Analytic Continuation of Analytic (Fractal) Functions

Michael F. Barnsley Andrew Vince (UFL)

Australian National University

10 December 2012

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Analytic continuations of fractals generalises analytic continuation of analytic functions

Given a (piece of) an analytic fractal function can we continue it?

▲□▶▲□▶▲□▶▲□▶ □ のQで

Analytic continuations of fractals generalises analytic continuation of analytic functions

- Given a (piece of) an analytic fractal function can we continue it?
- Analytic continuation is a cornerstone notion in mathematics and applications

Analytic iterated function systems (IFS)

$$\mathcal{W} = \{X; w_1, w_2, .., w_N\}$$
 where $w_n : X \to X$ real analytic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• $X = \text{complete subset of } \mathbb{R}^2$

Analytic iterated function systems (IFS)

$$\mathcal{W} = \{X; w_1, w_2, .., w_N\}$$
 where $w_n : X \to X$ real analytic

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

X =complete subset of ℝ²
W: 2^X → 2^X defined by W(S) = ∪w_i(S);

Analytic iterated function systems (IFS)

$$\mathcal{W} = \{X; w_1, w_2, ..., w_N\}$$
 where $w_n : X \to X$ real analytic

- $X = \text{complete subset of } \mathbb{R}^2$
- $W: 2^X \to 2^X$ defined by $W(S) = \cup w_i(S)$;
- an **attractor** is a compact set $A \in K$ s.t. $\lim_{k\to\infty} W^k(S) = A$ for all bounded nonempty $S \subset X$

analytic fractal functions

$$\mathcal{W} = \{X \subset \mathbb{R}^2; w_1, w_2, ..., w_N\}$$
 where $w_n : X \to X$ analytic

• $f : [0,1] \rightarrow \mathbb{R}$ is an **analytic fractal function** if

analytic fractal functions

$$\mathcal{W} = \{X \subset \mathbb{R}^2; w_1, w_2, ..., w_N\}$$
 where $w_n : X \to X$ analytic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

f: [0,1] → ℝ is an analytic fractal function if
 G(*f*) is the attractor of an analytic IFS

analytic fractal functions

$$\mathcal{W} = \{X \subset \mathbb{R}^2; w_1, w_2, ..., w_N\}$$
 where $w_n : X \to X$ analytic

- $f : [0,1] \rightarrow \mathbb{R}$ is an **analytic fractal function** if
- G(f) is the attractor of an analytic IFS
- examples include analytic functions, arcs of wavelets, fractal interpolation functions, Wieirstrass nowhere differentiable functions, and functions defined by Julia sets.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Analytic fractal functions

Analytic fractal functions

All real analytic functions are analytic fractal functions

Theorem 1: If $f : [0,1] \rightarrow \mathbb{R}$ is real analytic on a neighborhood of [0,1] then there is an analytic IFS whose attractor is G(f).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

All real analytic functions are analytic fractal functions

- **Theorem 1:** If $f : [0,1] \rightarrow \mathbb{R}$ is real analytic on a neighborhood of [0,1] then there is an analytic IFS whose attractor is G(f).
- **PROOF**: If *f* is strictly increasing with *f*'(*x*) not varying too much, IFS is

{X;
$$w_1 = (\frac{x}{2}, f(\frac{f^{-1}(y)}{2})), w_2 = (x/2 + 1/2, f(\frac{f^{-1}(y) + 1}{2}))$$
}.

All real analytic functions are analytic fractal functions

- **Theorem 1:** If $f : [0,1] \rightarrow \mathbb{R}$ is real analytic on a neighborhood of [0,1] then there is an analytic IFS whose attractor is G(f).
- PROOF: If *f* is strictly increasing with *f*'(*x*) not varying too much, IFS is

{X;
$$w_1 = (\frac{x}{2}, f(\frac{f^{-1}(y)}{2})), w_2 = (x/2 + 1/2, f(\frac{f^{-1}(y) + 1}{2}))$$
}.

