A SEPARATION PROPERTY FOR ITERATED FUNCTION
SYSTEMS OF SIMILITUDES

DE-JUN FENG, HUO-JUN RUAN, AND YING XIONG

ABSTRACT. Let E be the attractor of an iterated function system {¢;(z) = pR;z+
ai}ZN=1 on R%, where 0 < p<1l a € R¢ and R; are orthogonal transformations
on RZ. Suppose that {¢; N | satisfies the open set condition, but not the strong
separation condition. We show that E can not be generated by any iterated
function system of similitudes satisfying the strong separation condition. This
gives a partial answer to a folklore question about the separation conditions on
the generating iterated function systems of self-similar sets.

1. INTRODUCTION

In this paper, we investigate the separation conditions on iterated function systems
of similitudes.

By an iterated function system (IFS) on R? we mean a finite family ® = {¢;}¥,
of uniformly contracting mappings on R? with N > 1. It is well known [10] that for
each IFS ® = {¢;}V, on RY, there is a unique non-empty compact set £ C R¢ such
that

E:U@wy

We call E the attractor of ®. If each map ¢; in ¢ is a similitude, i.e., ¢; is of the
form

¢i(r) = piRix + a;,
where 0 < p; < 1, a; € R? and R; is an orthogonal transformation on R?, we say
that E is a self-similar set generated by ®. The study of IFSs and their attractors

is an important subject in fractal geometry, dynamical systems and probability (see
e.g. [3, 4, 8, 10]).

One of the most fundamental conditions on IFSs of similitudes is the open set
condition (OSC), under which the dimensions of the self-similar sets and the mul-
tifractal structure of the self-similar measures are well understood ([8, 10, 11, 12]).
Recall that an IFS ® = {¢;}Y, of similitudes on R? is said to satisfy the open set
condition if there is a non-empty open set U C R? such that ¢;(U), i = 1,..., N,
are disjoint subsets of U. Another commonly used separation condition on IFSs is
the so-called strong separation condition (SSC). Recall that ® = {¢;}¥, is said to
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satisfy the strong separation condition if ¢;(F), i = 1,..., N, are disjoint, where F
is the attractor of ®.

It is easy to see that the SSC implies the OSC. Indeed if E is the attractor of an
IFS ® = {¢;}Y, on R? satisfying the SSC, letting

VAE)={z €R*: |z —y| < e for some y € E}

denote the e-neighborhood of E, then one can check that ¢;(V.(E)) (i =1,...,N)
are disjoint subset of V,(£) for all

0<e< Ir;m dist(¢i(E), ¢;(E)),

so ® satisfies the OSC. Meanwhile there are many examples of IFSs which satisfy
the OSC but not the SSC, such as the IFS {z/5, (x+3)/5, (x+4)/5} on R. There
are some equivalent conditions for the OSC [2, 13], but usually it is difficult to check
whether these conditions hold for a given IFS. We emphasize that a self-similar set
can be generated by many different [F'Ss of similitudes, and under mild assumptions
these IFSs have a rigid algebraic structure (see, e.g., [9, 7, 5, 6, 1]).

In this paper, we consider the following folklore question about the separation
conditions on the generating IF'Ss of self-similar sets.

Question 1.1. Are there two IFSs ® and ¥ of similitudes on R® which generate the
same self-similar set, such that ® satisfies the OSC but not the SSC, and V satisfies
the SSC?

This question was first brought to us by Ka-Sing Lau and Jun Jason Luo around
10 years ago. As they informed us, this question was also asked by Mariusz Urbanski
in a private communication. We remark that Question 1.1 is closely related to an
open question raised by Elekes, Keleti and Mathé [7]; see Section 4.

In this paper, we are able to provide the following partially negative answer to
Question 1.1, stating that there is no such pair (®,¥) with ® being homogeneous.
Recall that an IFS {¢;}Y | of similitudes is said to be homogeneous if all the maps
¢; have the same contraction ratio.

Theorem 1.2. Let E be the attractor of an IFS ® = {¢;(z) = pRixz +a;}Y, on RY,
where 0 < p < 1, R; are orthogonal transformations on R and a; € R?. Suppose
that ® satisfies the OSC, but not the SSC. Then E can not be generated by any IFS
of similitudes on R? satisfying the SSC.

