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σ :


1 7→ 12
2 7→ 3
3 7→ 4
4 7→ 5
5 7→ 1

Mσ =

(
1 0 0 0 1
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I Cubic Pisot eigenvalue β ≈ 1.325, with β ′, β ′′ ≈ −0.662± 0.562i
I Two other eigenvalues ≈ 0.5± 0.866i

Action of Mσ on R5:
I Expanding line E spanned by eigenvector uβ
I Contracting plane P spanned by eigenvectors uβ′ ,uβ′′

I (Supplementary space H spanned by the other eigenvectors)
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Basic facts
I Dynamical properties (domain exchange), number theory, tilings, . . .
I Topology:

I Compact, locally connected
I Equal to the closure of the interior
I Graph-directed IFS, self-similar structure
I dimH(boundary) ∈ ]1, 2[, computable
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What kind of topological properties do we study?
I Cut points, connectedness, intersection of tiles, etc.
I Simple connectedness

Disklike “Many holes”

Most of these properties are decidable [Siegel-Thuswaldner 2010]



Fundamental group
I Topological space X, point x0 ∈ X
I π1(X, x0) is the fundamental group of X at x0, where:

I elements: loops based at x0, modulo homotopy
I composition law: concatenation of loops

I π1(X) := π1(X, x0) if X path-connected (for any x0)
I Examples:

I π1(disc) ∼= {1}
I π1(circle) ∼= Z
I π1(2D torus) ∼= Z2
I π1(∞) ∼= π1(8) ∼= π1(B) ∼= F2 = free group on two elements
I π1(Q) ∼= F6
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Trivial FG
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trivial ?!??!

But. . .



Example with nontrivial countable FG

π1(X) ∼= F1 ∼= Z

1 7→ 11, 1, 3, 8 2 7→ 11, 1, 3, 8

3 7→ 5, 2, 4, 10, 12 4 7→ 6, 9, 7

5 7→ 5, 2, 4, 10, 12 6 7→ 5, 2, 4, 10, 12

7 7→ 6, 9, 7, 11, 1, 3, 8 8 7→ 6, 9, 7, 11, 1, 3, 8

9 7→ 11, 1, 3, 8 10 7→ 11, 1, 3, 8

11 7→ 5, 2, 4, 10, 12 12 7→ 5, 2, 4, 10, 12, 6, 9, 7, 11, 1, 3, 8.



How to prove that π1
( )

∼= F1 ?

I Prove that the 12 tiles are disklike
and compute their neighboring graph [Siegel-Thuswaldner 2009]

I Compute a topological complex with the same homotopy type
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Other examples with nontrivial countable FG

F1 F1

F2 F6



Countable FGs of Rauzy fractals, in general

Theorem [J-Loridant-Luo]
I A nontrivial countable Rauzy fractal FG is always ∼= Fk (k ∈ N).
I k can be computed if all the tiles are discs (and intersect well).



Can we get all Fk?
Difficulty: control the fractal by working on σ.
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Free group automorphisms ↔ Rauzy fractals

Compare σ and τ−1στ, with σ = [. . .] and τ :

{
i 7→ i if i 6= 12
12 7→ 5, 12

σ τ−1στ

Question [Gähler, Arnoux-Berthé-Hilion-Siegel]
Links between σ and τ−1στ?

å The fund. group is not preserved!



Uncountable, but manageable FG?

countable, only Fk uncountable

trivial ?!??!F1 F6F2 F3 F7

?

A Rauzy fractal with uncountable FG that we can describe in detail?

Like:

Hawaiian Earring
(Cannon-Conner 2000)

Sierpiński gasket
(Akiyama-Dorfer

-Thuswaldner-Winkler 2009)
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Summary
I Toplogy of Rauzy fractals
I “Inverse” IFS problems
I Operations on σ  fractal
I New examples

Questions
I Obtain every Fk.
I The case of three letters.
I Precise description some

uncountable Rauzy fractal FGs.
I bound rank(Fk) by #alphabet?
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