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Introduction

Energy: for functions u, v on SG,

Em(u, v) =

(
5

3

)m ∑
x ∼

m
y

(u(x)− u(y))(v(x)− v(y))

and
E(u, v) = lim

m
Em(u, v).

In general, Em(u, v) attains both positive and negative values
but Em(u) (i.e.Em(u, u)) is always non-negative.

We define a function h to be harmonic if its energy on level m

Em(h) =
∑
i<j

(h(qi )− h(qj))2

is a constant sequence where {qi}2i=0 are vertices of the
outermost triangle of SG.
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Introduction

The standard Laplacian ∆µ, defined by the weak formulation

−E(u, v) =

∫
(∆µu)vdµ

for all v ∈ domE0, where µ is standard measure on SG.

Advantage: Self-similarity

5∆µ(u ◦ Fj) = (∆µu) ◦ Fj .

Disadvantage: For u ∈ dom∆µ, u2 6∈ dom∆µ is not defined.

Question: Does there exist another Laplacian which behaves
better in terms of functions in the domain of the Laplacian
forming an algebra under pointwise multiplication?
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Introduction

Energy measure: for a cell Fw SG ,

νu,v (Fw SG ) =

(
5

3

)|w |
E(u ◦ Fw , v ◦ Fw ).

νu := νu,u.

Similarly, in general, νu,v is a signed measure but νu is always
a positive measure.
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Introduction

The symmetric harmonic functions h0, h1, h2 have values
hi (qj) = δij on vertices qj .

h0 h1 h2

Denote νi := νhi
, the energy measure of hi .
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Introduction

The space of energy measures of harmonic functions is three
dimensional and {ν0, ν1, ν2} form a basis.

The Kusuoka measure ν = ν0 + ν1 + ν2 = 3(νh + νh⊥) if
{h, h⊥} is an orthonormal basis of the space of all harmonic
functions modulo constants.

Fact: Every energy measure is absolutely continuous w.r.t.
the Kusuoka measure ν.
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Introduction

We define the “energy Laplacian” by the weak formulation

−E(u, v) =

∫
(∆νu)vdν

for all v of finite energy vanishing on the boundary of SG ,
where ν is the Kusuoka measure.

Whenever u ∈ dom∆ν , u2 ∈ dom∆ν and

∆νu2 = 2u∆νu + 2
dνu

dν
.
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Self-Similarity

Question: Does “energy Laplacian” behave in the sense of
self-similarity like the standard Laplacian?

Answer: We have some results like that but not that nice.

We first establish the “self-similarity” of the the family {νi}. ν0

ν1

ν2

 =
2∑

i=0

Mi

 ν0

ν1

ν2

 ◦ F−1
i

for some matrices Mi .
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Self-Similarity

The “self-similarity” of ν,

ν =
2∑

i=0

((
1

15
+

12

15

dνi

dν

)
ν

)
◦ F−1

i .

For Energy Laplacian, we also have the “self-similarity”

∆ν(u ◦ Fj) =
3

5

(
1

15
+

12

15

dνj

dν

)
(∆νu) ◦ Fj

but with variable weights.
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Portraits of the Derivative
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Bounds for Derivatives

Lemma

ν(Fw SG ) = Θ
((

3
5

)|w |)
Lemma

If h is symmetric, νh(F2F m
1 SG ) = Θ

((
1
15

)m)
and hence

dνh
dν (x) = 0 if x ∈

⋂
m F2F m

1 SG .
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Bounds for Derivatives

Theorem

Let h be a harmonic function. For every cell C ,

a)

inf
x∈C

dνh

dν
(x) = 0.

b) If νh = aν0 + bν1 + cν2,

sup
x∈C

dνh

dν
(x) =

2

3
(a + b + c).

