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Abstract. For any self-similar measure µ on Rd satisfying the weak separation
condition, we show that there exists an open ball U0 with µ(U0) > 0 such that
the distribution of µ, restricted on U0, is controlled by the products of a family of
non-negative matrices, and hence µ|U0 satisfies a kind of quasi-product property.
Furthermore, the multifractal formalism for µ|U0 is valid on the whole range of
dimension spectrum, regardless of whether there are phase transitions. Moreover
the dimension spectra of µ and µ|U0 coincide for q ≥ 0. This result unifies and
improves many of the recent works on the multifractal structure of self-similar
measures with overlaps.

RÉSUMÉ. On montre que pour toute mesure auto-similaire sur R satisfaisant la
condition de séparation faible, il existe une boule U0 telle que µ(B0) > 0 ainsi
qu’une famille finie F de matrices positives telles que µ|U0 , la distribution de
µ restreinte à B0, soit contrôlée par des produits d’éléments de F , de sorte que
µ|U0 satisfasse une propriété de type quasi-multiplicativité. De plus, le formalisme
multifractal est valide pour µ|U0 sur tout l’intervalle de définition du spectre de
singularités, qu’il y ait ou non des transitions de phases. Enfin, les spectres de
singularités de µ et µ|U0 cöıncident pour q ≥ 0. Ces résultats unifient et améliorent
un grand nombre de travaux récents portant sur la structure multifractale des
mesures auto-similaires avec recouvrements.
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1. Introduction

Let µ be a Borel probability measure on Rd with compact support. For any open

set V ⊂ Rd with µ(V ) > 0, let τV (q), q ∈ R, be the Lq-spectrum of µ restricted on

V , which is defined by

τV (q) = lim inf
r→0

log ΘV (q; r)

log r
,

where

ΘV (q; r) = sup
∑
i

µ(B(xi, r))
q, r > 0, q ∈ R,

and the supremum is taken over all families of disjoint closed balls {B(xi, r)}i con-

tained in V with xi ∈ supp(µ). For any α ≥ 0, define

EV (α) = {x ∈ V ∩ suppµ : α(x) = α},

where α(x) is the local dimension of µ at x defined by

α(x) = lim
r→0

log µ(B(x, r))

log r

provided that the limit exists. In particular, for V = Rd, we write τRd(q) = τ(q)

and ERd(α) = E(α), and call them the Lq-spectrum and the level set of µ respec-

tively. Moreover, we call dimH E(α) the dimension spectrum of µ, and dimH EV (α)

the dimension spectrum of µ restricted on V , where dimH denotes the Hausdorff

dimension.

In this paper we focus our consideration on self-similar measures. For 1 ≤ i ≤ m,

let Si : Rd → Rd be contractive similitudes,

Si(x) = ρiRi(x) + bi, (1.1)

where 0 < ρi < 1, bi ∈ Rd and Ri are orthogonal transformations. As usual, we

call {Si}mi=1 an iterated function system (IFS). It follows that there is a unique non-

empty compact set K ⊂ Rd such that K =
⋃m
i=1 Si(K) [20]. The set K is called the

self-similar set generated by {Si}mi=1. Furthermore, for any given probability vector

(p1, . . . , pm), i.e., pi > 0 for 1 ≤ i ≤ m and
∑m

i=1 pi = 1, there is a unique Borel

probability measure µ on Rd satisfying the self-similar relation:

µ =
m∑
i=1

piµ ◦ S−1
i .

The measure µ is supported by K and is called a self-similar measure.
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One of the main objectives of multifractal analysis is to study the dimension spec-

trum and its relation with the Lq-spectrum for a given measure. Usually it is difficult

or impossible to calculate the dimension spectrum of a given measure directly. The

celebrated heuristic principle known as the multifractal formalism which was first

introduced by some physicists [16], states that the dimension spectrum dimH E(α)

can be recovered by the Lq-spectrum τ(q) through the Legendre transform:

dimH E(α) = τ ∗(α) := inf{αq − τ(q) : q ∈ R}. (1.2)

For backgrounds and the rigorous mathematical foundations of the multifractal for-

malism, we refer to [7, 31, 28]. The formalism has been verified to hold for many nat-

ural measures, including for example, Gibbs measures [33, 32], weak Gibbs measures

[15, 40], quasi-Bernoulli measures [2, 18, 1], and in particular, self-similar measures

satisfying the well-known open set condition [3, 29] (see also [6, 8, 34, 25, 17]).

In [21], Lau and Ngai introduced the notion of “weak separation condition” (WSC)

which is weaker than the open set condition and includes many interesting overlap-

ping IFS. They proved that under this condition, the multifractal formalism (1.2)

holds at those α such that α = τ ′(q) for some q > 0. Recently, Feng showed that

for any self-similar measures without any separation conditions, formula (1.2) still

holds if α = τ ′(q) for some q > 1 [12]. It remains unknown whether τ(q) is always

differentiable over (0,+∞) for any self-similar measures.

In recent years there has been a large literature concerning concrete classes of

self-similar measures with the WSC, and many exceptional multifractal phenomena

have been found at q < 0 (see, e.g., [19, 10, 15, 9, 23, 13, 36, 38, 39, 11]). For

example, the Lq-spectra τ(q) may be non-differentiable for some q < 0 (the so-

called phase transition behavior), and this may lead to the break down of the

multifractal formalism. The phase transition was first found in the case of the

Bernoulli convolution associated with golden ratio, in which τ is analytic on R\{q0}
except for a negative point q0 at which τ is non-differentiable [10]. Nevertheless,

this measure is proved to be weak-Gibbs and hence the multifractal formalism still

holds [15]. Another striking example, which has a similar phase transition behavior,

is the 3-fold convolution of the standard Cantor measure, for which the set of local

dimensions is the union of an interval and an isolated point [19], and the multifractal

formalism (1.2) does not hold on an interval corresponding to the non-differentiable

point [23] of τ(q), whilst a modified multifractal formalism holds [13]. The more

extensive class of examples of this sort was studied by Shmerkin [36] and Testud [38].
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In particular Testud constructed some simple self-similar measures on R satisfying

the WSC such that the dimension spectra are very wild and not concave [39].

In this paper, we prove a more complete and unified result about the multifractal

structure of self-similar measures with the WSC, regardless of whether there are

phase transitions. The definition of the WSC is given in Definition 2.3. We prove

(see Theorems 1.1-1.2) that under the WSC assumption, the multifractal formalism

always holds for q ≥ 0; Furthermore, there is a tractable open ball U0 with µ(U0) > 0

such that the multifractal formalism holds for µ|U0 for all q ∈ R, the dimension

spectra of µ|U0 and µ coincide for q ≥ 0. Intuitively, that µ behaves more regularly

on U0 ∩ K than on K is due to the fact that in our construction, U0 does not

contain points with very small measures in neighborhoods which affect the formalism

corresponding to q < 0.

We first obtain the following structural theorem for the WSC. For any IFS {Si}mi=1

and for any finite word u = i1 · · · ik over the alphabet {1, . . . ,m}, we let Su =

Si1 · · ·Sik . Let ϑ denote the empty word.

Theorem 1.1. Let {Si}mi=1 be an IFS which satisfies the WSC. Then there exists

an open ball U0 with µ(U0) > 0 and a positive integer ` such that for any finite or

empty word u, we can associate an `-dimensional row vector p(u) of positive entries

such that µ(Su(U0)) ≈ ‖p(u)‖.

Furthermore, for the above u and for any finite word v so that Sv(U0) ⊂ U0, there

exists an `× ` matrix M(v) of non-negative entries such that

p(uv) = p(u)M(v).

The above ≈ means that the two terms are bounded from above and below by

two positive constants independent of u. The construction of U0 is by the definition

of WSC (see (2.5)); the proof of the theorem is in Lemma 2.6 and Theorem 2.8. It

follows that

p(v1 . . . vk) = p(ϑ)M(v1) . . .M(vk)

whenever Svi(U0) ⊂ U0 for 1 ≤ i ≤ k. That is, the distribution of µ restricted on

U0 is controlled by the products of non-negative matrices. As a consequence, we see

that

a1 . . . akp(ϑ) � p(v1 . . . vk) � b1 . . . bkp(ϑ) (1.3)
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whenever Svi(U0) ⊂ U0 and aip(ϑ) � p(vi) � bip(ϑ) (i = 1, . . . , k). (Here for

vectors c = (ci) and d = (di), c � d means that ci ≤ di for all i.) We call (1.3) the

quasi-product property of µ|U0 . This property plays a key role in our multifractal

analysis of µ|U0 (it is used in the proof of Propositions 5.3 and 5.2).

Theorem 1.2. Let µ be a self-similar measure on Rd generated by an IFS {Si}mi=1

which satisfies the WSC and let U0 be the open ball in Theorem 1.1. Then

(i) EU0(α) 6= ∅ if and only if α ∈ [αmin, αmax], where

αmin = lim
q→∞

τU0(q)

q
, αmax = lim

q→−∞

τU0(q)

q
.

(ii) For any α ∈ [αmin, αmax],

dimH EU0(α) = τ ∗U0
(α) := inf{αq − τU0(q) : q ∈ R},

and there exists a Borel probability measure ν supported on EU0(α) such that

lim inf
r→0

log ν(B(x, r))

log r
= dimH EU0(α) for ν-a.e. x.

(iii) Moreover, τ(q) = τU0(q) for q ≥ 0, and

dimH E(α) = τ ∗(α) := inf{αq − τ(q) : q ∈ R}, ∀ α ∈ [αmin, τ
′(0−)],

where τ ′(0−) denotes the left derivative of τ at 0.

We remark that U0 in Theorems 1.1-1.2 is not unique and can be more gen-

eral bounded open set (see §6). Furthermore under some mild conditions, the

last conclusion in Theorem 1.2 can be strengthened to dimH E(α) = τ ∗U0
(α) for

all α ∈ [αmin, αmax] (see Corollary 5.8 and Examples 6.1-6.2 for details). We also

remark that Theorems 1.1-1.2 can be extended to some special self-affine measures

(see Example 6.5).