Otherwise, first conjugate by T(x, y) = (x, y + Cx) with C sufficiently large.

Examples: QUADRATIC, EXPONENTIAL

The graph of $f : [0,1] \to \mathbb{R}$, $f(x) = x^2$ is the attractor of the analytic IFS

{ \mathbb{R}^2 ; $w_1 = (x/2, y/4), w_2 = ((x+1)/2, (2x+y+1)/4)$ }

Examples: QUADRATIC, EXPONENTIAL

The graph of $f : [0, 1] \to \mathbb{R}$, $f(x) = x^2$ is the attractor of the analytic IFS

{
$$\mathbb{R}^2$$
; $w_1 = (x/2, y/4), w_2 = ((x+1)/2, (2x+y+1)/4)$ }

The graph of $f : [1,2] \to \mathbb{R}$, $f(x) = e^x$ is the attractor of the analytic IFS

{X; $w_1 = (x/2 + 1/2, \sqrt{ey}), w_2(x, y) = (x/2 + 1, e\sqrt{y})$ }

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let *A* be attractor of $\mathcal{W} = \{X; w_1, w_2\}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Let *A* be attractor of $\mathcal{W} = \{X; w_1, w_2\}$ • Let $\theta = \theta_1 \theta_2 \dots \in \{1, 2\}^{\infty}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let *A* be attractor of $\mathcal{W} = \{X; w_1, w_2\}$

• Let
$$\theta = \theta_1 \theta_2 \dots \in \{1, 2\}^\infty$$

$$\widehat{B}(\theta_1\theta_2...\theta_k) = w_{\theta_1}^{-1} \circ w_{\theta_2}^{-1}... \circ w_{\theta_k}^{-1}(A)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Let *A* be attractor of $\mathcal{W} = \{X; w_1, w_2\}$
- Let $\theta = \theta_1 \theta_2 \dots \in \{1, 2\}^{\infty}$
- $\widehat{B}(\theta_1\theta_2...\theta_k) = w_{\theta_1}^{-1} \circ w_{\theta_2}^{-1}... \circ w_{\theta_k}^{-1}(A)$
- $\blacksquare \ A = \widehat{B}(\varnothing) \subset \widehat{B}(\theta_1) \subset \widehat{B}(\theta_1\theta_2) \subset \ldots \subset \widehat{B}(\theta_1\theta_2...\theta_k) \subset \ldots$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Let *A* be attractor of $\mathcal{W} = \{X; w_1, w_2\}$

• Let
$$\theta = \theta_1 \theta_2 \dots \in \{1, 2\}^{\infty}$$

$$\widehat{B}(\theta_1\theta_2...\theta_k) = w_{\theta_1}^{-1} \circ w_{\theta_2}^{-1}... \circ w_{\theta_k}^{-1}(A)$$

 $\bullet A = \widehat{B}(\emptyset) \subset \widehat{B}(\theta_1) \subset \widehat{B}(\theta_1 \theta_2) \subset \ldots \subset \widehat{B}(\theta_1 \theta_2 \ldots \theta_k) \subset \ldots$

• $\widehat{B}(\theta) := \cup_{k \in \mathbb{N}} \widehat{B}(\theta_1 \theta_2 ... \theta_k)$ is a **continuation** of *A*.

