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A General Approach

Calculations in Fractal Geometry often fall into two parts: a
geometric part and an analytic part.

The geometric part may involve expressing geometric or metric
aspects of a problem in mathematical terms.

The analytic part may involve estimating the integrals, sums, etc.
so obtained.

For the analytic part, there are methods may be applied to a range
of apparently different fractal geometric problems - e.g. covering or
potential theoretic methods for estimating dimensions.

We will look at an analytic technique which extends the potential
theoretic method and give several applications.
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Moment sums and Lq-dimensions

Let Mr be the mesh of side r .
Define the q-th power moment
sum of a measure µ on Rn by

Mr (q) =
∑

C∈Mr

µ(C )q. (1)

Then the Lq-dimension or generalised q dimension of µ is given by

Dq(µ) =
1

q − 1
lim
r→0

log Mr (q)

log r
(q > 0).

(or lim inf, lim sup). Equivalently we may replace (1) by a moment
integral

Mr (q) =

∫
µ(B(x , r))q−1dµ(x) (q > 0).
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Images of measures

Now let xω : Metric space→ Rn for a parameterised family of mappings
xω (ω ∈ Ω) [e.g. projections, random functions, etc.]

Let µ be a measure on the Metric Space and let µω be its image measure
on Rn under xω, i.e.

µω(A) = µ(x−1ω (A)) or

∫
f (x)dµω(x) =

∫
f (xω(t))dµ(t).

One way to get lower estimates for Lq-dimensions of µω for a.a. ω is to
bound the average moment integrals over ω. For q ≥ 2 an integer:

E
∫
µω(B(x , r))q−1dµω(x)

= E
∫
µω{y1 : |x − y1| ≤ r} . . . µω{yq−1 : |x − yq−1| ≤ r}dµω(x)

= E
∫
µ{t1 : |xω(t)−xω(t1)| ≤ r} . . . µ{tq−1 : |xω(t)−xω(tq−1)| ≤ r}dµ(t)

=

∫
· · ·
∫

P{|xω(t)− xω(tj)| ≤ r for all j}dµ(t1) . . . dµ(tq−1)dµ(t).
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E
∫
µω(B(x , r))q−1dµω(x)

=

∫
· · ·
∫

P{|xω(t)− xω(tj)| ≤ r for all j}dµ(t1) . . . dµ(tq−1)dµ(t) (‡)

Typically
P{|xω(t)− xω(tj)| ≤ r for all j} depends
on the relative closeness of t1, . . . , tq−1, t
to each other in the metric space.

e.g. xω : Rn → R might be projection
onto a line parameterised by ω.

We may use the geometry of the situation to estimate
P{|xω(t)− xω(tj)| ≤ r for all j} and then use analytic methods to

estimate the resulting integral (‡).

In particular, bounding (‡) by const.r s(q−1) will give an a.s lower bound

of s for the Lq-dimensions of µω.
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We can often regard t1, t2, . . . , tq as points
on an ultrametric space, say as points of
{1, 2}N, which we can identify with a
binary tree.
Let i1, . . . , iq−1 be the q − 1 join points of
t1, . . . , tq.
A generalised transversality argument may
lead to an estimate

P{|xω(tq)− xω(tj)| ≤ r for all j}
≤ F (t1, t2, . . . , tq)

where F is a product over the join points

F (t1, t2, . . . , tq) = f (i1)f (i2) . . . f (iq−1)

for some f : vertices of the tree → R+

So (‡) becomes

E
∫
µω(B(x , r))q−1dµω(x)

≤
∫
· · ·
∫

F (t1, t2, . . . , tq)dµ(t1) . . . dµ(tq−1)dµ(tq).
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Estimation of the integrals

Special case: q = 3∫ ∫ ∫
F (t1, t2, t3)dµ(t1)dµ(t2)dµ(t3) ≤

( ∞∑
k=0

[ ∑
|i|=k

f (i)2µ(Ci)
3
]1/2)2

Sketch of proof:

Splitting this integral into a sum over
possible pairs of join points:∫ ∫ ∫

F (t1, t2, t3)dµ(t1)dµ(t2)dµ(t3)

≤
∑
i∈T

∑
j∈T , j�i

f (i)f (j)µ(Ci)µ(Cj)
2

where Ci denotes the cylinder consisting of
points with address starting with i.
We first estimate this sum over vertices T of
the tree at levels |i| = k and |j| = l > k .
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∑
|i|=k

∑
|j|=l, j�i

f (i)f (j)µ(Ci)µ(Cj)
2

≤
∑
|i|=k

[
f (i)µ(Ci)

][ ∑
|j|=l, j�i

(
f (j)µ(Cj)

3/2
)
µ(Cj)

1/2
]

≤
∑
|i|=k

[
f (i)µ(Ci)

