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Pointwise regularity

Definition :

Let f: RY — R be a locally bounded function and xo € RY;

f € C*(xo) if there exist C > 0 and a polynomial P such that, for
|x — Xo| small enough,

[f(x) — P(x — Xxp)| < C|x — Xxp|¢
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Pointwise regularity

Definition :

Let f: RY — R be a locally bounded function and xo € RY;

f € C*(xo) if there exist C > 0 and a polynomial P such that, for
|x — Xo| small enough,

[f(x) — P(x — Xxp)| < C|x — Xxp|¢
The Holder exponent of f at xg is

he(x0) = sup{a: fe C%x)}

The Holder exponent of the Weierstrass function Wy is constant and
equal to H (Hardy)

The Holder exponent of Brownian motion is constant and equal to
1/2 (Wiener)

Wy and B are mono-Holder function



Multifractal spectrum (Parisi and Frisch, 1985)

The iso-Holder sets of f are the sets

En={x: hi(x)=H}



Multifractal spectrum (Parisi and Frisch, 1985)

The iso-Holder sets of f are the sets

En={x: hi(x)=H}

Let f be a locally bounded function. The Hdélder spectrum

of fis
Df(H) = dim (En)

where dim stands for the Hausdorff dimension
(by convention, dim () = —o0)



Multifractal spectrum (Parisi and Frisch, 1985)

The iso-Holder sets of f are the sets
En={xo: hi(x)=H}
Let f be a locally bounded function. The Hdélder spectrum

of fis
Df(H) = dim (En)

where dim stands for the Hausdorff dimension
(by convention, dim () = —o0)
The upper-Hdlder sets of f are the sets

Enu={x0: hi(x)>H}

The lower-Holder sets of f are the sets

é = {Xo : hf(Xo) < H}
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Riemann’s non-differentiable function and beyond

Ra(x) = Z sm%n2 X)

n=1
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—oo else

He[1/2,3/4]
H=3/2
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The cubic Riemann function : R3(x) = Z sin(n°x)
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Riemann’s non-differentiable function and beyond

Biwmann functian

= sin(nx) A &\u\
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4H -2 i He[1/2,3/4 = VoA
de(H) = 0 if H=3/2 -
—oco else i :
o . . sin(n®x)
The cubic Riemann function : Rs(x) = Z P
n=1

In a recent paper (arXiv :1208.6533v1) F. Chamizo and A. Ubis
consider
0 giP(n)x Py K
F) =Y ~— deg(P) =

n=1
Theorem : (Chamizo and Ubis) : let vr be the maximal multiplicity
of the zeros of P, If 1+ & <a<kand f(a—1) < H< & (a—3),
then

de(H) > max(vr, 2) (H ~% 1)
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Let (\n)nen be a sequence of points in R?; a nonharmonic Fourier
series is a function f that can be written

f(x)=>_ ane*~.

The gap sequence associated with (\,) is the sequence (6) :
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then, forany xo € RY, he(xo) < H.



Generalization : Nonharmonic Fourier series

Let (\n)nen be a sequence of points in R?; a nonharmonic Fourier
series is a function f that can be written

f(x)=>_ ane*~.

The gap sequence associated with (\,) is the sequence (6) :
9,—, - n|7r;fn |An - )\m|

The sequence (\,) is separated if : ir,17f 6, > 0.

Theorem : Let xo ¢ R9. 1f (\,)) is separated and f € C*(xp), then
3C such that Vn,

1 if |Ap| >0,  then an| < .
(1) Al > anl < 5

Thus, if
H = sup{«a: (1) holds},
then, forany xo € RY, he(xo) < H.

Open problem : Optimality of this result



Davenport series

The sawtooth function is
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In one variable, Davenport series are of the form

F(x) = i an{nx}, ap € R.



Spectrum estimates for Davenport series
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Spectrum estimates for Davenport series

F(x) = i ap{nx}, ap € R.
n=1

Assuming that (a,) € /', then F is continuous at irrational points and
the jumpatp/q (ifpAg=1)is

(oo}
By=>_ ang
n=1

Theorem : Assume that (n°a,) ¢ /°° and 3 > 1. Then
dim(Ex) > 7
if (n°ay) € I°°and 8 > 2. Then

2H
B

Open problem : Sharpen these bounds

dim(En) <
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analytic continuation depends on Diophantine approximation
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Hecke’s functions

nS

Hs(x) =Y {m
n=1

The function Hs(x) is a Dirichlet series in the variable s, and its
analytic continuation depends on Diophantine approximation
properties of x (Hecke, Hardy, Littlewood).

Theorem : If Re(s) > 2, the spectrum of singularities of # is

2H Re(s)
= <
d(H) Re(s) for H< 5
=—00 else.