Continuation of real analytic attractors

• Let *A* be attractor of an analytic IFS $W = \{X; w_1, w_2\}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Continuation of real analytic attractors

- Let *A* be attractor of an analytic IFS $W = \{X; w_1, w_2\}$.
- **Theorem 2:** If A is an arc of the graph G(f) of a real analytic function $f : D \subset \mathbb{R} \to \mathbb{R}$, then $\widehat{B}(\theta)$ is the graph of an analytic continuation of f.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Example (i) PARABOLA

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Example (i) PARABOLA
- The graph of $f : [0,1] \to \mathbb{R}$, $f(x) = x^2$ is the attractor of the (analytic) IFS

 $\mathcal{W} = \{\mathbb{R}^2; w_1 = (x/2, y/4), w_2 = ((x+1)/2, (2x+y+1)/4)\}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Example (i) PARABOLA
- The graph of $f : [0,1] \to \mathbb{R}$, $f(x) = x^2$ is the attractor of the (analytic) IFS

$$\mathcal{W} = \{\mathbb{R}^2; w_1 = (x/2, y/4), w_2 = ((x+1)/2, (2x+y+1)/4)\}$$

• For almost all $\theta \in I^{\infty}$, $\widehat{B}(\theta) = \{(x, x^2) : x \in \mathbb{R}\}$

Examples: real analytic attractors

Example (ii) EXPONENTIAL

Examples: real analytic attractors

- Example (ii) EXPONENTIAL
- The graph of $f : [1,2] \to \mathbb{R}$, $f(x) = e^x$ is the attractor of the IFS

 $\mathcal{W} = \{\mathbb{R}^2; w_1 = (x/2 + 1/2, \sqrt{ey}), w_2(x, y) = (x/2 + 1, \sqrt{e^2y})\}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples: real analytic attractors

- Example (ii) EXPONENTIAL
- The graph of $f : [1,2] \to \mathbb{R}$, $f(x) = e^x$ is the attractor of the IFS

$$\mathcal{W} = \{\mathbb{R}^2; w_1 = (x/2 + 1/2, \sqrt{ey}), w_2(x, y) = (x/2 + 1, \sqrt{e^2y})\}$$

• For almost all $\theta \in I^{\infty}$, $\widehat{B}(\theta) = \{(x, e^x) : x \in \mathbb{R}\}$

• $x_0 = 0 < x_1 < x_2 = 1$, $(x_i, y_i) \in \mathbb{R}^2$: i = 0, 1, 2

•
$$x_0 = 0 < x_1 < x_2 = 1$$
, $(x_i, y_i) \in \mathbb{R}^2$: $i = 0, 1, 2$
• $w_i : X \to X$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

•
$$x_0 = 0 < x_1 < x_2 = 1, (x_i, y_i) \in \mathbb{R}^2 : i = 0, 1, 2$$

•
$$w_i: X \to X$$

• $w_i(x,y) = (a_ix + h_i, F_i(x,y))$ with $w_i(x_0, y_0) = (x_{i-1}, y_{i-1}),$ $w_i(x_N, y_N) = (x_i, y_i)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

•
$$x_0 = 0 < x_1 < x_2 = 1, (x_i, y_i) \in \mathbb{R}^2 : i = 0, 1, 2$$

•
$$w_i: X \to X$$

• $w_i(x,y) = (a_ix + h_i, F_i(x,y))$ with $w_i(x_0, y_0) = (x_{i-1}, y_{i-1}),$ $w_i(x_N, y_N) = (x_i, y_i)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $|\partial F_i(x,y)/\partial y| < 1$

•
$$x_0 = 0 < x_1 < x_2 = 1, (x_i, y_i) \in \mathbb{R}^2 : i = 0, 1, 2$$

•
$$w_i: X \to X$$

- $w_i(x,y) = (a_i x + h_i, F_i(x,y))$ with $w_i(x_0, y_0) = (x_{i-1}, y_{i-1}),$ $w_i(x_N, y_N) = (x_i, y_i)$
- $|\partial F_i(x,y)/\partial y| < 1$
- **Theorem 0:** The IFS $W = \{X; w_1, w_2\}$ has a unique attractor which is the graph of a function $f : [0, 1] \rightarrow \mathbb{R}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

•
$$x_0 = 0 < x_1 < x_2 = 1, (x_i, y_i) \in \mathbb{R}^2 : i = 0, 1, 2$$

•
$$w_i: X \to X$$

- $w_i(x,y) = (a_i x + h_i, F_i(x,y))$ with $w_i(x_0, y_0) = (x_{i-1}, y_{i-1}),$ $w_i(x_N, y_N) = (x_i, y_i)$
- $|\partial F_i(x,y)/\partial y| < 1$
- **Theorem 0:** The IFS $W = \{X; w_1, w_2\}$ has a unique attractor which is the graph of a function $f : [0, 1] \rightarrow \mathbb{R}$.
- PROOF: Simple generalisation of theorem in Massopust book.