Part (ii) is the main component of Theorem 1.2. Since the estimate dimH EU0(α) ≤
τ ∗U0

(α) holds for any compactly supported probability measures (see, e.g., Theorem

4.1 in [21]), the difficult part is the reverse inequality. By using the quasi-product

property and a generalized box-counting principle for measures (Proposition 3.3),

for any α ∈ [αmin, αmax], we give a delicate construction of a Cantor-type subset of

EU0(α) with Moran structure such that its Hausdorff dimension is ≥ τ ∗U0
(α). This

gives a lower bound estimate of dimH EU0(α). In the already known results, the

box-counting principle holds only for those α that are equal to the derivative τ ′U0
(q)

for some q ∈ R. The subtleness of our construction is on the Cantor sets with Moran
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structure which gets by the derivative and provides a new way to extend the desired

result to all the α ∈ [αmin, αmax].

The paper is arranged in the following manner: in §2, we prove the matrix-

product form and the quasi-product property of self-similar measures with the WSC;

we formulate a box-counting principle for general measures through the Legendre

transform of the Lq-spectra in §3 and refine this principle for self-similar measures

with the WSC in §4; in §5, we prove Theorem 1.2 through the Moran construction.

Finally in §6, we give some examples and remarks related to the main theorem.

2. Preliminaries and the WSC

Let µ be the self-similar measure generated by an IFS {Si}mi=1 on Rd of the form

(1.1) and a probability vector (p1, . . . , pm), pi > 0 and let K denote the associated

self-similar set. For the index sets, we let A = {1, . . . ,m}, let A∗ =
⋃∞
k=1Ak be the

collection of all finite non-empty words over A and let ϑ denote the empty word.

For u = u1 . . . uk ∈ A, we write

Su = Su1 ◦ . . . ◦ Suk , Ku = Su(K),

ρu = ρu1 . . . ρuk , pu = pu1 . . . puk

and

[u] =
{

(xi)
∞
i=1 ∈ AN : xi = ui for 1 ≤ i ≤ k

}
.

In particular, we write Sϑ = id, Kϑ = K and ρϑ = pϑ = 1. For u ∈ A∗, let ũ be the

word obtained from u by dropping the last letter. For any 0 < r ≤ 1 and E ⊂ Rd,

define

Γr = {u ∈ A∗ : ρu < r ≤ ρũ}, (2.1)

Γr(E) = {u ∈ Γr : Ku ∩ E 6= ∅} and

Sr(E) = {Su : u ∈ Γr(E)}. (2.2)

We point out that there can be repetitions among the Su, u ∈ Γr(E), so that

possibly #Sr(E) < #Γr(E). Let ρmin = min{ρi : 1 ≤ i ≤ m}. The following result

is well-known.

Lemma 2.1. Let 0 < r ≤ 1. Then

(i) {[u] : u ∈ Γr} is a partition of the space AN.

(ii) K =
⋃
u∈Γr

Su(K) and µ =
∑

u∈Γr
puµ ◦ S−1

u .

(iii) µ(E) =
∑

u∈Γr(E) puµ ◦ S−1
u (E) for any Borel set E ⊂ Rd.
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Proposition 2.2. Assume that K is not a singleton. Then there exist constants

C1, C2, δ > 0 and 0 < s2 < s1 such that

C1r
s1 ≤ µ(B(x, r)) ≤ C2r

s2 , ∀ x ∈ K, 0 < r ≤ δ.

Proof. Since K is not a singleton, there exist 0 < η ≤ 1 and two words ω1, ω2 ∈ Γη

such that Kω1 ∩ Kω2 = ∅. Therefore there exists δ ∈ (0, ρmin) such that for any

x ∈ Rd, B(x, δ) intersects at most one of Kω1 and Kω2 . Define for 0 < r ≤ δ,

φ(r) = sup
x∈Rd

µ(B(x, r)).

Let c = min{ρv : v ∈ Γη}. Then for x ∈ Rd and 0 < r < δ, either B(x, r)∩Kω1 = ∅
or B(x, r) ∩Kω2 = ∅. If the former case occurs, then by Lemma 2.1(iii), we have

µ(B(x, r)) =
∑

v∈Γη(B(x,r))

pvµ(S−1
v (B(x, r)) ≤

∑
v∈Γη , v 6=ω1

pvµ(S−1
v (B(x, r))

≤
∑

v∈Γη , v 6=ω1

pvφ(r/c) = (1− pω1)φ(r/c).

Similarly if the latter case occurs, we have µ(B(x, r)) ≤ (1− pω2)φ(r/c). Hence we

always have µ(B(x, r)) ≤ tφ(r/c), where t = max{1− pω1 , 1− pω2}. It follows that

φ(r) ≤ tφ(r/c) for 0 < r ≤ δ. In particular letting cnδ < r ≤ cn−1δ for some n ∈ N,

then

µ(B(x, r)) ≤ µ(B(x, cn−1δ)) ≤ φ(cn−1δ) ≤ tn−1φ(δ)

≤ φ(δ)(cnδ)(log tn−1)/(log(cnδ)) ≤ C2r
s2 (2.3)

with C2 := φ(δ) and s2 := inf
n∈N

log tn−1/log(cnδ).

Let |K| denote the diameter of K. For x ∈ K, there exists v ∈ Γr/|K| such that

x ∈ Kv. It follows that |Kv| < r and Kv ⊂ B(x, r). Therefore

µ(B(x, r)) ≥ µ(Kv) ≥ pv = (ρv)
log pv/ log ρv ≥

(
ρminr

2|K|

)log pv/ log ρv

≥ C1r
s1

with s1 := max{log pi/ log ρi : 1 ≤ i ≤ m} and C1 := (min{1, ρmin/(2|K|)})s1 . This

together with (2.3) proves the proposition. 2

For any x ∈ Rd and r > 0, let U(x, r) denote the open ball of radius r centered

at x.
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Definition 2.3. The IFS {Si}mi=1 is said to satisfy the weak separation condition

(WSC) if

sup
x∈Rd, 0<r≤1

#Sr(U(x, r)) =: ` <∞, (2.4)

where Sr(·) is defined as in (2.2).

We remark that the above definition for the WSC is equivalent to that given by

Lau and Ngai in [21], provided that K is not contained in a hyperplane of Rd. For

a proof, see Zerner [41, Theorem 1]. It is known that the open set condition implies

the WSC [21]. There are many interesting examples of overlapping IFS that satisfy

the WSC (see, e.g., [4, 10, 21, 22]).

In the remaining part of this section, we always assume that {Si}mi=1 satisfies the

WSC. We have the following important observation which will be the basis of our

analysis: let x0 ∈ Rd and r0 ∈ (0, 1] such that the supremum in (2.4) is attained,

i.e.,

#Sr0(U(x0, r0)) = `. (2.5)

For convenience we let

U0 := U(x0, r0), Sr0(U0) = {Sωi : 1 ≤ i ≤ `},

where ωi ∈ Γr0 and the Sωi are all distinct. The following proposition states that

Sr0(U0) determines the corresponding families of maps in the iteration.

Proposition 2.4. For any u ∈ A∗ ∪ {ϑ}, write Uu = Su(U0), then we have

Sρur0(Uu) = {Suωi : 1 ≤ i ≤ `}.

Proof. Note that Uu = Su(U0) has radius ρur0, and Kv ∩U0 6= ∅ for v ∈ Γr0 implies

Kuv ∩ Uu 6= ∅. It follows that uωi ∈ Γρur0(Uu) and hence Sρur0(Uu) ⊇ {Suωi : 1 ≤
i ≤ `}. The equality holds by the maximality of `. 2

Define a map p : A∗ ∪ {ϑ} → R` by p(u) = (t1, . . . , t`), where

ti =
∑
v∈Γ

(i)
u

pv, i = 1, . . . , `,

and Γ
(i)
u = {v ∈ Γρur0(Uu) : Sv = Suωi}. By Proposition 2.4,

Γ(i)
u = {v ∈ Γρur0 : Sv = Suωi}. (2.6)
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It is easy to see that p(u) is a strictly positive vector in R` for each u ∈ A∗ ∪ {ϑ},
since (p(u))i ≥ pupωi for 1 ≤ i ≤ `. Let ‖p(u)‖ =

∑`
i=1 ti, then for any u ∈ A∗∪{ϑ},

‖p(u)‖ =
∑

v∈Γρur0 (Uu)

pv. (2.7)

The following two lemmas follow easily from Proposition 2.4.

Lemma 2.5. For any u ∈ A∗∪{ϑ}, there exist c1, c2 > 0 (c1, c2 depend on u) such

that

c1µ(E) ≤ µ(Su(E))) ≤ c2µ(E). (2.8)

for any Borel subset E ⊆ U0.

Proof. Let u ∈ A∗∪{ϑ} and let E ⊆ U0. Then by Lemma 2.1(iii) and Proposition

2.4,

µ(Su(E)) =
∑

v∈Γρur0 (Su(U0))

pvµ(S−1
v (Su(E)))

=
∑̀
i=1

∑
v∈Γ

(i)
u

pvµ(S−1
ωi

(E))

=
∑̀
i=1

(p(u))iµ(S−1
ωi

(E)).

In particular, we have µ(E) =
∑`

i=1(p(ϑ))iµ(S−1
ωi

(E)). Hence (2.8) follows by setting

c1 = min{(p(u))i/(p(ϑ))i : 1 ≤ i ≤ `} and c2 = max{(p(u))i/(p(ϑ))i : 1 ≤ i ≤ `}.
2

Lemma 2.6. There exists a constant c > 0 (depending on U0) such that

c‖p(u)‖ ≤ µ(Su(U0)) ≤ ‖p(u)‖, ∀ u ∈ A∗ ∪ {ϑ}.