If 1 < Re(s) < 2, the spectrum of singularities of Hecke’s function #°

satisfies
_2H

d(H) for H < Re(s)—1.

Open problem : Improve the second case



Hecke’s functions (continued)

nS

Hs(x) =Y {m
n=1

If Re(s) < 1, the sum is no more locally bounded, however :
if 1/2 < Re(s) < 1then s € LP for p < 15

One can still define a pointwise regularity exponent as follows
(Calderén and Zygmund, 1961) :

Definition : Let B(x, r) denote the open ball centered at x, and of

radius r; a > —d/p. Let f € LP. Then f belongs to TP (xp) if
3C, R > 0 and a polynomial P such that

1/p
B (G [0 P xpax) <o
I JB(x,r)

The p-exponent of f at Xp is : h{(xo) = sup{a : f € TP(xo)}.
The p-spectrum of fis : df(H) =dim ({xo : F{(x0) = H})

Open problem : Determine the p-spectrum of Hecke’s functions
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The Lebesgue-Davenport function
Letf€[0,1) and
t=(0;t1,t2, ... tn,... )2
be its proper expansion in basis 2.
Then L(t) = (x3(t), y5(t)) where

{ X3(t)= (0;t1,t3,t5,...)2
ya(t) = (0;to,ta,85,... )2

The Lebesgue-Davenport function £ has the following expansion
1

x3(t) = 5T Z an{2"t} where a, =2"" and ap, 4 = —-2""""
1 n —n —n
() =5+ > bn{27t} where bz = —27" and bgpy1 =27".
The spectrum of singularities of L is

de(H) =2H if 0<H<1/2
= -0 else.



Davenport series in several variables

Davenport series in several variables are of the form

f(x) =Y ap{n-x}

nezd

where (&p)ncze is an odd sequence indexed by Z¢.
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Davenport series in several variables are of the form

f(x) =Y ap{n-x}

nezd
where (&p)ncze is an odd sequence indexed by Z¢.

Discontinuities of Davenport series
Forp e Zand g € Z9, let

Hpq={x€R?|p=q-x}
Let us assume that (&,),cz¢ is an odd sequence in ¢'. Then,

The Davenport series is continuous except on the set U Hp.q where it
has a jump of magnitude |A,| with

Aq =2 Z aig
I=1



Upper bound on the Holder exponent of a Davenport
series

Foreach g € Z9, let P = {p € Z | gcd(p,q) = 1}.
For xo € RY, let

55 (x0) = dist | X0, | ) Hp.g
pEP,
Let f be a Davenport series with jump sizes (Aq)geze. Then,

log |Ag|

Vxo € RY < = dl
Xo € hs(xo) "mmflogép(xo)

Ag#0

Connection with Diophantine approximation :

|- xo — p| < |q||Ag|"/® for an infinite sequence = h(xo) <



Upper bound on the Holder exponent of a Davenport
series

Foreach g € Z9, let P = {p € Z | gcd(p,q) = 1}.
For xo € RY, let

55 (x0) = dist | X0, | ) Hp.g
pEP,
Let f be a Davenport series with jump sizes (Aq)geze. Then,
log |A
Vxo €RY hy(x0) < liminf 09 |Aq|

Lo 10907 (xo)

Connection with Diophantine approximation :
|g-xo — p| < |q||Ag|"/® for an infinite sequence = hy(X) < a.

Corollary : If the jumps A, satisfy : |Ay| > C/q? for all g in one
direction at least, then

Vx, hi(x)<a/2 and d(Ey) <d—-1+ %



Sparse Davenport series

A Davenport series with coefficients given by a sequence (ap) ¢z is
sparse if

im 09#n < Rlan #0} _

R—00 log R 0.



Sparse Davenport series

A Davenport series with coefficients given by a sequence (ap) ¢z is
sparse if
im 09#n < Rlan #0} _

R—00 log R 0.

A sequence a = (an)qeze belongs to F7 if

an| < —
= s



Sparse Davenport series

A Davenport series with coefficients given by a sequence (ap) ¢z is
sparse if
im 09#n < Rlan #0} _

R—00 log R 0.

A sequence a = (an)qeze belongs to F7 if

an| < —
= s

Theorem : Let f be a Davenport series with coefficients
a = (an)pezo- Let
~Ya:=sup{y > 0] (an)peze € F'}
We assume that f is sparse and that 0 < v; < . Then,
H
/a

else di(H) = -
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Open problems concerning multivariate Davenport
series

» Understand when the upper bound for the Hélder exponent is
sharp

» Mutivariate analogue of Hecke’s function

Hs(x) = Z {nnisx}

where the sum is taken on an half-plane

» What can be the shape of the spectrum of singularities of a
Davenport series ?

» Directional regularity

Thank you for your (fractal ?) attention!



