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differentiable functions, and functions defined by Julia
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IFS continuation

All real analytic functions are analytic fractal functions

Theorem 1: If f : [0, 1]→ R is real analytic on a neighborhood
of [0, 1] then there is an analytic IFS whose attractor is G(f ).

PROOF: If f is strictly increasing with f ′(x) not varying too
much, IFS is

{X; w1 = (
x
2

, f (
f−1(y)

2
)), w2 = (x/2+ 1/2, f (

f−1(y) + 1
2

))}.

Otherwise, first conjugate by T(x, y) = (x, y+ Cx) with C
sufficiently large. �
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Examples: QUADRATIC, EXPONENTIAL

The graph of f : [0, 1]→ R, f (x) = x2 is the attractor of the
analytic IFS

{R2; w1 = (x/2, y/4), w2 = ((x+ 1)/2, (2x+ y+ 1)/4)}

The graph of f : [1, 2]→ R, f (x) = ex is the attractor of the
analytic IFS

{X; w1 = (x/2+ 1/2,
√

ey), w2(x, y) = (x/2+ 1, e
√

y)}
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fractal continuation=fractal "blow-up"

Let A be attractor ofW = {X; w1, w2}

Let θ = θ1θ2.... ∈ {1, 2}∞

B̂(θ1θ2...θk) = w−1
θ1
◦w−1

θ2
... ◦w−1

θk
(A)

A = B̂(∅) ⊂ B̂(θ1) ⊂ B̂(θ1θ2) ⊂ ... ⊂ B̂(θ1θ2...θk) ⊂ ...
B̂(θ) := ∪k∈NB̂(θ1θ2...θk) is a continuation of A.
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Let A be attractor of an analytic IFSW = {X; w1, w2}.

Theorem 2: If A is an arc of the graph G(f ) of a real analytic
function f : D ⊂ R→ R, then B̂(θ) is the graph of an analytic
continuation of f .
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The graph of f : [0, 1]→ R, f (x) = x2 is the attractor of the
(analytic) IFS
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For almost all θ ∈ I∞, B̂(θ) = {(x, x2) : x ∈ R}
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Description of FIFs

x0 = 0 < x1 < x2 = 1, (xi, yi) ∈ R2 : i = 0, 1, 2

wi : X→ X
wi(x, y) = (aix+ hi, Fi(x, y)) with wi(x0, y0) = (xi−1, yi−1),
wi(xN, yN) = (xi, yi)

|∂Fi(x, y)/∂y| < 1
Theorem 0: The IFSW = {X; w1, w2} has a unique attractor
which is the graph of a function f : [0, 1]→ R.
PROOF: Simple generalisation of theorem in Massopust
book.
If the wis are real analytic then f is called an analytic FIF.
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Analytic FIF may be rough, or rectifiable, or smooth,
or analytic



IFS continuation

Continuation of real analytic attractors

Theorem 2: If A is an arc of the graph of an analytic FIF
f : D ⊂ R→ R, then B̂(θ) is the graph of fθ : Iθ → R, which
coincides with f on D. Moreover,
dimH(G(f )) = dimH(B̂(θ1θ2...θk) for all k.
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Example of continuation of FIFs

A= attractor of
{R2; w1 = (x/2, .5x+ py), w2 = (x/2+ 1,−.5x+ py+ 1)}

...is the graph of a FIF: (Minkowski) dimension D(d), cts.
dep. on p ∈ (−1, 1)
here p = 0.3 and the graph is of finite length
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Fractal continuations of a high Minkowski dimension
analytic fractal function

nowhere differentiable and dim(B̂(θ)) = dim(A) > 1
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Fractal continuations

Fractal continuations of an analytic fractal function
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Examples: differentiable functions

EXAMPLE : continuation of the attractor of two affine
maps: possesses continuous first derivative.

Related to the Kigami triangle.
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Examples: julia sets

EXAMPLE (vi): Part of the Julia set J for z2 − 0.3. Because
of symmetries, also the attractor of {D ⊂ C;

√
z+ 0.3,

−
√
−z− 0.3}.
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Examples: julia sets continued

Continuation of EXAMPLE: in this example B̂ is a
quasi-circle. Continuation is unique, equals the full Julia
set.
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Examples: julia sets continued



IFS continuation

Examples: Daubechies wavelets

These wavelets are piecewise fractal interpolation
functions, attractors of analytic IFSs. Pieces have unique
analytic continuations B̂(θ)
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Uniqueness of Fractal Continuations

Theorem 4 If the graph G(f ) of f : [0, 1]→ R is the (FIF)
attractor of two different analytic IFSs, each of the form
{R2; (anx+ hn, Fn(x, y)) n = 1, 2, ..., N}, then the continuation
associated with 1111.... is same for each.

PROOF: Commutation and Wieirstass preparation
theorem.
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Uniqueness of Fractal Continuations

Theorem 5 If the graph G(f ) of f : [0, 1]→ R is a (FIF)
attractor of an analytic IFS of the form
{R2, (ln(x), Fn(x, y), N = 2}, and f (x) is infinitely
differentiable, or G(f ) has a tangent at all except countably
many points, then the set of continuations is unique.

PROOF:The main steps:
(i) Theorem A: f is Lipshitz (bootstrap argument).
(ii) Theorem B: if G(f ) is rectifiable then f ′(x) is
discontinuous only at points with two addresses.
(iii) If two IFSs, Theorem B implies set of points with
double addresses is same.
(iv) Theorem A implies interpolation nodes are the same.
Then Wieirstrass.
arXiv:1209.6100v2 (Nov 2012)
Conjecture: continuations of analytic FIF is unique.
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Then Wieirstrass.
arXiv:1209.6100v2 (Nov 2012)
Conjecture: continuations of analytic FIF is unique.
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Fast basins

the fast-basin is

B̂ := {x ∈ X : ∃k ∈N s.t.Wk({x})∩A 6= ∅} =∪θ∈{1,2}∞ B̂(θ)

Reverse invariance: W−1(B̂) = A∪W−1(B̂)
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IFS continuation

Picture shows fast basin for Sierpinski



IFS continuation

Inherited properties

Theorem 6 (with K. Lesniak) The following properties are
inherited from A to B̂ and B̂(θ): (i) (arc-) connected; (ii)
empty interior; (iii) σ-porous (*); (iv) topological covering
dimension; (v) Hausdorff dimension (*).

(*) means : assumesW is bi-lipshitz.
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IFS continuation

Branched) fracta(l-mani)folds

(

illustrate fractal manifold using fern



IFS continuation

Fractal manifolds

fractal manifold using fern



IFS continuation

Fast basins and fractal manifolds

A view of a fern fast basin on projective disk



IFS continuation

Kigami fast-basin

Views of the fast basin of the Kigami triangle



IFS continuation

Kigami fast-basin

View of the fast basin of the Kigami triangle



IFS continuation

Kigami fast-basin

Zoom on fast basin of the Kigami triangle



IFS continuation

Kigami fast-basin

Zooms computed by Brendan Harding



IFS continuation

Kigami fractal manifold

Colours try to show depth