][( ∑
|j|=l, j�i

f (j)2µ(Cj)
3
)1/2( ∑

|j|=l, j�i

µ(Cj)
)1/2]

(C-S)

≤
∑
|i|=k

[
f (i)µ(Ci)

3/2
][ ∑
|j|=l, j�i

f (j)2µ(Cj)
3
]1/2

≤
[∑
|i|=k

f (i)2µ(Ci)
3
]1/2[∑

|i|=k

∑
|j|=l, j�i

f (j)2µ(Cj)
3
]1/2

(C-S)

≤
[∑
|i|=k

f (i)2µ(Ci)
3
]1/2[∑

|j|=l

f (j)2µ(Cj)
3
]1/2

Summing over levels k ≥ 0, l > k gives the desired inequality.
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Thus∫ ∫ ∫
F (t1, t2, t3)dµ(t1)dµ(t2)dµ(t3) ≤

( ∞∑
k=0

[∑
|i|=k

f (i)2µ(Ci)
3
]1/2)2

.

More generally, for integers q ≥ 2,∫
··
∫

F (t1, . . . , tq)dµ(t1). . .dµ(tq) ≤
( ∞∑

k=0

p(k)
[∑
|i|=k

f (i)q−1µ(Ci)
q
] 1

q−1

)q−1

(?)

where p is a polynomial.

Notes:
– when q = 2 this is close to the usual potential theoretic estimate
– the tree can be m-ary rather than just binary
– such estimates can be extended to non-integral q > 1.

In applications f (i) ≡ fs(i) typically depends on a parameter s such that∑
|i|=k

fs(i)q−1µ(Ci)
q � (λs)k

where λs > 0. Then:

E
∫
µω(B(x , r))q−1dµω(x) ≤ c

( ∞∑
k=0

p(k)(λs)k/(q−1)
)q−1

.

The value of s such that λs = 1 is critical for convergence.
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Images of measures under Gaussian processes

Let {xω : [0, 1]→ R, ω ∈ Ω}
be index-α fractional
Brownian motion on a
probability space Ω. Let µ be
a (finite) measure on [0, 1]
and let µω be the measure
induced by xω on R.

What is the relationship
between the Lq-dimensions
Dq(µω) and Dq(µ) (assumed
to exist)?

Theorem (with Yimin Xiao)

For q > 1,
Dq(µω) = min

{
1,

Dq(µ)

α

}
almost surely, where α is the index of the fractional Brownian motion xω.
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Proof ‘≤’: Follows since index-α fBm is a.s. α− ε Hölder.

‘≥’: Using local non-determinism of fBm (roughly that the variance of
xω(t1) conditional on xω(t2), . . . , xω(tq) is controlled by the variance of
xω(t1)− xω(tj) such that |t1 − tj | is least) we get

E
∫
µω(B(x , r))q−1dµω(x)

≤ cr s(q−1)
∫
· · ·
∫

m−|i1|αsm−|im|αs · · ·m−|iq−1|αsdµ(t1) . . . dµ(tq)

where Euclidean distance on [0, 1] has been replaced by an m-ary
ultrametric d(t1, t2) = m−|t1∧t2| and i1, . . . , iq−1 are the q − 1 join points
of t1, . . . , tq. Taking f (i) = m−|i|αs in (?),

≤ cr s(q−1)
( ∞∑

k=0

p(k)
[∑
|i|=k

λs,k

]1/(q−1))q−1
(??)

where
λs,k ≡

∑
|i|=k

f (i)q−1µ(Ci)
q = m−|i|αs(q−1)

∑
|i|=k

µ(Ci)
q.

The sum in (??) is finite if lim supk→∞ λs,k < 1, that is if αs > Dq(µ).�
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Measures on almost self-affine sets

For j = 1, . . . ,m let Tj be linear contractions on Rn and let ωj be
translation vectors. The iterated function system {Tj(x) + ωj} has an
attractor E satisfying E = ∪mj=1(Tj(E ) + ωj) which is a self-affine set.
The attractor E may be characterised in terms of m-ary sequences:
Eω =

⋃
t xω(t) where xω : {1, . . . ,m}N → Rn is given by

xω(t) ≡ xω(t1, t2, . . .) =
∞⋂
k=1

(Tt1 + ωt1)(Tt2 + ωt2) · · · (Ttk + ωtk )(B)
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Let p1, . . . , pm be probabilities (so
0 < pi < 1 and

∑
pi = 1). Let µ be

the Bernoulli probability measure on
{1, . . . ,m}N defined by

µ(Ci) = pi1pi2 . . . pik

where i = (i1, . . . , ik) and Ci is the
corresponding cylinder.

Let µω be the image measure of µ
under xω, which is supported by Eω.

Thus µω
(
(Tt1 + ωt1) · · · (Ttk + ωtk )(B)

)
= pi1pi2 . . . pik .