In addition, if dνh
dν attains the maximum, then

dν
h⊥

dν attains its
minimum, and at the same point.
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Bounds for Derivatives

Idea of proof:
For a), we look at the edge having an extremum.(existence of
extremum proved by K. Dalrymple, R. S. Strichartz and J. P.
Vinson, 1999)

For b) consider h⊥ orthogonal to h. Then dνh
dν +

dν
h⊥

dν = c for
normalization constant c = 2

3(a + b + c). And

sup
dνh

dν
= c − inf

dνh⊥

dν
= c .
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Characterization of Positive Energy Measures

Theorem

Take {ν0, ν1, ν2} as a basis for signed energy measures of harmonic
functions. Then the coefficients of all positive energy measures
form a solid, circular cone {(x , y , z) ∈ R3 : xy + yz + xz ≥ 0}.
Furthermore, the energy measures νh obtained by a single
harmonic function form the boundary of the cone.
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Characterization of Positive Energy Measures

Sketch of proof: The coefficients of the measures νh form the cone
{(x , y , z) ∈ R3 : xy + yz + xz = 0}, so it suffices to show each νh

is on the boundary. Precisely, we show νh − εν is not a positive
measure ∀ε > 0. Suppose, for contradiction, that it gives a
positive measure for some ε > 0. Then νh(C )/ν(C ) > ε for all C ,
contradicting inf

C

dνh
dν = 0.
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Characterization of Positive Energy Measures

Corollary

Any positive energy measure νf ,g is precisely a convex combination
of two energy measures νh and νh⊥ for some harmonic h.

Proof. Cut the cone by the plane containing 0, ν and νf ,g . One of
the two lines contains the required νh and the other contains the
required νh⊥ .
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Limited Continuity

Because for every cell C ,

sup
C

dνh

dν
= sup

SG

dνh

dν

and

inf
C

dνh

dν
= inf

SG

dνh

dν

we see that the function dνh
dν is discontinuous, as shown below.
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Limited Continuity

Theorem

Let νf .g be an energy measure. Given any cell C, the restriction of

Radon-Nikodym derivative
dνf ,g

dν to the graph is continuous on the
three edges of C .

Idea of proof: All we need to prove is the continuity on an edge at
one corner point but the proof is technical.
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Average Values

We write the average value of the derivative on a cell as a
weighted average of the value on the boundary points of the
cell

AvgC

dνf ,g

dν
=
∑

bi
dνf ,g

dν
(pi )

We find bi depending on the cell, i.e. depending on a finite
word w .

One set of bi satisfies all νf ,g .
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Average Values

Existence and uniqueness: On Fw SG

∑
b

(w)
i

 dν0
dν (pi )
dν1
dν (pi )
dν2
dν (pi )

 =


ν0(C)
ν(C)
ν1(C)
ν(C)
ν2(C)
ν(C)


The set of vectors concerning Fw SG and the set of vectors

concerning SG differ by an invertible matrix. b
(∅)
i exist and

unique on SG .
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Average Values

The distance of b
(w)
j from 1/3 is proportional to how

“skewed” the Kusuoka measure is on the cell Fw FjSG relative
to Fw SG . That is,

1

5

(
b

(w)
j − 1

3

)
=

1

4

(
ν(Fw FjSG )

ν(Fw SG )
− 1

3

)
inf
w
{b(w)

j } = 0, sup
w
{b(w)

j } = 2
3 , so no boundary point is

favored too heavily and no boundary point contributes
negatively.
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Average Values

If we define the rational maps

B0(x , y , z) =

(
9x

13x + y + z
,

2x + 2y − z

13x + y + z
,

2x − y + 2z

13x + y + z

)
B1(x , y , z) =

(
2x + 2y − z

x + 13y + z
,

9y

x + 13y + z
,
−x + 2y + 2z

x + 13y + z

)
B2(x , y , z) =

(
2x − y + 2z

x + y + 13z
,
−x + 2y + 2z

x + y + 13z
,

9z

x + y + 13z

)
then

(b
(w0)
0 , b

(w0)
1 , b

(w0)
2 ) = B0(b

(w)
0 , b

(w)
1 , b

(w)
2 )

(b
(w1)
0 , b

(w1)
1 , b

(w1)
2 ) = B1(b

(w)
0 , b

(w)
1 , b

(w)
2 )

(b
(w2)
0 , b

(w2)
1 , b

(w2)
2 ) = B2(b

(w)
0 , b

(w)
1 , b

(w)
2 )
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Average Values

We have the sharp bound:∑(
b

(w)
j − 1

3

)2

<
1

6

Plot of level 9 of b(w) = (b
(w)
0 , b

(w)
1 , b

(w)
2 ):
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Thank You!
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