right. \end{array}$

$\begin{array}{l} \textbf{Free group automorphisms} \leftrightarrow \textbf{Rauzy fractals} \\ \textbf{Compare } \sigma \text{ and } \tau^{-1} \sigma \tau \text{, with } \sigma = [\ldots] \text{ and } \tau : \left\{ \begin{array}{l} i \mapsto i \text{ if } i \neq 12 \\ 12 \mapsto 5, 12 \end{array} \right. \end{array}$

Question [Gähler, Arnoux-Berthé-Hilion-Siegel] Links between σ and $\tau^{-1}\sigma\tau$?

The fund. group is not preserved!

Uncountable, but manageable FG? $\downarrow_{trivial}$ $F_1 F_2 F_3$ $F_6 F_7$?! ?!?countable, only F_k uncountable

A Rauzy fractal with uncountable FG that we can describe in detail?

Uncountable, but manageable FG?

A Rauzy fractal with uncountable FG that we can describe in detail?

Like:

Hawaiian Earring (Cannon-Conner 2000)

Sierpiński gasket (Akiyama-Dorfer -Thuswaldner-Winkler 2009)

Uncountable, but manageable FG? — Candidate 1

Uncountable, but manageable FG? — Candidate 2

Summary

- Toplogy of Rauzy fractals
- "Inverse" IFS problems
- Operations on $\sigma \rightsquigarrow$ fractal
- New examples

Questions

- Obtain every F_k.
- ► The case of three letters.
- Precise description some uncountable Rauzy fractal FGs.
- bound rank(F_k) by #alphabet?

Summary

- Toplogy of Rauzy fractals
- "Inverse" IFS problems
- Operations on $\sigma \rightsquigarrow$ fractal
- New examples

Questions

- Obtain every F_k.
- ► The case of three letters.
- Precise description some uncountable Rauzy fractal FGs.
- bound rank(F_k) by #alphabet?

晤該 for your attention

