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Discretized Rotation

Conjecture 1. For any −2 < λ < 2, the integer sequence

defined by 0 ≤ an+1 + λan + an−1 < 1 is periodic.

In other words, we are interested in the dynamics on Z2:

(x, y) 7→ (y,−⌊x+ λy⌋)



Our transformation on Z2 : (x, y) 7→ (X,Y ) is written as

(
X

Y

)
=

(
0 1

−1 −λ

)(
x

y

)
+

(
0

µ

)

with µ ∈ [0, 1). Let Q =

(
− sin θ cos θ

0 1

)
. Since

Q

(
cos θ − sin θ

sin θ cos θ
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,



we view this algorithm as

Q−1

(
X

Y

)
=
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cos θ − sin θ

sin θ cos θ

)
Q−1
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)
+Q−1

(
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It is the dynamics acting on the lattice

L =

(
− csc θ

0

)
Z+

(
cot θ

1

)
Z

written as the composition of the Euclidean rotation of angle θ

followed by a small translation

v 7→ v + µ

(
cot θ

1

)
with µ ∈ [0, 1).



Why do we study this ?

• Problem on integers. Difficult. (Why Xn + Y n = Zn)

• Discretized version of dynamics. Is computer simulation

reliable ?

• Reversible system. Rotation without information loss.

• Composition of two involutions. Common feature with

interval exchange transformation, billiard dynamics, etc.



Mathematica code

r1 = 1/2;

a = {100, -15};

L = NestWhileList[Function[z,

{Last[z],-Floor[First[z] + r1 Last[z]]}],

a, ! (a == #) &, {2,1}];

Print[Length[L]-1];

Show[Graphics[Map[Point, L]],

AspectRatio -> Automatic, Axes -> True];
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Figure 1: λ = 1/2: initial value (100,−15)
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Figure 2: λ = (
√
5− 1)/2: initial value (100,−15)



There are many researchers in dynamics interested in this

system: Vivaldi, Kouptsov, Lowenstein, Goetz, Poggiaspalla,

Vladimirov, Bosio, Shaidenko, . . . . However we know very

little on this system. The Conjecture is true for 11 values:

λ = 0,±1,±
√
2,±

√
3,
±1±

√
5

2
.

First three cases are trivial. The others are exactly the cases

when θ/π is rational and λ is quadratic. See [2, 7, 1].

In fact, if θ/π is rational then we can embed the system into

domain exchange dynamics of the torus of dimension 2(d− 1)

where d = deg(λ). This makes the problem a little easier.



Let us take λ = ω = (1 +
√
5)/2 and ζ = exp(2π

√
−1/5).

We have Z[ζ] = Z[ω] + (−ζ−1)Z[ω]. Denote by ⟨x⟩ the

fractional part of x ∈ R. Putting xn = ⟨ωan⟩, we have

0 ≤ an + ωan+1 + an+2 < 1

an + ωan+1 + an+2 = ⟨ωan+1⟩

⟨ωan⟩ −
1

ω
⟨ωan+1⟩+ ⟨ωan+2⟩ ≡ 0 (mod Z)

xn − (ζ + ζ−1)xn+1 + xn+2 ≡ 0 (mod Z)

(xn+1 − ζ−1xn+2) ≡ ζ−1(xn − ζ−1xn+1) (mod ζ−1Z)



which gives a piecewise isometry acting on a lozenge X :

T (x) =

{
x/ζ Im(x/ζ) ≥ 0

(x− 1)/ζ Im(x/ζ) < 0
.

and we have a commutative diagram by putting xn = ⟨ωan⟩:

(an+1, an) ∈ Z2 −→ Z2 ∋ (an+2, an+1)

π

y π

y
xn − ζ−1xn+1 ∈ X

T−→ X ∋ xn+1 − ζ−1xn+2
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Figure 3: The orbit of 1/3
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Figure 4: Self Inducing structure



In higher dimension, it is hard to visualize self-inducing

structure. If you project 4-dim discretized rotation to the plane,

then we sometime see the self-inducing structure. However, by

this projection, we lose connection to the original dynamics.