Proof. Let u ∈ A∗ ∪ {ϑ}, we write Uu = Su(U0). By Lemma 2.1(iii) and (2.7), we

have

µ(Uu) =
∑

v∈Γρur0 (Uu)

pvµ ◦ S−1
v (Uu)

≤
∑

v∈Γρur0 (Uu)

pv = ‖p(u)‖.
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To prove the reverse inequality, we observe that U0 is open and Kωi ∩ U0 6= ∅, we

can choose ω∗i ∈ A∗ such that Kωiω∗i
⊂ U0 for 1 ≤ i ≤ `. Set

c = min{pω∗i : 1 ≤ i ≤ `}.

Let v ∈ Γρur0(Su(U0)). By Proposition 2.4, Sv = Suωi for some 1 ≤ i ≤ `. Hence

Svω∗i = Suωiω∗i and Kvω∗i
= Kuωiω∗i

= Su(Kωiω∗i
) ⊂ Su(U0). It follows that

µ ◦ S−1
v (Su(U0)) ≥ µ ◦ S−1

v (Kvω∗i
)) = µ(Kω∗i

) ≥ pω∗i ≥ c.

Summing over all such words v, we obtain

µ(Uu) =
∑

v∈Γρur0 (Uu)

pvµ ◦ S−1
v (Su(U0))

≥ c
∑

v∈Γρur0 (Uu)

pv = c‖p(u)‖.

This completes the proof of the lemma. 2

In the remaining part of this section, we derive the matrix-product structure of

p. Let

Ω = {v ∈ A∗ ∪ {ϑ} : Sv(U0) ⊂ U0} . (2.9)

For u ∈ A∗ ∪ {ϑ}, v ∈ Ω and 1 ≤ i, j ≤ `, we set

Ωu,v,j =
{
γ ∈ A∗ : γ ∈ Γρuvr0 , Sγ = Suvωj

}
,

Ω
(1)
u,i = {γ ∈ A∗ : γ ∈ Γρur0 , Sγ = Suωi}

and

Ω
(2)
i;v,j =

{
{ϑ} if Sωi = Svωj ,{
γ ∈ A∗ : γ ∈ Γρvr0/ρωi , Sωiγ = Svωj

}
otherwise.

Lemma 2.7. Let u ∈ A∗ ∪ {ϑ}, v ∈ Ω and 1 ≤ j ≤ `. Then γ ∈ Ωu,v,j if and only

if there exists i ∈ {1, . . . , `} such that γ can be written as γ = γ1γ2 with γ1 ∈ Ω
(1)
u,i

and γ2 ∈ Ω
(2)
i;v,j.

Proof. It is routine to verify the sufficiency. In the following we show the neccessity.

Let γ ∈ Ωu,v,j. Then we have Kγ ∩ Suv(U0) 6= ∅, because Kγ = Kuvωj = Suv(Kωj)

and Kωj ∩ U0 6= ∅. Meanwhile, Suv(U0) ⊂ Su(U0) by the assumption v ∈ Ω. We

hence have

Kγ ∩ Su(U0) 6= ∅. (2.10)
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Since ρuvr0 ≤ ρur0, we can decompose γ uniquely as γ = γ1γ2 with γ1 ∈ Γρur0 and

γ2 ∈ A∗ ∪ {ϑ}. Due to (2.10), Kγ1 ∩ Su(U0) 6= ∅. This together with γ1 ∈ Γρur0 and

Proposition 2.4 yields Sγ1 = Suωi for some i ∈ {1, . . . , `}, and hence γ1 ∈ Ω
(1)
u,i . To

show that γ2 ∈ Ω
(2)
i;v,j, note that Suvωj = Sγ = Sγ1γ2 = Suωiγ2 . It follows that

Svωj = Sωiγ2 . (2.11)

If γ2 = ϑ, by (2.11) we obtain γ2 ∈ Ω
(2)
i;v,j directly. Otherwise γ2 6= ϑ. Then

γ̃ = γ̃1γ2 = γ1γ̃2. Since γ1γ2 = γ ∈ Γρuvr0 , we have

ρuvr0 ≤ ργ̃1γ2 = ργ1ργ̃2 = ρuωiργ̃2 .

It follows that ρvr0/ρωi ≤ ργ̃2 . Also we have ργ2 < ρvr0/ρωi by the fact that ργ1γ2 <

ρuvr0 and ργ1 = ρuρωi . Hence we have γ2 ∈ Γρvr0/ρωi . Combining this with (2.11) we

obtain γ2 ∈ Ω
(2)
i;v,j. This finishes the proof of the lemma. 2

We now define a matrix-valued function M on Ω, taking values in the set of non-

negative ` × ` matrices in the following way. For v ∈ Ω, set M(v) = (si,j)1≤i,j≤`

by

si,j =

{
0 if Ω

(2)
i;v,j = ∅,∑

γ∈Ω
(2)
i;v,j

pγ otherwise.

The main result in this section is the following theorem.

Theorem 2.8. For any u ∈ A∗ ∪ {ϑ} and v ∈ Ω, we have

p(uv) = p(u)M(v). (2.12)

Proof. By the definition of p and (2.6), we have for 1 ≤ j ≤ `,

(p(uv))j =
∑

γ∈Γρuvr0 : Sγ=Suvωj

pγ =
∑

γ∈Ωu,v,j

pγ.

Combining this with Lemma 2.7, we obtain

(p(uv))j =
∑̀
i=1

∑
γ1∈Ω

(1)
u,i

∑
γ2∈Ω

(2)
i;v,j

pγ1pγ2 =
∑̀
i=1

( ∑
γ1∈Ω

(1)
u,i

pγ1

)( ∑
γ2∈Ω

(2)
i;v,j

pγ2

)

=
∑̀
i=1

(p(u))i(M(v))ij.

This completes the proof of (2.12). 2

According to Theorem 2.8, we have directly
11



Theorem 2.9. For any v1, . . . , vk ∈ Ω, we have

p(v1 . . . vk) = p(ϑ)M(v1) . . .M(vk).

The above result, together with Lemma 2.6, shows that the distribution of µ on

some specific subsets of U0 is controlled by the product of non-negative matrices in

the collection {M(v) : v ∈ Ω}. This fact is important for us to understand the local

structure of µ.

For any two vectors p1,p2 ∈ R`, we write p1 � p2 if (p1)i ≤ (p2)i for all

1 ≤ i ≤ `. As a corollary of Theorem 2.8, we have

Corollary 2.10. Suppose ap(ϑ) � p(u) � bp(ϑ) holds for some u ∈ A∗ and

a, b ≥ 0, then for any v ∈ Ω, we have ap(v) � p(uv) � bp(v).

Proof. By Theorem 2.8, p(uv) = p(u)M(v). Since p(u) and M(v) are non-negative,

and ap(ϑ) � p(u) � bp(ϑ), we have

ap(ϑ)M(v) � p(uv) � bp(ϑ)M(v).

Since p(ϑ)M(v) = p(v), we obtain the desired result. 2

According to Theorem 2.8 and Corollary 2.10, we obtain the following quasi-

product property of µ by induction, which will be used to estimate the lower bound

of the dimension spectrum (see the proofs of Proposition 5.3 and Proposition 5.2).

Corollary 2.11. Suppose v1, . . . , vk ∈ Ω, and aip(ϑ) � p(vi) � bip(ϑ) for each

1 ≤ i ≤ k, where ai, bi ≥ 0. Then a1 . . . akp(ϑ) � p(v1 . . . vk) � b1 . . . bkp(ϑ).

3. Lq-spectrum and Legendre transform.

Let µ be a Borel probablity measure on Rd with compact support. For any open

set V ⊂ Rd with µ(V ) > 0, we let

ΘV (q; r) = sup
∑
i

µ(B(xi, r))
q, r > 0, q ∈ R,

where the supremum is taken over all families of disjoint closed balls {B(xi, r)}i
contained in V with xi ∈ supp(µ). The Lq-spectrum τV (q) of µ on V is defined by

τV (q) = lim inf
r→0

log ΘV (q; r)

log r
,

12



When V = Rd, we write Θ(q; r) = ΘRd(q; r) and τ(q) = τRd(q) for short. It was

proved by Peres and Solomyak [30] that for any self-similar measure µ (without

assuming any separation condition), the limit τ(q) = limr→0
log Θ(q;r)

log r
exists for q ≥ 0.

Proposition 3.1. Let V be an open set with µ(V ) > 0, then τV (·) is a concave

function over R. If in addition µ is a self-similar measure defined by an IFS {Sj}mj=1

and the attractor K is not a singleton, then τV (q) = τ(q) for any q ≥ 0.

Proof. The concavity of τV (·) follows by a standard argument (see, e.g., [21, Propo-

sition 3.2]). To prove the second statement, we fix a q ≥ 0, then it is clear that

ΘV (q; r) ≤ Θ(q; r). Hence we have τV (q) ≥ τ(q). For the reverse inequality, we

choose η > 0 and ω ∈ A∗ such that B(Kω, η) ⊂ V . Let 0 < r < η and sup-

pose {B(xi, r)} is a family of disjoint balls of radius r with centers xi ∈ K. Then

{Sω(B(xi, r))} are disjoint balls contained in V with centers Sω(xi) ∈ K. Hence

ΘV (q; ρωr) ≥
∑
i

µ(Sω(B(xi, r))
q ≥ (pω)q

∑
i

µ(B(xi, r))
q,

it follows that ΘV (q; ρωr) ≥ (pω)qΘ(q; r), from which we conclude that τV (q) ≤ τ(q).

2

Corollary 3.2. Let µ be a self-similar measure on Rd as in Proposition 3.1 and let

αmin = lim
q→+∞

τV (q)/q, αmax = lim
q→−∞

τV (q)/q. (3.1)

Then 0 < αmin ≤ αmax < +∞. Moreover if we let

α(x) = lim
r→0

log µ(B(x, r))

log r
.

Then for any x ∈ V ∩ supp(µ), α(x) ∈ [αmin, αmax] if the limit exists.