▲□▶▲□▶▲□▶▲□▶ □ のQで

•
$$x_0 = 0 < x_1 < x_2 = 1, (x_i, y_i) \in \mathbb{R}^2 : i = 0, 1, 2$$

•
$$w_i: X \to X$$

- $w_i(x,y) = (a_i x + h_i, F_i(x,y))$ with $w_i(x_0, y_0) = (x_{i-1}, y_{i-1}),$ $w_i(x_N, y_N) = (x_i, y_i)$
- $|\partial F_i(x,y)/\partial y| < 1$
- **Theorem 0:** The IFS $W = \{X; w_1, w_2\}$ has a unique attractor which is the graph of a function $f : [0, 1] \rightarrow \mathbb{R}$.
- PROOF: Simple generalisation of theorem in Massopust book.
- If the *w*_is are real analytic then *f* is called an **analytic FIF**.

(日)
Analytic FIF may be rough, or rectifiable, or smooth, or analytic

◆ロ▶◆母▶◆臣▶◆臣▶ 臣 の々で

Continuation of real analytic attractors

• **Theorem 2:** If A is an arc of the graph of an analytic FIF $f: D \subset \mathbb{R} \to \mathbb{R}$, then $\widehat{B}(\theta)$ is the graph of $f_{\theta}: I_{\theta} \to \mathbb{R}$, which coincides with f on D. Moreover, $\dim_H(G(f)) = \dim_H(\widehat{B}(\theta_1\theta_2...\theta_k))$ for all k.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

• *A*= attractor of $\{\mathbb{R}^2; w_1 = (x/2, .5x + py), w_2 = (x/2 + 1, -.5x + py + 1)\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● ● ● ●

- *A*= attractor of $\{\mathbb{R}^2; w_1 = (x/2, .5x + py), w_2 = (x/2 + 1, -.5x + py + 1)\}$
- ...is the graph of a FIF: (Minkowski) dimension D(d), cts. dep. on $p \in (-1, 1)$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- *A*= attractor of $\{\mathbb{R}^2; w_1 = (x/2, .5x + py), w_2 = (x/2 + 1, -.5x + py + 1)\}$
- ...is the graph of a FIF: (Minkowski) dimension D(d), cts. dep. on $p \in (-1, 1)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

• here p = 0.3 and the graph is of finite length

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• same as the previous example, but now p = 0.5

- same as the previous example, but now p = 0.5
- once differentiable except at countably many points

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Example: fractal continuations

 Fractal continuations of a high Minkowski dimension analytic fractal function

(日)

Example: fractal continuations

 Fractal continuations of a high Minkowski dimension analytic fractal function

• nowhere differentiable and $dim(\widehat{B}(\theta)) = dim(A) > 1$

イロト イポト イヨト イヨト

Fractal continuations

Fractal continuations of an analytic fractal function

Examples: differentiable functions

• EXAMPLE : continuation of the attractor of two affine maps: possesses continuous first derivative.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Examples: differentiable functions

• EXAMPLE : continuation of the attractor of two affine maps: possesses continuous first derivative.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Related to the Kigami triangle.

Examples: julia sets

• EXAMPLE (vi): Part of the Julia set *J* for $z^2 - 0.3$. Because of symmetries, also the attractor of $\{\mathbb{D} \subset \mathbb{C}; \sqrt{z+0.3}, -\sqrt{-z-0.3}\}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Examples: julia sets continued

 Continuation of EXAMPLE: in this example B̂ is a quasi-circle. Continuation is unique, equals the full Julia set.

