
AN INTRODUCTION TO POWER SERIES

A finite sum of the form

a0 + a1x+ · · ·+ anx
n

(where a0, . . . , an are constants) is called a polynomial of degree n in x. One may wonder what
happens if we allow an infinite number of terms instead. This leads to the study of what is
called a power series, as follows.

Definition 1. Given a point c ∈ R, and a sequence of (real or complex) numbers a0, a1, . . . ,
one can form a power series centered at c:

a0 + a1(x− c) + a2(x− c)2 + . . . ,

which is also written as
∞∑
k=0

ak(x− c)k.

For example, the following are all power series centered at 0:

1 +
x

1!
+
x2

2!
+
x3

3!
+ . . . =

∞∑
k=0

xk

k!
,(1)

1 + x+ x2 + x3 + . . . =

∞∑
k=0

xk.(2)

We want to think of a power series as a function of x. Thus we are led to study carefully the
convergence of such a series. Recall that an infinite series of numbers is said to converge, if the
sequence given by the sum of the first N terms converges as N tends to infinity. In particular,
given a real number x, the series

∞∑
k=0

ak(x− c)k

converges, if and only if

lim
N→∞

N∑
k=0

ak(x− c)k

exists.
A power series centered at c will surely converge at x = c (because one is just summing a

bunch of zeroes then), but there is no guarantee that the series will converge for any other
values x. Nonetheless, one can prove:

Theorem 1. Given any power series

∞∑
k=0

ak(x− c)k,

there exists a number R ∈ [0,∞], such that the series converges for all x with |x− c| < R, and
diverges for all x with |x− c| > R.

Such R is clearly uniquely determined by the power series, and is called the radius of conver-
gence of the power series.

For example, the radius of convergence of the power series

1 + x+ x2 + x3 + . . .

is 1, since the series converges for x with |x− 0| < 1, and diverges for x with |x− 0| > 1: indeed
for any non-negative integer N , the sum of the first (N + 1) terms is a finite geometric series,
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which can be evaluated as

1 + x+ x2 + · · ·+ xN =
N∑
k=0

xk =
1− xN+1

1− x
.

We have that
1− xN+1

1− x

{
converges to 1

1−x if |x| < 1, and

diverges if |x| ≥ 1,

hence the above conclusion for the radius of convergence of 1 + x+ x2 + x3 + . . . .
We note that we have just established one of the most useful power series in practice:

1 + x+ x2 + x3 + · · · = 1

1− x
if |x| < 1.

This equality should really be read backwards: in practice, it is often important to know that
1/(1− x) can be expanded into a convergent power series when |x| < 1.

Theorem 1 can be proved in full generality by comparing to the geometric series above. We
will not enter into the details here.

The radius of convergence of a power series can often be computed using the following theo-
rem:

Theorem 2. Let R be the radius of convergence of the power series
∞∑
k=0

ak(x− c)k.

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists, then

R =
1

lim
n→∞

∣∣∣an+1

an

∣∣∣ ;
If lim

n→∞
|an|1/n exists, then

R =
1

lim
n→∞

|an|1/n
.

(Here we interpret 1/0 to be +∞, and 1/+∞ to be 0, just so that the statement of the theorem
can be more succinct.)

For instance, consider the radius of convergence of the power series (1). There an = 1
n! , and

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1

n+ 1
= 0,

so the radius of the power series is ∞, i.e. the series converges for all x ∈ R. This allows one to
define a function exp: R→ R, given by

exp(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · =

∞∑
k=0

xk

k!

for all x ∈ R. We will show that this function has all the properties of our usual exponential
function.

Another example is given by the series

(3) 1 + 2x+ 3x2 + 4x3 + · · · =
∞∑
n=0

(n+ 1)xn.

There an = n+ 1, and

lim
n→∞

|an|1/n = lim
n→∞

(n+ 1)1/n = 1,

so the radius of convergence of the series is 1, i.e. the series converges for all x with |x| < 1,
and diverges for all x with |x| > 1.

Note that the above theorem does not say anything about convergence when |x−c| is exactly
equal to R. That is something that must be decided case by case.
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Also, it can be shown that if lim
n→∞

|an|1/n exists, then lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists, and the two limits

are equal. This guarantees that we will get the same radius of convergence for a power series,
regardless of the formula we use.

The good thing about staying within the radius of convergence is not just that the series
converge, but also that one can differentiate the series term by term:

Theorem 3. Suppose R is the radius of convergence of the power series
∞∑
k=0

ak(x− c)k,

and Br(c) = {x : |x− c| < R}. Then one can define a function f on Br(c), by

f(x) =

∞∑
k=0

ak(x− c)k for all x with |x− c| < R.

This function f will be infinitely differentiable on Br(c); in addition, for all positive integers m,
and for all x with |x− c| < R, the series

∞∑
k=0

dm

dxm
ak(x− c)k will converge, and be equal to

dmf

dxm
.

This is a remarkable theorem, since the infinite sum of differentiable functions may not be
differentiable. An example was given by Weierstrass: the series

∞∑
k=1

(
2

3

)k

cos(9kπx)

converges for all real numbers x, thereby defining a function f(x) on R, but while f is continuous
at every point of R, it is known (but the proof is beyond the scope of this course) that f is
not differentiable at any point on R. (This is an example of a function that is everywhere
continuous, but nowhere differentiable!)

To illustrate the power of this theorem, one can use this to differentiate exp(x), and prove
that

d

dx
exp(x) = exp(x) for all x ∈ R.

Also, recall we knew

1 + x+ x2 + x3 + x4 + · · · = 1

1− x
for |x| < 1.

The above theorem allows us to differentiate both sides, and obtain, successively,

1 + 2x+ 3x2 + 4x3 + 5x4 + · · · = 1

(1− x)2
for |x| < 1

1 + 3x+ 6x2 + 10x3 + 15x4 + · · · = 1

(1− x)3
for |x| < 1

etc. (These are remarkable identities! For instance, now we can compute the value of

1 +
2

3
+

3

32
+

4

33
+

5

34
+ . . . .

according to the formula for 1/(1−x)2, this is just 1/(1− (1/3))2 = 9/4, and this is not obvious
at all without using differential calculus!)

Another consequence of the above theorem is:

Corollary 4. Let f(x) be as in Theorem 3. Then the Taylor polynomial of f up to order n
at c (which we will denote by Tn,cf(x)) is just the sum of the first (n + 1) terms of the series
defining f , i.e.

Tn,cf(x) =

n∑
k=0

ak(x− c)k.
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The proof of the corollary is very easy: one just notes that by the theorem, we have

f (k)(c) = k!ak,

so

Tn,cf(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k =

n∑
k=0

ak(x− c)k.

This gives us a very powerful tool in computing Taylor polynomials.
For example, here is how we would compute the Taylor polynomial of exp(x2). We knew

exp(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . .

so

exp(x2) = 1 +
x2

1!
+
x4

2!
+
x6

3!
+ . . .

It follows that the Taylor polynomial of exp(x2) up to order 6 at 0 is

1 +
x2

1!
+
x4

2!
+
x6

3!
.

(It would be quite painful to prove this, by directly computing the derivative of exp(x2) up to
order 6!)