Proof. The two limits in (3.1) exist by the concavity of τV (q), q ∈ R. By Proposition

2.2, we have for q ≥ 0,

(C1r
s1)q ≤ ΘV (q; r) ≤ Nr(K)(C2r

s2)q

for small r, where Nr(K) denotes the largest number of disjoint balls of radius r

centered in K. Therefore s2q−d ≤ τV (q) so that 0 < s2 ≤ limq→+∞ τV (q)/q = αmin.

For q < 0, we have

(C1r
s2)q ≤ ΘV (q; r) ≤ Nr(K)(C2r

s1)q

instead, and a similar argument implies that αmax ≤ s1 <∞.
13



For the last statement, we observe that for x ∈ V ∩ supp(µ) such that α(x) exists,

then for small r > 0, ΘV (q; r) ≥ µ(B(x, r))q for q ∈ R. It implies that τV (q) ≤ qα(x)

for any q ∈ R. Hence we have α(x) ∈ [αmin, αmax]. 2

For the concave function τV (q), we define its Legendre transform τ ∗V (α) to be

τ ∗V (α) = inf{αq − τV (q) : q ∈ R}. (3.2)

From convex function theory [35], it is well known that τ ∗V (α) is also a concave

function, 0 ≤ τ ∗V (α) <∞ for α ∈ [αmin, αmax], and τ ∗V (α) = −∞ otherwise. We will

only consider the interval [αmin, αmax] as the effective domain of τ ∗V (α). Moreover, if

the derivative τ ′V (q) = α exists, then the infimum in (3.2) is attained at q and

τ ∗V (α) = αq − τV (q).

The following proposition for a general measure is a refinement of the standard

box-counting principle originated in [16] and considered in a number of papers (see,

e.g., [7, 21]).

Proposition 3.3. Let µ be a finite Borel measure on Rd and let V be an open subset

with µ(V ) > 0. Assume that there exists an open set U ⊂ V such that U ⊂ V and

τU(q) = τV (q) for all q > 0. Suppose that α ∈ R is such that α = τ ′V (q) for some

q ∈ R. Then for any integer N > 0, and δ, r0 > 0, there exist 0 < r < r0 and a

family of disjoint balls {B(xi, r)}ki=1 contained in V with xi ∈ supp(µ) such that

k ≥ r−τ
∗
V (α)+δ(|q|+1) (3.3)

and

rα+2δ ≤ µ(B(xi, r/N)) ≤ µ(B(xi, r)) ≤ rα−2δ, ∀ 1 ≤ i ≤ k. (3.4)

The proof follows the classical approach with a few subtle modifications. Since the

proof is quite long and is away from our central development, we put it the appendix.

We remark that this proposition differs from the usual version of the box-counting

principle (see, e.g., Theorem 5.1 of [21]) in the following two aspects: first, τV (q) is

considered for any open set V rather than τRd(q); secondly, the simultaneous estimate

(3.4) for µ(B(xi, r)) and µ(B(xi, r/N)) is obtained rather than the single estimate of

µ(B(xi, r)). The estimate is not direct since µ(B(x, r)) may be very different from

µ(B(x, r/N)) for measures such as self-similar measures with the WSC.
14



We do not know if the existence condition of U for V in Proposition 3.3 can be

removed. However it is satisfied in most of interesting situations. For example, it

is automatically satisfied if V = Rd. Also from Proposition 3.1, we see that if µ is

a self-similar measure, then τU(q) = τRd(q) for any q ≥ 0 and any open set U with

U ∩ supp(µ) 6= ∅. Hence the condition on V is satisfied for self-similar measures.

4. A counting result with the WSC

In this section we give a refinement of Proposition 3.3 for the self-similar measure

µ generated by an IFS {Si}mi=1 that satisfies the WSC. We will fix the open ball U0 =

U(x0, r0) that determines the quasi-product structure of the self-similar measure µ.

Let Ω be defined as in (2.9).

Proposition 4.1. Let q ∈ R and let U0 = U(x0, r0) be the open ball in the definition

of WSC in (2.5). Suppose that τ ′U0
(q) := α exists. Then for any δ, η > 0, there exist

r ∈ (0, η), k ≥ r−τ
∗
U0

(α)+δ(|q|+1) and u1, . . . , uk ∈ Ω satisfying the following properties:

(i) r1+δ ≤ ρui ≤ r1−δ for all 1 ≤ i ≤ k.

(ii) Sui(4U0) are disjoint subsets of U0, where 4U0 := U(x0, 4r0).

(iii) rα+3δp(ϑ) � p(ui) � rα−3δp(ϑ) for all 1 ≤ i ≤ k.

Proof. Recall the notation Sr0(U0) = {Sω1 , · · · , Sω`} in Section 2 and note that the

hypothesis of Proposition 3.3 are satisfied (Due to Proposition 3.1). Let V = U0

and let N be the least integer > 8(1 + |K|+ |U0|). Hence for δ, η > 0, we can find

a family of disjoint balls {B(xi, r)}ki=1 contained in U0 such that xi ∈ supp(µ),

0 < r < η, rδ < min
{
ρmin/N, min1≤j≤` pωj/`, min1≤j≤` (p(ϑ))j

}
,

(4.1)

k ≥ r−τ
∗
U0

(α)+δ(|q|+1), and

rα+2δ ≤ µ(B(xi, r/N)) ≤ µ(B(xi, r)) ≤ rα−2δ ∀ 1 ≤ i ≤ k. (4.2)

In the following we construct the words ui which satisfy the desired properties.

Choose 0 < ε < r such that

µ
(
∂B
(
xi, (r + ε)/N

))
= 0, i = 1, . . . , k.
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(∂(E) denotes the boundary of E.) This can be done since µ(∂B(xi, t)) = 0 except

for countably many t. For convenience we denote r′ = (r + ε)/N , therefore we have

µ(B(xi, r
′)) = µ(U(xi, r

′)), i = 1, . . . , k. (4.3)

By Lemma 2.1(iii),

µ(U(xi, r
′)) =

∑
γ∈Γr′ (U(xi,r′))

pγµ ◦ S−1
γ (U(xi, r

′)) ≤
∑

γ∈Γr′ (U(xi,r′))

pγ.

By the WSC (2.4), there exists u ∈ Γr′ such that Ku ∩ U(xi, r
′) 6= ∅ and∑

γ∈Γr′ (U(xi,r′))

pγ ≤ `
∑

γ∈Γr′ (U(xi,r′)): Sγ=Su

pγ = `
∑

γ∈Γr′ : Sγ=Su

pγ

(take u such that the second sum is the largest). We fix this u and denote it by ui.

By combining the above two inequalities, we have

µ(U(xi, r
′)) ≤ `

∑
γ∈Γr′ : Sγ=Sui

pγ. (4.4)

Since ui, 1 ≤ i ≤ k, are in Γr′ , we have ρminr
′ ≤ ρui < r′. Then by the choice of r

(i.e., rδ < ρmin/N), ui satisfies property (i).

To prove property (ii), it suffices to show that Sui(4U0) ⊂ B(xi, r). We note that

Kui ∩ U(xi, r
′) 6= ∅ and Kui ∩ Sui(U0) 6= ∅. This implies that

Kui ⊂ U(xi, r
′ + |Kui |), Sui(U0) ⊂ U(xi, r

′ + |Kui |+ |Sui(U0)|).

Since

r′ + |Kui |+ |Sui(U0)| ≤ r′(1 + |K|+ |U0|)

=
r + ε

N
(1 + |K|+ |U0|) ≤ (r + ε)/8 ≤ r/4,

we obtain Sui(U0) ⊂ U(xi, r/4) and hence Sui(4U0) ⊂ U(xi, r) ⊂ B(xi, r). This also

implies ui ∈ Ω since Sui(U0) ⊂ B(xi, r) ⊂ U0.

Finally we prove property (iii). By the definition of p and (2.6), we have for

1 ≤ j ≤ `,

(p(ui))j =
∑

v∈Γρuir0 : Sv=Suiωj

pv. (4.5)
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Observe that if γ ∈ Γr′ satisfies Sγ = Sui , then Sγωj = Suiωj and γωj ∈ Γρuir0 . It

follows that

(p(ui))j ≥
∑

γ∈Γr′ : Sγ=Sui

pγpωj

≥ pωjµ(U(xi, r
′))/` (by (4.4))

≥ pωjr
α+2δ/` ≥ rα+3δ (by (4.2), (4.3) and (4.1))

≥ rα+3δ(p(ϑ))j.

That is, rα+3δp(ϑ) � p(ui). To see the other direction, observe that if Sv = Suiωj ,

then Kv = Kuiωj ⊂ Kui ⊂ B(xi, r). By (4.5), we have

(p(ui))j =
∑

v∈Γρuir0 : Sv=Suiωj

pvµ ◦ S−1
v (B(xi, r))

≤ µ(B(xi, r)) (by Lemma 2.1(iii))

≤ rα−2δ ≤ rα−3δ(p(ϑ))j. (by (4.2))

That is, p(ui) � rα−3δp(ϑ). This finishes the proof of the proposition. 2

5. Multifractal formalism and Moran constructions

In this section we are aiming to prove the multifractal formalism for the self-similar

measure with respect to the open ball U0 from the definition of WSC, i.e.,

dimH EU0(α) = τ ∗U0
(α),

where EU0(α) is the set of x ∈ U0 with local dimension α(x) = α. It is known

that for any probability µ with compact support, dimH E(α) ≤ τ ∗(α) whenever

E(α) 6= ∅ (see, e.g., Theorem 4.1 in [21]) and it is straightforward to extend this to

open subsets. The difficulty is to prove the reverse inequality. For this we need to

use the Cantor-type sets with a special Moran construction (by applying Proposition

4.1) to get the lower bound estimate.

Let B ⊂ Rd be a closed ball. Let {nk}k≥1 be a sequence of positive integers. Let

D =
⋃
k≥0Dk with D0 = {∅} and Dk = {ω = (j1j2 · · · jk) : 1 ≤ ji ≤ ni, 1 ≤ i ≤ k}.