イロト 不得 とうほう イヨン

-

Examples: julia sets continued

Examples: Daubechies wavelets

• These wavelets are piecewise fractal interpolation functions, attractors of analytic IFSs. Pieces have unique analytic continuations $\widehat{B}(\theta)$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

■ **Theorem 4** If the graph G(f) of $f : [0,1] \rightarrow \mathbb{R}$ is the (FIF) attractor of two different analytic IFSs, each of the form $\{\mathbb{R}^2; (a_nx + h_n, F_n(x, y)) | n = 1, 2, ..., N\}$, then the continuation associated with 1111.... is same for each.

■ **Theorem 4** If the graph G(f) of $f : [0,1] \to \mathbb{R}$ is the (FIF) attractor of two different analytic IFSs, each of the form $\{\mathbb{R}^2; (a_nx + h_n, F_n(x, y)) | n = 1, 2, ..., N\}$, then the continuation associated with 1111.... is same for each.

PROOF: Commutation and Wieirstass preparation theorem.

• **Theorem 5** If the graph G(f) of $f : [0,1] \rightarrow R$ is a (FIF) attractor of an analytic IFS of the form $\{\mathbb{R}^2, (l_n(x), F_n(x, y), N = 2\}, and f(x) \text{ is infinitely differentiable, or } G(f)$ has a tangent at all except countably many points, then the set of continuations is unique.

Theorem 5 *If the graph* G(f) of f : [0,1] → R *is a (FIF)* attractor of an analytic *IFS* of the form {ℝ², (l_n(x), F_n(x, y), N = 2}, and f(x) is infinitely differentiable, or G(f) has a tangent at all except countably many points, then the set of continuations is unique.
PROOF:The main steps:

Theorem 5 *If the graph* G(f) of f : [0,1] → R *is a (FIF) attractor of an analytic IFS of the form* {ℝ², (l_n(x), F_n(x, y), N = 2}, and f(x) is infinitely differentiable, or G(f) *has a tangent at all except countably many points, then the set of continuations is unique.* **PROOF:**The main steps:

■ (i) Theorem A: *f* is Lipshitz (bootstrap argument).

■ **Theorem 5** *If the graph* G(f) *of* $f : [0,1] \rightarrow R$ *is a (FIF) attractor of an analytic IFS of the form* { \mathbb{R}^2 , $(l_n(x), F_n(x, y), N = 2$ }, and f(x) is infinitely differentiable, or G(f) has a tangent at all except countably many points, then the set of continuations is unique.

- PROOF: The main steps:
- (i) Theorem A: *f* is Lipshitz (bootstrap argument).
- (ii) Theorem B: if *G*(*f*) is rectifiable then *f*′(*x*) is discontinuous only at points with two addresses.

- **Theorem 5** *If the graph* G(f) *of* $f : [0,1] \rightarrow R$ *is a (FIF) attractor of an analytic IFS of the form* { \mathbb{R}^2 , $(l_n(x), F_n(x, y), N = 2$ }, and f(x) is infinitely differentiable, or G(f) has a tangent at all except countably many points, then the set of continuations is unique.
- PROOF: The main steps:
- (i) Theorem A: *f* is Lipshitz (bootstrap argument).
- (ii) Theorem B: if *G*(*f*) is rectifiable then *f*′(*x*) is discontinuous only at points with two addresses.
- (iii) If two IFSs, Theorem *B* implies set of points with double addresses is same.