7-fold rotation.

First return to region

Self-inducing map
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First return map to
lower two triangles

Self-similar return map
to smaller triangle



9-fold rotation.

First return to triangle
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When λ is a rational number with a prime power

denominator, there is an interesting attempt to embed

discretized rotation to a p-adic space by Bosio-Vivaldi [5].

They represent the dynamics as composition of multiplication

of p-adic unit and symbolic shift.

Domain exchange is an invertible dynamics with zero entropy

([6]). So we do not know the behavior of periodic orbits.

Changing the angle of the domain exchange, we obtain

interesting experiments.



11-fold rotation.
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Irrational rotation case.
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However this is nothing to do with original problem.

Summary.

We know almost nothing on the original discretized rotation

problem.

At this stage, we are interested in giving a weak result on

the discretized rotation dynamics.



Theorem 1 ([3]).For all fixed λ ∈ (−2, 2) there are infinitely

many periodic orbits of the dynamics

(x, y) → (y,−⌊x+ λy⌋)

on Z2.

In fact, we could show the same statement for:

(x, y) → (y,−⌊x+ λy + µ⌋)



First Tool.

Lemma 2 (Vinogradoff). Let f ∈ C2[a, b], k ≥ 1 and A > 29.

Assume that
1

kA
< f ′′(x) <

1

A
for a ≤ x ≤ b. Then we have∑

a<x<b

⟨f(x)⟩ = b− a

2
+G

with

|G| < 2k

(
b− a

A
+ 1

)
(A logA)2/3.



This is used to count lattice points in the region defined by

curves of positive curvature, like the circle problem of Gauss:

Card{(x, y) ∈ Z2 | x2 + y2 ≤ R2} = πR2 +O(R2/3+ε)

is derived by the lemma. Many number theorists made efforts

to improve the error term. The expected exponent is 1/2 + ε.



Second Tool.

Identify the orbits of our dynamics with bi-infinite sequence

(an). We say that (an) is periodic if there is an integer p > 0

that an+p = an, and is symmetric at b/2 if ab−n = an. If the

orbits is symmetric at b1/2 and b2/2, then we call it doubly

symmetric. Here we state a pretty trivial

Lemma 3.Doubly symmetric orbits are periodic. Symmetric

periodic orbits are doubly symmetric.

The idea to observe symmetric orbits date back to

G. Birkhoff [?, 4] who proved that there are infinitely many

symmetric periodic orbits in restricted problem of three bodies.



Sketch of the proof.

Define a trap region T (R) by

T (R) =

{
x+ y

(
cot θ

1

) ∣∣∣∣x ∈ B(R), y ∈ [0, 1)

}
\B(R).
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Figure 5: Trap Region

Then symmetric unbounded orbits must visit at least once



the trap region. We compare an upper bound of lattice points

in the trap region and the lower bound of symmetric points in

B(R).

There are two kinds of symmetric orbits:

(. . . , a−1, a−1, X,X.a1, a2, . . . )

and

(. . . , a−1, a−1, X, Y,X.a1, a2, . . . ).

There are 2R cos(θ/2) − C1 unbounded orbits of (X,X)

type.

There are R− C2 unbounded orbits of (X,Y,X) type.



There are 2R+O(R2/3+ε) points in the trap region.

If θ < 2π/3, then 2R cos(θ/2) − C1 + R − C3 > 2R +

O(R2/3+ε) holds for R ≪ 1.

To study the case θ ≥ 2π/3, we have to look into the

symmetry of the periodic orbits. If (an, an+1) = (C,D) occurs,

then there is m with (am, am+1) = (D,C). We are double

counting some part of lattice points in the trap region.
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Figure 6: Symmetry of the trap region



Eliminating double counts there are R + R cos(θ/2) +

O(R2/3+ε) lattice points in the trap region!

2R cos(θ/2)− C1 +R− C3 > R+R cos(θ/2) +O(R2/3+ε)

holds for sufficiently large R.
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