The proof of the above theorem is a little bit delicate. For the convenience of
the readers, we illustrate some rough ideas. Suppose on the contrary that E is
also generated by another IFS W = {¢;}}Z, of similitudes satisfying the SSC. We
may assume that r; < p for all j, where r; is the contraction ratio of ;. For
simplicity we assume that E is not contained in any hyperplane of R?. Choose a
sufficiently small € > 0 and let Z denote the collection of all homogeneous generating
IFSs (of similitudes on R?) of E with contraction ratios lying in the interval [pe, €).
Applying a result of Elekes et al. [7] we see that Z is finite (see Lemma 3.1). For

each © = {0;}ica € Z, we can construct M homogeneous generating I[FSs I'y, ...,
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Ty of Eby Ty ={¢;'06;: i € Aj}, where A; .= {i € A: 0;(E) C ¢;(E)}. For
each j we can show that there exists a positive integer k; such that ®% o T, € Z,
where ®% denotes the k;-th iteration of ®. To derive a contradiction, we assign an
infinite dimensional probability vector ~(®’) (with finitely many non-zero entries)
to each generating IFS @’ of F satisfying the OSC; see Section 2.1. The term v(®’),
which is called the characteristic vector of @', gives a quantitative description of
the intersections between the images of F under the mappings in ®. Moreover we
can introduce a total order relation < on the collection of all such vectors. A key
observation is that

(L1) (@) < 1(@ 0 @)

for each generating IFS @ of F satisfying the OSC (see Lemma 2.6). Now return
back to the aforementioned IFSs © and I'; (j = 1,...,M). From the definition of
characteristic vector, we obtain an identity v(©) = Z]Ai1 r3v(T';), where s is the
Hausdorff dimension of E which satisfies Zj\il ri = 1. As T is finite, we may choose
© € T so that y(©) is the largest in the sense that v(0©') < v(©) for all © € Z.
Then by (1.1),

7(©) = Z riy(Ty) < Z riy(@M o Ty) = Z riy(0) = 4(O),

leading to a contradiction () < v(O).

The paper is organized as follows. In Section 2 we introduce the definition of
characteristic vector for each IFS of similitudes, and prove Lemma 2.6. In Section
3 we prove Theorem 1.2. In Section 4 we give a final remark.

2. CHARACTERISTIC VECTORS OF IFSS AND A KEY PROPERTY

2.1. Characteristic vectors of IFSs of similitudes. In this subsection, we will
assign an infinite-dimensional probability vector to each IFS of similitudes on R

To begin with, let ® = {¢;(z) = p;Riz + a;}*, be an IFS of similitudes on R?
and let £ = E3 be the attractor of ®. We introduce a binary relation ~¢ on the
set Vi=Ve={1,...,N} by

irvgj o if ¢i(E) N gi(E) # 0.

We say that i is adjacent to j if i ~¢ j. Moreover, we say that i is connected to j, if
there exist z1,...,x, € {1,..., N} with 2y = ¢ and z,, = j such that z; is adjacent
to xp4q for K =1,...,n — 1. A subset V' of V is said to be connected if each two
elements of V' are connected to each other.

Clearly, V' can be written as the union of a number of disjoint maximal connected
subsets, each of them is called a connected component of V. Moreover a connected
component of V' with cardinality n is called an n-component of V.

It is direct to check that A C V' is an n-component of V' if and only if the following

two properties hold:
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(1) CaNCy\a =0, where Cp := [J;cp 0i(E).
(ii) Car N Cyrar # O for every nonempty proper subset A" of A.

Let s denote the similarity dimension of ®, i.e., s is the unique number so that
SV, pf = 1. We define an infinite dimensional vector v(®) = (72)%2, by

n=1
o E E s
’yn - pi7
A: A is a n-component of V i€A

where we adopt the convention that ¥ = 0 if V' has no any n-component. Clearly
¥ =0foralln >N and Y o0 72 =1.