- **Theorem 5** *If the graph* G(f) *of* $f : [0,1] \rightarrow R$ *is a (FIF) attractor of an analytic IFS of the form* { \mathbb{R}^2 , $(l_n(x), F_n(x, y), N = 2$ }, and f(x) is infinitely differentiable, or G(f) has a tangent at all except countably many points, then the set of continuations is unique.
- PROOF: The main steps:
- (i) Theorem A: *f* is Lipshitz (bootstrap argument).
- (ii) Theorem B: if *G*(*f*) is rectifiable then *f*′(*x*) is discontinuous only at points with two addresses.
- (iii) If two IFSs, Theorem *B* implies set of points with double addresses is same.
- (iv) Theorem *A* implies interpolation nodes are the same. Then Wieirstrass.

- **Theorem 5** *If the graph* G(f) *of* $f : [0,1] \rightarrow R$ *is a (FIF) attractor of an analytic IFS of the form* { \mathbb{R}^2 , $(l_n(x), F_n(x, y), N = 2$ }, and f(x) is infinitely differentiable, or G(f) has a tangent at all except countably many points, then the set of continuations is unique.
- PROOF: The main steps:
- (i) Theorem A: *f* is Lipshitz (bootstrap argument).
- (ii) Theorem B: if *G*(*f*) is rectifiable then *f*′(*x*) is discontinuous only at points with two addresses.
- (iii) If two IFSs, Theorem *B* implies set of points with double addresses is same.
- (iv) Theorem *A* implies interpolation nodes are the same. Then Wieirstrass.
- arXiv:1209.6100v2 (Nov 2012)

- **Theorem 5** *If the graph* G(f) *of* $f : [0,1] \rightarrow R$ *is a (FIF) attractor of an analytic IFS of the form* { \mathbb{R}^2 , $(l_n(x), F_n(x, y), N = 2$ }, and f(x) is infinitely differentiable, or G(f) has a tangent at all except countably many points, then the set of continuations is unique.
- PROOF: The main steps:
- (i) Theorem A: *f* is Lipshitz (bootstrap argument).
- (ii) Theorem B: if *G*(*f*) is rectifiable then *f*′(*x*) is discontinuous only at points with two addresses.
- (iii) If two IFSs, Theorem *B* implies set of points with double addresses is same.
- (iv) Theorem *A* implies interpolation nodes are the same. Then Wieirstrass.
- arXiv:1209.6100v2 (Nov 2012)
- **Conjecture:** *continuations of analytic FIF is unique.*

Fast basins

• the **fast-basin** is

$$\widehat{B} := \{x \in X : \exists k \in \mathbb{N} \text{ s.t.} W^k(\{x\}) \cap A \neq \emptyset\} = \cup_{\theta \in \{1,2\}^{\infty}} \widehat{B}(\theta)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Fast basins

• the fast-basin is

$$\widehat{B} := \{x \in X : \exists k \in \mathbb{N} \text{ s.t.} W^k(\{x\}) \cap A \neq \emptyset\} = \cup_{\theta \in \{1,2\}^{\infty}} \widehat{B}(\theta)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Reverse invariance: $W^{-1}(\widehat{B}) = A \cup W^{-1}(\widehat{B})$

Picture shows fast basin for Sierpinski

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへ⊙

Inherited properties

Theorem 6 (with K. Lesniak) The following properties are inherited from A to B and B(θ): (i) (arc-) connected; (ii) empty interior; (iii) σ-porous (*); (iv) topological covering dimension; (v) Hausdorff dimension (*).

Inherited properties

Theorem 6 (with K. Lesniak) The following properties are inherited from A to B̂ and B̂(θ): (i) (arc-) connected; (ii) empty interior; (iii) *σ*-porous (*); (iv) topological covering dimension; (v) Hausdorff dimension (*).

▲□▶▲□▶▲□▶▲□▶ □ のQで

• (*) means : assumes \mathcal{W} is bi-lipshitz.

(

Branched) fracta(*l-mani*)folds

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Fractal manifolds

fractal manifold using fern

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Fast basins and fractal manifolds

Kigami fast-basin

Kigami fast-basin

Kigami fast-basin

Kigami fast-basin

Kigami fractal manifold