Suppose that G = {Bω : ω ∈ D} is a collection of closed balls of radius rω in Rd. We

say that G fulfills the Moran structure provided it satisfies the following conditions:

(1) B∅ = B, Bωj ⊂ Bω for any ω ∈ Dk−1, 1 ≤ j ≤ nk;

(2) Bω ∩Bω′ = ∅ for ω, ω′ ∈ Dk with ω 6= ω′.
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(3) limk→∞maxω∈Dk rω = 0;

(4) For all ωη 6= ω′η, ω, ω′ ∈ Dm, ωη, ω
′η ∈ Dn,m ≤ n,

rωη
rω

=
rω′η
rω′

.

If G fulfills the above Moran structure, we call

F =
∞⋂
n=1

⋃
ω∈Dn

Bω

the Moran set associated with G.

For k ∈ N, let

ck = min
(i1···ik)∈Dk

ri1···ik
ri1···ik−1

, Mk = max
(i1···ik)∈Dk

ri1···ik .

Proposition 5.1. [14, Proposition 3.1]. For a Moran set F defined as above, sup-

pose furthermore

lim
k→∞

log ck
logMk

= 0. (5.1)

Then we have

dimH F = lim inf
k→∞

sk,

where sk satisfies the equation
∑
ω∈Dk

rskω = 1 for each k. Moreover, there exists a

Borel probability measure ν on F such that

lim inf
δ→0

log ν(B(x, δ))

log δ
= dimH F

for all x ∈ F , where B(x, δ) denotes the closed ball in Rd of radius r centered at x.

We remark that the existence of ν in the above proposition is only implicit in

the proof of [14, Proposition 3.1]. Of course, dimH ν = dimH F , where dimH ν =

inf{dimH E : E is Borel with ν(E) = 1}.

Let µ be a self-similar measure satisfying the WSC and assume that U0 is an open

ball satisfying (2.5).

Proposition 5.2. Let αmin = limq→∞ τU0(q)/q and αmax = limq→−∞ τU0(q)/q. Then

EU0(αmin) 6= ∅ and EU0(αmax) 6= ∅. Furthermore

dimH EU0(αmin) ≥ τ ∗U0
(αmin), dimH EU0(αmax) ≥ τ ∗U0

(αmax),
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Proof. It is known that τU0(q) is a concave real-valued function of q on R and the

limits αmin, αmax exist, and αmin, αmax ∈ (0,∞) (Corollary 3.2). In the following, we

only prove that EU0(αmin) 6= ∅ and dimH EU0(αmin) ≥ τ ∗U0
(αmin). The corresponding

results for EU0(αmax) can be proved similarly.

Let {qn} ↑ ∞ such that the derivative τ ′U0
(qn) =: αn exists for each n. By the

concavity of τU0(·), the sequence {αn} is non-increasing, and αmin = limn→∞ αn.

Furthermore the function τ ∗U0
is concave on [αmin, αmax], and hence it is lower semi-

continuous (see [35, Theorem 10.2]). Therefore we have

τ ∗U0
(αmin) ≤ lim inf

n→∞
τ ∗U0

(αn) = lim inf
n→∞

(αnqn − τU0(qn)).

We choose a positive sequence {δi}∞i=1 ↓ 0 such that limn→∞ δnqn = 0. For each i ∈ N,

using Proposition 4.1 we construct ri > 0, ki ∈ N and Bi = {ui,s : 1 ≤ s ≤ ki} ⊂ Ω

such that

(a) 1 > r1 > r2 > . . . .

(b) ki ≥ (ri)
−τ∗U0

(αi)+δi(qi+1).

(c) (ri)
1+δi ≤ ρui,s ≤ (ri)

1−δi , ∀ 1 ≤ s ≤ ki.

(d) Sui,s(4U0) (s = 1, . . . , ki) are disjoint subsets of U0.

(e) (ri)
αi+3δip(ϑ) � p(ui,s) � (ri)

αi−3δip(ϑ), ∀ 1 ≤ s ≤ ki.

Also we let {Ni}∞i=1 be a sequence of integers large enough such that

(f) rNii < (ri+1)2i for each i ∈ N.

Now we define a sequence of subsets of A∗ in the following manner

B1, · · · ,B1︸ ︷︷ ︸
N1

,B2, · · · ,B2︸ ︷︷ ︸
N2

, · · · ,Bi, · · · ,Bi︸ ︷︷ ︸
Ni

, · · · ,

(i.e., B1 is repeated N1 times, follow by B2 repeated N2 times and so on), and relabel

them as {B∗n}∞n=1. Let

G = {Sv1...vk(U0) : k ∈ N, vi ∈ B∗i for 1 ≤ i ≤ k}. (5.2)

It is easy to check that G fulfills the Moran structure. Let

F =
∞⋂
n=1

⋃
v1∈B∗1 ,... ,vn∈B∗n

Sv1v2...vn(U0).

Then F is the Moran set associated with G.

Next we show that

α(x) = lim
n→∞

αn, ∀ x ∈ F, (5.3)
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and

dimH F ≥ lim inf
n→∞

τ ∗U0
(αn). (5.4)

Let x ∈ F , then there exist vi ∈ B∗i (i = 1, 2, . . . ) such that

{x} = lim
n→∞

Sv1...vn(U0).

For r > 0 small enough, there is a unique large integer n such that

|Sv1...vn+1(U0)| ≤ 2r < |Sv1...vn(U0)|.

Note that Svn+2(4U0) ⊂ U0 (by (d)), we have |Sv1...vn+2(U0)| ≤ |Sv1...vn+1(U0)|/4 ≤
r/2. Hence

Sv1...vn+2(U0) ⊂ B(x, r) ⊂ Sv1...vn(4U0) ⊂ Sv1...vn−1(U0). (5.5)

On the other hand by Lemma 2.6, there exists a constant c > 0 (depending on U0)

such that

c‖p(v1 . . . vj)‖ ≤ µ(Sv1...vj(U0)) ≤ ‖p(v1 . . . vj)‖, ∀ j ∈ N. (5.6)

Combining (5.5) and (5.6), we have

log ‖p(v1 . . . vn−1)‖
log(ρv1...vn+2|U0|)

≤ log µ(B(x, r))

log r
≤ log(c‖p(v1 . . . vn+2)‖)

log(ρv1...vn−1|U0|)
. (5.7)

Thus to calculate α(x), we need to estimate p(v1 . . . vm) and ρv1...vm for m = n −
1, n + 2. For large n, write n =

∑k
i=1 Ni + p with 1 ≤ p ≤ Nk+1. In the case that

1 ≤ p ≤ Nk+1 − 2, by (e), (c), (b) and Corollary 2.11, we obtain(
k∏
i=1

(ri)
Ni(αi+3δi)

)
(rk+1)(p+2)(αk+1+3δk+1)p(ϑ)

� p(v1 . . . vn+2) � p(v1 . . . vn−1)

�

(
k∏
i=1

(ri)
Ni(αi−3δi)

)
(rk+1)(p−1)(αk+1−3δk+1)p(ϑ), (5.8)

(
k∏
i=1

(ri)
Ni(1+δi)

)
(rk+1)(p+2)(1+δk+1) ≤ ρv1...vn+2 ≤ ρv1...vn−1

≤

(
k∏
i=1

(ri)
Ni(1−δi)

)
(rk+1)(p−1)(1−δk+1) (5.9)
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and

n∏
s=1

#B∗s ≥

(
k∏
i=1

(ri)
Ni(−τ∗U0

(αi)+δi(qi+1))

)
(rk+1)p(−τ

∗
U0

(αk+1)+δk+1(qk+1+1)).

(5.10)

In the other case Nk+1 − 1 ≤ p ≤ Nk+1, we have the similar inequalities where the

lower bounds for p(v1 . . . vn+2) and ρv1...vn+2 in (5.8) and (5.9) are replaced respec-

tively by(
k+1∏
i=1

(ri)
Ni(αi+3δi)

)
(rk+2)(p−Nk+1+2)(αk+2+3δk+2)p(ϑ) � p(v1 . . . vn+2),

(5.11)

(
k+1∏
i=1

(ri)
Ni(1+δi)

)
(rk+2)(p−Nk+1+2)(1+δk+2) ≤ ρv1...vn+2 . (5.12)

By (5.7), using the inequalities (5.8)-(5.9), (5.11)-(5.12) and (f), we obtain α(x) =

limn→∞ αn by a direct calculation.

To prove (5.4), recall that F is the Moran set associated with G (see (5.2)). Again

for a large n, write n =
∑k

i=1Ni + p, where 1 ≤ p ≤ Nk+1. By (c), we have

inf
vn∈B∗n

ρvn ≥ (rk+1)1+δk+1 , sup
v1∈B∗1 ,... ,vn∈B∗n

ρv1...vn ≤

(
k∏
i=1

(ri)
Ni(1−δi)

)
(rk+1)p(1−δk+1).

(5.13)

Using (5.13) and (f), we have

lim
n→∞

log(infvn∈B∗n ρvn)

log(supv1∈B∗1 ,... ,vn∈B∗n ρv1...vn)
= 0.

This implies that the condition (5.1) in Proposition 5.1 is fulfilled. Hence by Propo-

sition 5.1, we have dimH F = lim infn→∞ sn, where sn satisfies∑
v1∈B∗1 ,... ,vn∈B∗n

(ρv1...vn)sn = 1. (5.14)

It follows that

dimH F ≥ lim inf
n→∞

log(
∏n

s=1 #B∗s)
− log(infv1∈B∗1 ,... ,vn∈B∗n ρv1...vn)

.

This, together with (5.10) and the following inequality

inf
v1∈B∗1 ,... ,vn∈B∗n

ρv1...vn ≥

(
k∏
i=1

(ri)
Ni(1+δi)

)
(rk+1)p(1+δk+1) (by (c)),
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yields

dimH F ≥ lim inf
k→∞

τ ∗U0
(αk) + δk(qk + 1)

1 + δk
= lim inf

k→∞
τ ∗U0

(αk).

2

Proposition 5.3. Let q1, q2 ∈ R. Suppose that α1 = τ ′U0
(q1), α2 = τ ′U0

(q2) exist.