Definition 2.1. We call v(®) = (v*)2, the characteristic vector of .

Below we give some simple examples to illustrate the characteristic vector ~(®)
of ®.
Example 2.2. If ¢ satisfies the SSC, then v(®) = (1,0,...).

Example 2.3. Suppose that the attractor E = Eg of ® = {¢;} Y., is connected, then
Y2 =1 and v* =0 for alln # N.
Example 2.4. Let ® = {¢;}3_, be an IFS on R defined by
x r+3 x+4
¢1(I) - 57 ¢2($) - 5 ) ¢3 - 5 .
Then ~v(®) = (1/3,2/3,0,...).

2.2. A key property of characteristic vectors. In order to compare two char-
acteristic vectors of IFSs, we write

Q= {(azn)%‘;l e RY: x, # 0 for at most finitely many n} )

Clearly, 2 is a vector space over R and (®) €  for each IFS & of similitudes on
R?. Now we introduce a relation < on € by

x <y if there exists m > 1 such that z,, < y,, and x,, = y, for all n > m,

where z = ()7, and y = (y,)22,. We write z <y if z < y or z = y. Clearly Q
is totally ordered in the sense that for any z,y € €2, we have either x = y, or x < y,
or y < x. Moreover, if x <y then ax < ay for all @ > 0; and if x <y, u < v then
T+u=y+o.

For two IFSs ® = {¢;};L; and ¥ = {¢;}}X; on R?, the composition of ® and ¥ is
a new IFS on R? given by

PoWV={po9h;:1<i<N,1<jeM}
We begin with a simple lemma.
Lemma 2.5. Let ® = {¢;}), and U = {¢;})L, be two IFSs of similitudes on R?

satisfying the OSC. Suppose that ® and ¥ generate the same self-similar set F, i.e.,

Ey = FEy =FE. Then ® oV is also a generating IFS of E satisfying the OSC.
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Proof. Since Eg = By = E, we have E = U, ¢;(E) = UL, v:(E). It follows that

JUsitws) = Us (.U wj<E>> ~Unm =,

which implies Fgop = E.

To see that ® oW satisfies the OSC, let s be the Hausdorff dimension of E. Clearly,
® and ¥ have the same similarity dimension s and H*(E) > 0, where H* stands for
the s-dimensional Hausdorff measure; see [8, 10]. It follows that ® o ¥ also has the
similarity dimension s. Since H*(E) > 0, by [13, Theorem 2.1] ® o ¥ satisfies the
OSC. O

The following lemma plays a key role in the proof of Theorem 1.2.

Lemma 2.6. Let ® = {¢;}}Y, and U = {¢;}} be two IFSs of similitudes on R
satisfying the OSC. Suppose that ® and V¥ generate the same self-similar set E.
Moreover, suppose that ® does not satisfy the SSC. Then v(V) < (P o ¥).

Proof. By Lemma 2.5, ® o U is a generating IFS of F satisfying the OSC. Write

v\p:{l,...,M}aHqum\p:{(i,j)Z Zzl,,N,jzl,,M}

Define the binary relations ~y and ~g.gy on Vg and Vgoy respectively as in Section
2.1. For n > 1, let C,, denote the collection of n-components of Vg with respect to
~y, and D, the collection of n-components of Vgoy with respect to ~goy; see Section
2.1 for the relevant definitions.

Let us first give a simple observation. Suppose that two elements j, k € Vi are
connected to each other, i.e., there exist 71, ..., s € Vg, with j; = j and j, = k, such
that ¢;,(E) N, (E) #0 forall £ =1,...,s — 1. Clearly for each i € {1,..., N},
b; 0, (E) N s 01y, (E) # 0 for all ¢ = 1,...,s — 1; therefore the elements (i, j)
and (i, k) in Vgpoy are connected to each other.

According to the above observation, for every n-component A of Vi and i €
{1,..., N}, the set {i} x A is connected with respect to ~goy, hence it is either
an n-component of Vg or a proper subset of an ni-component of Vgoy for some
ny > n.