We would like to find Dq(µω), at least for a.a. translation vectors
ω = (ω1, . . . , ωm). This can be done for 1 < q ≤ 2, but for q > 2 there is
‘not enough transversality’ for the required estimates.
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So we introduce more randomness by allowing the translation
components to vary at each stage of the construction, by taking:

xω(t) =
∞⋂
k=1

(Tt1 +ωt1)(Tt2 +ωt1,t2)(Tt3 +ωt1,t2,t3) · · · (Ttk +ωt1,t2,...tk )(B)

for t = (t1, t2, . . .), where ω = {ωt1,t2,...,tk} is a family of i.i.d random
variables. We call Eω =

⋃
t xω(t) an almost self-affine set (Jordan,

Pollicott & Simon 2007).
Again let µω be the image of the Bernoulli measure µ under xω.
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A self-affine set and an almost self-affine set with the same linear
components in the defining mappings.
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Write φs(T ) for the singular value function of a linear mapping T (e.g.
for T : R2 → R2

φs(T ) =

{
αs
1 (0 ≤ s ≤ 1)
α1α

s−1
2 (1 ≤ s ≤ 2)

where α1, α2 are the semi-axis lengths of T (unit ball):

[if T is a similarity then φs(T ) is just the (scaling ratio of T )s ]. Let

Φs
q = lim

k→∞

( ∑
i1...ik

φs(Ti1 ◦ Ti2 ◦ · · · ◦ Tik )1−q(pi1pi2 . . . pik )q
)1/k

.

Theorem

For q > 1 let sq satisfy Φ
sq
q = 1. Then for almost all ω = {ωt1,t2,...,tk} the

Lq-dimensions of the image measure µω on the almost self-affine set Eω
are given by

Dq(µω) = min{sq, n}.
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Theorem

For q > 1 let sq satisfy Φ
sq
q = 1. Then for almost all ω = {ωt1,t2,...,tk} the

Lq-dimensions of the image measure µω on the almost self-affine set Eω
are given by

Dq(µω) = min{sq, n}.

Proof
‘≤’: Covering argument.
‘≥’: (Case of q ≥ 2 an integer) Using the geometry and randomness

E
∫
µω(B(x , r))q−1dµω(x)

≤ cr s(q−1)
∫
· · ·
∫
φs(Ti1)−1φs(Ti2)−1 . . . φs(Tiq−1)−1dµ(t1) . . . dµ(tq)

where i1, . . . , iq−1 are the join points of t1, . . . , tq.

Then taking f (i) = φs(Ti)
−1 in inequality (?), and using the definition of

Φs
q, this is finite if Φs

q < 1. �

Kenneth Falconer An Analytic Inequality and Higher Multifractal Moments



Random multiplicative cascade measures

Let Wi be independent positive
random variables indexed by
i ∈ ∪∞k=0{1, 2}k ≡ T , which
may be identified with a binary
subdivision of [0, 1].

Let Xi = Wi1Wi1i2 · · ·Wi1i2...ik

where i = (i1, i2, . . . , ik).

Assume that E(Wi) = 1 for all
i ∈ T .

Then Xt|k is a martingale for

each t ∈ {1, 2}N.

These martingales were introduced and studied in the 1970s by

Mandelbrot, Kahane, Peyrière, in particular for self-similar random

multiplicative measures, i.e. when the Wi are identically distributed.
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Let µ be a probability measure on {1, 2}N, and let q > 1.

Theorem

If

lim sup
k→∞

(∑
|i|=k

E
((

Xi µ(Ci)
)q))1/k

< 1

then
lim sup
k→∞

E
((∑
|i|=k

Xi µ(Ci)
)q)

<∞

and
∫

Xt|kdµ(t) converges a.s. and in Lq.

Note that we do not require the Wi to be identically distributed.
Results of this type were obtained by Kahane & Peyrière in the
i.i.d. case for all q > 1 and Barrel in the general case for
1 < q ≤ 2.
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Proof A variant of inequality (?) holds using the independence of
the Wi, taking

F (t1, t2, . . . , tq)

= E(Xi1Xi1 · · ·Xiq−1)µ(Ci1)µ(Ci2) · · ·µ(Ciq−1)

where i1, . . . , iq−1 are the join points of t1, . . . , tq. �

Kenneth Falconer An Analytic Inequality and Higher Multifractal Moments



Conclusion

We have considered a particular method of estimating higher
moments of fractal measures and seen some examples. There are
other situations where a similar approach is possible.

On the other hand, there are certainly other methods for
addressing moment problems.

∗ ∗ ∗ ∗ ∗ ∗ ∗

Fractal geometry has developed beyond recognition since I was
first attracted to the subject in the 1980s.
As this conference shows, there is more interest, more activity and
more open problems than ever, and I am sure the area has a great
future.
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Thank you!
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