Then for any 0 < λ < 1, EU0(λα1 + (1− λ)α2) 6= ∅ and

dimH EU0(λα1 + (1− λ)α2) ≥ λτ ∗U0
(α1) + (1− λ)(τ ∗U0

(α2)).

In particular if q1 = q2 and let α = α1 = α2, then dimH EU0(α) ≥ τ ∗U0
(α).

Proof. The proposition is proved in a way similar to that of Proposition 5.2, through

a more subtle Moran construction. Let {δi}∞i=1 be a positive sequence decreasing to

0. For each i ∈ N and j ∈ {1, 2}, using Proposition 4.1 we construct ri,j > 0,

ki,j ∈ N and Bi,j = {ui,j,s : 1 ≤ s ≤ ki,j} ⊂ Ω such that

(a) 1 > r1,1 > r1,2 > r2,1 > r2,2 > . . . .

(b) ki,j ≥ (ri,j)
−τ∗U0

(αj)+δi(|qj |+1).

(c) (ri,j)
1+δi ≤ ρui,j,s ≤ (ri,j)

1−δi , ∀ 1 ≤ s ≤ ki,j.

(d) Sui,j,s(4U0) (1 ≤ s ≤ ki,j) are disjoint subsets of U0 for each i, j.

(e) (ri,j)
αj+3δip(ϑ) � p(ui,j,s) � (ri,j)

αj−3δip(ϑ), ∀ 1 ≤ s ≤ ki,j.

Let 0 < λ < 1 be given. We construct a sequence of positive integers {Ni,j}i∈N,1≤j≤2

such that

(f) For any i ∈ N,

∣∣∣∣ Ni,1 log ri,1
Ni,1 log ri,1 +Ni,2 log ri,2

− λ

∣∣∣∣ < 2−i and

(g) max
{
r
Ni,1
i,1 , r

Ni,2
i,2

}
< (ri+1,j)

2i for j = 1, 2.

Also we select a sequence of positive integers {Li}∞i=1 such that

(h) For any i ∈ N, Li min
1≤j≤2

{Ni,j| log ri,j|} ≥ 2i max
1≤j≤2

{Ni+1,j| log ri+1,j|}.

Now we define a sequence {B∗i }∞i=1 of subsets of Ω in the following manner

N1,1︷ ︸︸ ︷
B1,1, · · · ,B1,1,

N1,2︷ ︸︸ ︷
B1,2, · · · ,B1,2, · · · ,

N1,1︷ ︸︸ ︷
B1,1, · · · ,B1,1,

N1,2︷ ︸︸ ︷
B1,2, · · · ,B1,2︸ ︷︷ ︸

L1(N11+N12)
N2,1︷ ︸︸ ︷

B2,1, · · · ,B2,1,

N2,2︷ ︸︸ ︷
B2,2, · · · ,B2,2, · · · ,

N2,1︷ ︸︸ ︷
B2,1, · · · ,B2,1,

N2,2︷ ︸︸ ︷
B2,2, · · · ,B2,2︸ ︷︷ ︸

L2(N21+N22)

· · ·
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That is, we first let B1,1 appear in the sequence for N1,1 times, then let B1,2 appear

for N1,2 times. Repeat this pattern for L1 times. After that, we let B2,1 appear

for N2,1 times, then B2,2 appear for N2,2 times. Repeat this pattern for L2 times.

Continuing this process we get the desired sequence, which is relabeled as {B∗i }∞i=1.

Let

G = {Sv1...vk(U0) : k ∈ N, vi ∈ B∗i for 1 ≤ i ≤ k}.

and

F =
∞⋂
n=1

⋃
v1∈B∗1 ,... ,vn∈B∗n

Sv1v2...vn(U0).

Then G fulfills the Moran structure and F is the Moran set associated with G. The

condition (g) on {Ni,j} is made so that the assumption (5.1) is satisfied. Hence by

Proposition 5.1, dimH F = lim infn→∞ sn, where sn satisfies∑
v1∈B∗1 ,... ,vn∈B∗n

(ρv1...vn)sn = 1. (5.15)

The further conditions (f) and (h), together with (5.15) will guarantee that

α(x) = λα1 + (1− λ)α2, ∀ x ∈ F, (5.16)

and

dimH F ≥ λτ ∗U0
(α1) + (1− λ)τ ∗U0

(α2). (5.17)

The proofs of (5.16) and (5.17) are similar to those of (5.3) and (5.4) in Proposition

5.2, we just omit the details to avoid repetition. 2

Our main result is the following theorem about the multifractal formalism.

Theorem 5.4. Let µ be a self-similar measure associated with an IFS {Si}mi=1 that

satisfies the WSC and let U0 = U(x, r0) be the open ball in (2.5) of the definition of

WSC. Then

(i) EU0(α) 6= ∅ if and only if α ∈ [αmin, αmax];

(ii) For any α ∈ [αmin, αmax],

dimH EU0(α) = τ ∗U0
(α)(:= inf{αq − τU0(q) : q ∈ R}). (5.18)

Moreover, τ(q) = τU0(q) for q ≥ 0, and

dimH E(α) = τ ∗(α) := inf{αq − τ(q) : q ∈ R}, ∀α ∈ [αmin, τ
′(0−)].

(5.19)
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Proof. If EU0(α) 6= ∅, we can choose α(x) = α. By Corollary 3.2, α = α(x) ∈
[αmin, αmax]. Conversely, suppose α ∈ [αmin, αmax]. Since τU0(·) is concave, for any

α ∈ (αmin, αmax), there exist q1, q2 ∈ R such that τ ′U0
(·) exists at q1 and q2 and

τ ′U0
(q1) ≤ α ≤ τ ′U0

(q2). Hence α is a convex combination of αj = τ ′U0
(qj) (j = 1, 2)

and Proposition 5.3 implies EU0(α) 6= ∅ for α ∈ (αmin, αmax). Moreover Proposition

5.2 implies that EU0(α) 6= ∅ for α = αmin or αmax. Hence EU0(α) 6= ∅ for any

α ∈ [αmin, αmax]. This completes the proof of (i).

To prove (ii), note that for any open set V ⊂ Rd with µ(V ) > 0, and α ∈ R so

that EV (α) 6= ∅, we always have

dimH EV (α) ≤ τ ∗V (α).

In fact, the above inequality holds for any compactly supported Borel probability

measures on Rd (see, e.g., [2, 21] for a proof). Combining this with Proposition 5.2

and Proposition 5.3, we have

dimH EU0(α) = τ ∗U0
(α)

if α = αmin, α = αmax, or α = τ ′U0
(q).

Now, in general, we assume α ∈ (αmin, αmax). Then there exists t ∈ R such that

α ∈ [τ ′U0
(t+), τ ′U0

(t−)] and accordingly

τ ∗(α) = αt− τU0(t).

Denote a = τ ′U0
(t+), b = τ ′U0

(t−) and write α = λa + (1 − λ)b for some λ ∈ [0, 1].

Select tn ↑ t and sn ↓ t such that an = τ ′U0
(tn) and bn = τ ′U0

(sn) exist. Then there

exist λn ∈ [0, 1] such that α = λnτ
′
U0

(tn) + (1 − λn)τ ′U0
(sn) and limn→∞ λn = λ.

By Proposition 5.3, dimH EU0(α) ≥ λnτ
∗(an) + (1 − λn)τ ∗(bn). Letting n tends to

infinity, we have

dimH EU0(α) ≥ λτ ∗U0
(a) + (1− λ)τ ∗U0

(b)

= λ(at− τU0(t)) + (1− λ)(bt− τU0(t))

= αt− τU0(t) = τ ∗U0
(α).

Combining this with (5.18) we obtain dimH EU0(α) = τ ∗U0
(α). Hence we have proved

that dimH EU0(α) = τ ∗(α) for any α ∈ [αmin, αmax].

To see the last part, by Proposition 3.1 we have τ(q) = τU0(q) for q ≥ 0. To

show (5.19), it suffices to show the lower bound. Let α ∈ [αmin, τ
′(0−)]. Then
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α ∈ [τ ′U0
(t+), τ ′U0

(t−)] for some t ≥ 0. Hence, we have

dimH E(α) ≥ dimH EU0(α) = τ ∗U0
(α) = αt− τU0(t)

= αt− τ(t) ≥ τ ∗(α).

This completes the proof of the theorem. 2

Remark 5.5. Regarding of Theorem 5.4(ii), we have a slightly stronger result that

for each α ∈ [αmin, αmax], there is a Borel probability measure ν on EU0(α) such that

lim inf
δ→0

log ν(B(x, δ))

log δ
= τ ∗U0

(α) for ν-a.e. x. (5.20)

Indeed, as proved in Propositions 5.2-5.3 and Theorem 5.4, there is a Moran set

F ⊂ EU0(α) such that dimH F = τ ∗U0
(α). The existence of ν then follows from

Proposition 5.1.

Corollary 5.6. The above theorem remain valid if U0 is replaced by Uu = Su(U0)

for any word u ∈ A∗. Furthermore, τUu(q) = τU0(q) for all q ∈ R.

Proof. To see (iii), let u ∈ A∗. Then by Lemma 2.5 and the definition of the Lq

spectrum, we have τSu(U0) = τU0 . Since Su(U0) also satisfies the maximality (2.5),

the statements (i) and (ii) also hold if U0 is replaced by Su(U0). 2

By Theorem 5.4, we have dimH E(α) = τ ∗(α) for α ∈ [αmin, τ
′(0−)]. It is inter-

esting to consider the dimension spectrum dimH E(α) for those α ∈ (τ ′(0−), αmax].

The following two corollaries determine the dimension spectrum under certain ad-

ditional assumptions, which are satisfied for some concrete examples of self-similar

measures (see Section 6).

Corollary 5.7. Under the condition of Theorem 5.4, assume that τ(q) = τU0(q) for

all q < 0. Then dimH E(α) = τ ∗(α) for any α ∈ [αmin, αmax].