We claim that for some n € N, there are an n-component A of Vi and i €
{1,..., N} such that the set {i} x A is not an n-component of Vg.y. To prove this
claim we use contradiction. Suppose on the contrary that the claim is false. Then
for each i € {1,...,N}, n € Nand A € C,, we have {i} x A € D,,, which implies
that for each 1 < ¢ < N with ¢/ # i,

& (U wj<E>) N ¢u(E) = o, (U %(E)) N i (U wm)

jeA JEA
5
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Taking the union over all connected components of Vi yields that fori,7 € {1,..., N}
with i £ ¢,

(E)Nos(B) =0 | |J Uwi(®) | neu(k)=0,

AE€U, 51 Cn JEA

which contradicts the assumption that ® = {¢;}¥, does not satisfy the SSC. This
completes the proof of the claim.

Let ng be the largest integer such that there exist an ng-component Ay of Vi and
ip € {1,... N} such that the set {ig} x Ay is not an ng-component of Vgoy. Then
as we pointed out above, {ig} X Ay is a proper subset of an nj-component Dy of
Voow for some ny > ng. Clearly Dy is not of the form {i} x A with 1 <7 < N and
AelC,,.

Now for 7 € {1,...,N} and j € {1,..., M}, let p; and r; denote the contraction
ratios of ¢; and 1);, respectively. Let s denote the Hausdorff dimension of £. Then
for each n > ny and A € C,, {i} x A € D,, for each 1 < i < N. It follows that for
n 2 ny,

21) W=D > (o) =D DD ) =YD =

DeDy, (i,5)€D i=1 AeCp jEA AeCyp jEA

Recall that D,,, contains an element D, which is not of the form {i} x A with
1<i< NandA €C,,. Hence

7510\1}: Z Z (pir;)®

DED”I (LJ)ED

> > g+ ) D (o)

(2.2) (#",5')€Do i=1 A€Cn; jEA
= Z (pirrir)® + Yoy
(#",3")€Do
>
Combining (2.1) and (2.2) yields that v(¥) < (P o ). O

3. THE PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2. For a compact set £ C R?, let Zy denote
the collection of all homogeneous IFSs of similitudes on R? that generate £ and
satisfy the OSC. Write

(3.1) Ipap={P€Zr: a<pp <b}

for 0 < a < b < 1, where pg denotes the common contraction ratio of the maps in

.
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Lemma 3.1. Let E be the attractor of an IFS of similitudes on RY satisfying the
SSC. Suppose that E is not contained in any hyperplane of RY. Then for any 0 <
a<b<l,Iga.pis a finite set.

Proof. Let Sim(d) denote the collection of all similarity maps of R?. Notice that
each element ¢ in Sim(d) is an affine map on R¢ which is of the form ¢(x) = Az +a,
where A is a d x d matrix and a € R, hence ¢ can be viewed as a point in R+,
Therefore Sim(d) can be viewed as a metric subspace of R¥* where we endow
R+ with the usual Euclidean metric.

For § > 0, write
SE75 = {¢ S Slm(d) : ¢(E) D E and Po < 5},

where p, denotes the similarity ratio of ¢. To prove the conclusion of the lemma, it
suffices to show that Sg s is finite for every 6 > 0.

Since F is a compact subset of R?, it follows that Sgs is a compact subset of
Sim(d) for each § > 0. Meanwhile by [7, Proposition 4.3(i)], under the assumptions
of the lemma on E, {¢ € Sim(d) : ¢(F) D E} is a discrete subset of Sim(d). Hence
Sk, is both discrete and compact, so it is finite. O

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We first assume that E is not contained in a hyperplane of
R¢. To prove the theorem we use contradiction. Suppose on the contrary that F
can be generated by an IFS ¥ = {4, jj‘il of similitudes on R? which satisfies the
SSC. Below we derive a contradiction.

Replacing ¥ by its n-th iteration W™ := W o --- oW for a large n if necessary, we
—_———

n
may assume that r; < p for all 1 < 7 < M, where r; denotes the contraction ratio
of ;. Set

(3.2) § 1= min dist (4,(E). 4 (F)
J77
Since VU satisfies the SSC, we have 6 > 0. Clearly § < diam(FE).