Proof. On one hand, the inequality dimH E(α) ≤ τ ∗(α) always holds for any com-

pactly supported probability measure. On the other hand, by Theorem 5.4 and

the assumption τ(q) = τU0(q) for all q < 0, we have dimH E(α) ≥ dimH EU0(α) =

τ ∗U0
(α) = τ ∗(α). 2

Set U = {U : U = U(x, r) attains the maximality in (2.5) } and W =
⋃
U∈U U .

Corollary 5.8. Under the condition of Theorem 5.4, assume that dimH K\W = 0.

Then for all α ∈ [αmin, αmax], dimH E(α) = τ ∗U0
(α).
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Proof. We first show that τU1 = τU0 for any U1 ∈ U . Since U1 ∩ K 6= ∅, there

exists a u ∈ A∗ such that Su(U0) ⊂ U1. It implies that τU1(q) ≤ τSu(U0)(q) = τU0(q),

where the last equality follows from Lemma 2.5. Symmetrically we have the opposite

inequality.

Now observe that if U(x, r) ∈ U , then U(y, r′) ∈ U if y and r′ (r′ < r) are close

enough to x and r. Hence each U(x, r) is the union of some U(y, r′) ∈ U with

y ∈ Qd and r′ ∈ Q+. As a consequence, there exists a sequence Ui ∈ U such that

W =
⋃∞
i=1 Ui. Since dimH K\W = 0, E(α) differs only from EW (α) =

⋃∞
i=1EUi(α)

by a set of Hausdorff dimension 0. Hence by Theorem 5.4, we have

dimH E(α) = dimH EW (α) = dimH

(
∞⋃
i=1

EUi(α)

)
= sup

i
dimH EUi(α) = sup

i
τ ∗Ui(α) = τ ∗U0

(α).

This completes the proof of the corollary. 2

6. Examples and Remarks

In the following we use some simple examples to illustrate the theorems.

Example 6.1. Consider the IFS Sj(x) = 1
3
(x + 2j − 2) for 1 ≤ j ≤ 4, let µ be the

self-similar measure satisfying

µ =
4∑
j=1

pjµ ◦ S−1
j ,

where p = (1/8, 3/8, 3/8, 1/8). The IFS has attractor K = [0, 3] and satisfies the

WSC. The measure µ is just the 3-fold convolution of the standard Cantor measure.

This example has some special interest as it is known that the dimension spectrum

contains an isolated point and τ(q) contains one non-differentiable point at q < 0

and the multifractal formalism for µ breaks on an interval corresponding to the non-

differentiable point q0 < 0 ([19, 23]). The failure of the formalism is due to the fact

that µ is too small on the intervals [0, 3−n] or [3 − 3−n, 3] (n ∈ N) and a modified

multifractal formalism is given in [13].

In the present situation, a simple calculation shows that we can take ` = 5 and

U0 = (5/18, 17/18) to attain the maximality in (2.5). To see this, we assume that

U0 = U(x0, r0) attains the maximum in (2.5) with 0 < r0 ≤ 1. Let k ≥ 1 be the
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integer so that 3−k < r0 ≤ 3−k+1. Then by the definition of Γr (see (2.1)), we have

Γr0 = {Su : u ∈ Ak}

= {φi(x) = 3−k(x+ 2i) : i = 0, 1, . . . , (3k+1 − 3)/2}.

Since Γr0 = Γ3−k+1 , U(x0, 3
−k+1) also attains the maximum in (2.5). Hence we may

take r0 = 3−k+1. Then

#Sr0(U0) = #{0 ≤ i ≤ (3k+1 − 3)/2 : [2i/3k, (2i+ 3)/3k] ∩ U(x0, 3
−k+1) 6= ∅}

= #{0 ≤ i ≤ (3k+1 − 3)/2 : i ∈ ∆ = ((3kx0 − 6)/2, 3kx0 + 3)/2)}.

Since ∆ is an open interval of length 9/2 which contains at most 5 integral points,

we have #Sr(U0) ≤ 5. A direct check shows that the maximality 5 can be attained

if we let k ≥ 2 and choose x0 = 3−k(2i + 5.5) for any integer i ∈ [0, (3k+1 − 11)/2].

For example, we can take k = 2 and x0 = 11/18 (corresponding to i = 0). In this

case, U0 = (x0 − 1/3, x0 + 1/3) = (5/18, 17/18)). It follows from Theorem 5.4 that

µ|U0 satisfies the multifractal formalism. As a direct check, we have

W ⊇
∞⋃
k=2

3k+1−11
2⋃
i=0

(3−k(2i+ 5.5)− 3k−1, 3−k(2i+ 5.5) + 3k−1) = (0, 3).

Hence the condition of Corollary 5.8 is fulfilled, and we have dimH E(α) = τ ∗U0
(α)

for α ∈ [αmin, αmax]. This gives an alternative proof of the result obtained in [13].

Example 6.2. More generally, consider the IFS Sj(x) = 1
N

(x+j−1) for 1 ≤ j ≤ m,

where N,m ∈ N, m > N ≥ 2. The attractor of the IFS is K = [0, m−1
N−1

]. Let

µ be the corresponding self-similar measure associated with a probability vector

(p1, . . . , pm). The multifractal structure of µ was considered by Shmerkin in [36].

Using an argument analogous to Example 6.1, we can show that the integer ` in

(2.4) is equal to the least integer not less than 2N + m−1
N−1

. Moreover, the maximality

of (2.5) is attained for those intervals U = U(x0, N
−k+1) such that k ≥ 2 and

Nkx0 − N − m−1
N−1

∈ (i − {m−1
N−1
}, i) for some integer i ∈ [0, (m−1)(Nk−1)

N−1
− ` − 1],

where {m−1
N−1
} denotes the fractional part of m−1

N−1
. A direct check also shows that

W ⊇ (0, m−1
N−1

). Hence K\W has Hausdorff dimension 0 and thus the result of

Corollary 5.8 holds, i.e., dimH E(α) = τ ∗U0
(α) for α ∈ [αmin, αmax]. This completes a

result obtained by Shmerkin ([36, Theorem 1.6]), who proved a modified multifractal

formalism on the range (αmin, αmax) under an additional assumption m < 2N − 3

(which forces µ to be an attractor of an infinite IFS without overlaps). Shmerkin

also gave some further conditions on the probability vector (p1, . . . , pm) to guarantee
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τ = τV for each open interval such that V ⊂ int(K) and to verify the validity of the

multifractal formalism (which is also a consequence of Corollary 5.7).

Example 6.3. Another simple example is the Bernoulli convolution associated with

the IFS {ρx, ρx+ 1} with ρ =
√

5−1
2

, which is also called Erdös measure [37]. There

is a large literature concerning the fractal dimensions and multifractal structure of

this measure (see [10] and references therein). It is the first example of self-similar

measure found to have a phase transition [10] (see also [15]). Through a rather

tedious calculation we can show that ` = 5 and the maximum in (2.5) can be

attained at U0 = U(x, ρ2) for any x ∈ (2ρ, 1 + ρ2) (we omit the details). It is known

that the measure satisfies the multifractal formalism [15].

There are more extensive class of examples of WSC studied in [22], [10], [39].

More generally, let {Si}mi=1 be an IFS given by

Si(x) = (−1)miρnix+ ki, i = 1, . . . ,m, (6.1)

where 1/ρ is a Pisot number, mi ∈ {0, 1}, ni ∈ N and ki ∈ Z. Then the IFS satisfies

the WSC according to an arithmetic property of Pisot numbers (see [21, p.70] for a

similar argument). Testud constructed some simple self-similar measures generated

by IFS of the form Sj(x) =
εj
N
x+ kj ( εj = ±1) such that the dimension spectra are

very wild and not concave at all [39].

For such IFS, one may design a finite algorithm to determine the corresponding

integer ` and choose a suitable interval U0 to attain the maximum in (2.5).

Theorems 1.1-1.2 remain valid when the open ball U0 is replaced by certain open

sets. Indeed, let V be an arbitrary bounded open set so that V ∩ K 6= ∅, and let

r > 0. Then from the assumption of the WSC, one deduces that

sup
w∈A∗∪{ϑ}

#Sρwr(Sw(V )) <∞.

Hence the supremum is attained at some w ∈ A∗∪{ϑ}. Denote `′ = #Sρwr0(Sw(V )).

Let V0 = Sw(V ) and r0 = ρwr. Then as an analogue of Proposition 2.4,

Sρur0(Su(V0)) = {Suω′i : 1 ≤ i ≤ `′}, ∀ u ∈ A∗ ∪ {ϑ},

where Sω′i , 1 ≤ i ≤ `′, are distinct elements in #Sr0(V0). All the results after

Proposition 2.4 then remain valid when U0 is replaced by V0.
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Example 6.4. Consider an IFS {Si}5
i=1 in R2 given by

Si(x, y) = (x/2, y/2) + ai, i = 1, . . . , 5.

where a1 = (0, 0), a2 = (0, 1), a3 = (1, 0), a4 = (1, 1) and a5 = (1/2, 1/2). The

attractor K of the IFS is [0, 2]2. We can take V0 = (1/2, 3/2)2 (accordingly r0 = 1

and `′ = 5).

We remark that all the IFS in the above examples satisfy the finite type condition,

a notion introduced by Ngai and Wang [26] which is stronger than the WSC [27].

Roughly speaking, in the definition of the finite type condition, we require not only

(2.4) to hold, but also all the maps Su ◦ S−1
v with Su, Sv ∈ Sr(U(x, r)), x ∈ R and

r > 0, form a finite set. It was shown in [9] that for a self-similar measure on R, if

its generating IFS is equi-contractive and satisfies the finite type condition, then the

Lq-spectrum τ is always differentiable over (0,∞), furthermore, an analogue of The-

orem 1.2 holds [11]. The results are based on a dynamical representation for these

measures through a non-trivial sub-shift coding, the thermodynamic formalism for

matrix-valued functions as well as the multifractal structure of Lyapunov exponents

for products of non-negative matrices. However for self-similar measures with the

WSC, it seems difficult to set up such a sub-shift representation. We remark that

the differentiability property of the Lq spectrum has been further studied for some

specific non-equi-contractive IFS with the finite type condition [38]. It still remains

open whether τ is differentiable over (0,+∞) for all self-similar measures satisfying

the WSC.

For a general self-similar measure with the WSC, we conjectured that the multi-

fractal formalism always holds whenever α = τ ′(q) for q < 0. So far, this is true for

all known examples such that τ can be calculated explicitly. In particular, Testud

[39] showed that this is true for a specific class of self-similar measures generated by

IFS of form (6.1) under certain assumptions.

Finally, we remark that our main results can be extended to the following class

of self-affine measures.

Example 6.5. Consider an IFS Φ = {Si}mi=1 in Rd given by

Si(x) = A−1x+ ci, i = 1, . . . ,m,

where A is a d × d integral expanding matrix such that all the eigenvalues of A

have the same modulus and, ci ∈ Zd for all i. In this case, Φ is not necessary to be

a self-similar IFS, but it has some similar properties as a self-similar IFS with the
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WSC. Indeed, let K denote the attractor of Φ. It is easy to check that there is an

integer ` such that

sup
x∈Rd, n∈N

# {Su : u ∈ An, Su(K) ∩ An(U(x, 1)) 6= ∅} = `. (6.2)

Assume that the supremum in (6.2) is attained at x = x0 and n = n0. Take

U0 = An0(U(x0, 1)) and let ωi (i = 1, . . . , `) be words in An0 such that Sωi ’s are

different and Sωi(K) ∩ U0 6= ∅. As an analogue of Proposition 2.4, we have for any

u ∈ Ak (k ≥ 0),

{Sv : v ∈ Ak+n0 with Sv(K) ∩ Su(U0) 6= ∅} = {Suωi : i = 1, . . . , `}.

An essentially identical argument then shows that our main results (Theorems 1.1-

1.2) remain valid for any self-affine measure µ generated by Φ. This completes a

recent result of Deng and Ngai [5], who showed that in this special self-affine case,

τ is differentiable over (0,∞) and dimH E(α) = τ ∗(α) for α = τ ′(q), q > 0.

7. Appendix

In this part we give a full proof of Proposition 3.3. We need the following lemma,

which can be proved in a similar way to the proof of the Besicovitch covering lemma

(see [24, p.32-33]).

Lemma 7.1. Let {B(xi, r) : i ∈ I} be a family of disjoint closed balls in Rd of

radius r. Then for N > 1, there exists an integer n ≤ (8N)d such that the index set

I can be partitioned into I1, . . . , In, and for each 1 ≤ j ≤ n, the balls in the family

{B(xi, Nr) : i ∈ Ij} are disjoint.

Proof of Proposition 3.3. For the given δ, r0 > 0, we choose a small 0 < ε < 1

such that

(α− δ/2)ε ≤ τV (q + ε)− τV (q) ≤ (α + δ/2)ε

and

(α− δ/2)ε ≤ τV (q)− τV (q − ε) ≤ (α + δ/2)ε,

continue by picking 0 < γ < min{εδ/8, 1} and 0 < r1 < min{r0, 1} such that for all

0 < t < r1,

ΘV (q; t) ≤ tτV (q)−γ, ΘV (q ± ε; t) ≤ tτV (q±ε)−γ. (7.1)
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We fix the targeted 0 < r < min{r1, 3
−1/γ} such that

rτV (q)+γ ≤ ΘV (q; r). (7.2)

(We will require further restrictions on r in the sequel.) By the definition of ΘV (q; r),

we can find a family B = {B(xi, r)} of disjoint balls contained in V with centers in

supp(µ) such that

ΘV (q; r)/2 ≤
∑
B∈B

µ(B)q ≤ ΘV (q; r).

Combining this with (7.1) and (7.2) yields

rτV (q)+2γ ≤
∑
B∈B

µ(B)q ≤ rτV (q)−γ. (7.3)

Set

B1 = {B ∈ B : µ(B) ≥ rα−δ}, B2 = {B ∈ B : µ(B) ≤ rα+δ}

and B3 = B\(B1 ∪ B2). Then∑
B∈B1

µ(B)q =
∑
B∈B1

µ(B)q+ε · µ(B)−ε ≤ ΘV (q + ε; r)r−ε(α−δ)

≤ rτV (q+ε)−γ−ε(α−δ) ≤ rτV (q)+εδ/2−γ.

Similarly, we have∑
B∈B2

µ(B)q =
∑
B∈B2

µ(B)q−ε · µ(B)ε ≤ ΘV (q − ε; r)rε(α+δ)

≤ rτV (q−ε)−γ+ε(α+δ) ≤ rτV (q)+εδ/2−γ.

These two inequalities together with (7.3) and (7.2) imply∑
B∈B3

µ(B)q =
(∑
B∈B

−
∑
B∈B1

−
∑
B∈B2

)
µ(B)q

≥ rτV (q)+2γ − 2rτV (q)+εδ/2−γ = rτV (q)+3γ(r−γ − 2rεδ/2−4γ)

≥ rτV (q)+3γ(r−γ − 2) ≥ rτV (q)+3γ. (7.4)

Note that for each B ∈ B3, µ(B)q ≤ max{r(α±δ)q} = rαq−δ|q|. Hence∑
B∈B3

µ(B)q ≤ (#B3) rαq−δ|q|

which combining with (7.4) yields

#B3 ≥ r−τ
∗
V (α)+δ|q|+3γ. (7.5)

Next we will choose the family of balls in the proposition. We conduct the con-

struction by considering the two cases q ≤ 0 and q > 0 separately.
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Case (i): q ≤ 0. Let B3 = B′3 ∪ B′′3 where

B′3 = {B(x, r) ∈ B3 : µ(B(x, r/N)) < rα+2δ}

and

B′′3 = {B(x, r) ∈ B3 : µ(B(x, r/N)) ≥ rα+2δ}.
Then by (7.1)∑

B(x,r)∈B′3

µ(B(x, r/N))q−ε ≤ ΘV (q − ε; r/N) ≤ (r/N)τV (q−ε)−γ

≤ (r/N)τV (q)−ε(α+δ/2)−γ.

On the other hand, we have
∑

B(x,r)∈B′3
µ(B(x, r/N))q−ε ≥ (#B′3) r(α+2δ)(q−ε). If we

choose r, in addition to 0 < r < min{r1, 3
−1/γ}, such that rγ < N τV (q)−ε(α+δ/2)−γ,

then the above two inequalities imply that

#B′3 ≤ rτV (q)−αq+3εδ/2−2δq−2γ = r−τ
∗
V (α)+3εδ/2−2δq−2γ. (7.6)

By (7.5), (7.6) and (7.1), we have

#B′′3 = #B3 −#B′3
≥ r−τ

∗
V (α)+δ|q|+3γ − r−τ∗V (α)+3εδ/2−2δq−2γ

≥ r−τ
∗
V (α)+δ(|q|+1)r−δ(r3γ − r3εδ/2−2γ) (using q ≤ 0)

> r−τ
∗
V (α)+δ(|q|+1),

where the last inequality follows from r−δ(r3γ − r3εδ/2−2γ) ≥ r−4γ(r3γ − r4γ) ≥
r−γ − 1 > 1. Hence the family B′′3 of balls satisfies properties (3.3) and (3.4) of the

proposition when q ≤ 0.

Case (ii): q > 0. Unlike the above case, we need to use B(x,Nr) for the estima-

tion. To ensure that B(x,Nr) ⊂ V , we need to consider an auxiliary open set U

with U ⊂ V and τU(q) = τV (q). All the definitions of ε, δ, γ, r1, r and B1,B2,B3 in

Case (i) should now be made using U instead of V . In addition, r1 is asked to be

small enough such that B(x,Nr1) ⊂ V for any x ∈ U . Because τU(q) = τV (q) for

q > 0, the formulas (7.3), (7.4) and (7.5) remain valid.

Let B̃3 = {B(x,Nr) : B(x, r) ∈ B3}. By Lemma 7.1, there exists l ≤ (8N)d such

that B̃3 can be partitioned into subfamilies C̃1, . . . , C̃l such that the balls in each

subfamily are disjoint. Without loss of generality we assume that #C̃1 ≥ #B̃3/l =

#B3/l. Then for 0 < r < r1/N , (7.1) implies∑
B∈C̃1

µ(B)q ≤ ΘV (q;Nr) ≤ (Nr)τV (q)−γ.
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(Strictly speaking, because we are using U instead of V , we can not apply (7.1)

directly. However the above formula still holds by making r smaller if necessary).

Let C̃1 = C̃ ′1 ∪ C̃ ′′1 where

C̃ ′1 = {B ∈ C̃1 : µ(B) > (Nr)α−2δ}, C̃ ′′1 = {B ∈ C̃1 : µ(B) ≤ (Nr)α−2δ}.

We have ∑
B∈C̃1

µ(B)q ≥
∑
B∈C̃′1

µ(B)q ≥ (#C̃ ′1)(Nr)(α−2δ)q.

It follows that

#C̃ ′1 ≤ (Nr)−τ
∗
V (α)+2δq−γ.

If we choose γ and r to satisfy the following additional conditions:

γ < δq/5, r−γ > 2(8N)dN−τ
∗
V (α)+δq+4γ,

then

#C̃ ′′1 ≥ #C̃1 −#C̃ ′1

≥ 1

l
#B3 −#C̃ ′1

≥ (8N)−d · r−τ∗V (α)+δ|q|+3γ − (Nr)−τ
∗
V (α)+2δq−γ (by (7.5))

≥ (Nr)−τ
∗
V (α)+δ|q|+4γ

(
r−γ(8N)−dN−(−τ∗V (α)+δq+4γ) − (Nr)δ

q−5γ
)

≥ (Nr)τ
∗
V (q)+δ|q|+4γ ≥ (Nr)−τ

∗
V (α)+δ(|q|+1).

Therefore the family C̃ ′′1 of balls satisfies an analogue of (3.3) and (3.4), in which the

number r is replaced by Nr. 2
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