Pick a large positive integer ¢ so that p’ < min;<;<j ;. Then fix a small € > 0
such that

p'o

(3.3) e < Gam(B)’

Clearly € < p* since § < diam(F). Let Z := Zg .. denote the collection of homo-
geneous generating IFSs ® on R? of E satisfying the OSC and pe < pg < €. By
Lemma 3.1, Z is a finite set. Let & be the unique integer so that pe < pF < e.
Then k > ¢ > 1 and ®* € Z, so Z is non-empty. Since 7 is a nonempty finite set,
there exists © € Z whose characteristic vector v(0) is the largest in the sense that
v(®') = v(O) for all ' € 7.

7



Keep in mind that pg € [pe, €) since © € Z. Write © = {6, }ica. By (3.3),

(3.4) diam(0;(E)) = pediam(E) < ediam(FE) < p’6 < 4,
and

14 : )
(3.5) po <e<p < i 7.

Since ;e 4 0i(E) = £ = Uj\il Y;(E), by (3.2) and (3.4) we see that if 6;(E)N;(E) #
(0 then 6;,(E) C ¢;(E). Due to this, we can partition A into M disjoint subsets
Ai,..., Ay by setting

A ={ie A: 0,(E) Cy;(E)}, j=1,...,M,
and moreover,
(3.6) U oiB)=v(B), j=1....,M.
i€A;
For j=1,..., M, let
Fj:{zﬂj_lo@: iEAj}.

By (3.6) and (3.5), for each 1 < j < M, I'; is a homogeneous generating IFS of £
satisfying the OSC, and its contraction ratio pr, satisfies

(3.7) pr, =15 'pe =15 pe > €,
where we have used pg > pe and r; < p in the last two inequalities. For each
1 <j < M, let k; be the unique integer such that
phipr, € [pe,e),
then k; > 1 by (3.7), and ®% o T'; € Z, where ®% denotes the k;-th iteration of ®.

Next we compare the characteristic vectors of the IFSs © and I'; (j = 1,..., M).
Since ¥ satisfies the SSC, by (3.6) we see that 0;(E) N 60y(E) = 0 if i € A; and
i' € Aj for some j # j'. It follows that for n € N, every n-component of A (with
respect to ~g) is totally contained in A4; for some j. Hence for each n € N,

Ve = > > 0

A: A is an n-component of A €A
(3.8) M
s
= 2 > re
j=1 A: A is an n-component of A; i€A

Meanwhile by (3.6), it is easy to see that each n-component of A; with respect to
~g is an n-component of A; with respect to ~r,, and vice versa. It follows that for

j=1,...,M,

(3.9) Wi = > > (o).

A: A is an n-component of A; ‘€A

8



Combining (3.8) with (3.9) yields that 72 = Zj\il rjfyyrﬂ for each n € N. Hence

(3.10)

=1

Recall that for each 1 < j < M, there exists k; € N such that % o'; € Z. This
implies that y(®% o T;) < (@) Since @ satisfies the OSC but not the SSC, by
Lemma 2.6 we have

V() < y(@oTy) <--- <4(®% oT;) < 4(0)
for j =1,..., M. Combining this with (3.10) yields that

©) < D>_157(8) =(®),

which leads to a contradiction. This proves the theorem under the assumption that
E is not contained in a hyperplane of R%.

Finally we consider the general case when £ may be contained in a hyperplane
of R%. Suppose on the contrary that E can be generated by an IFS ¥ = {4, j]‘il

of similitudes on R? which satisfies the SSC. Let H be the affine hull of E. i.e., H
is the affine subspace of R? with the smallest dimension that covers E. Then it is
direct to check that the following properties hold:

(i) E is not contained in a proper affine subspace of H;
(i) ¢i(H ) H,yj(H)=Hforall1<i<Nand 1<j< M,

(iii) Let i, zpj denote the restrictions of ¢; and ¢; on H. Then o = {@}Z , and
U= {%} *, are IF'Ss of similitudes on H that generate E, and moreover, ®
is a homogeneous IFS satisfying the OSC, and U satisfies the SSC.

Then we can derive a contradiction by following the previous argument (in which

®, ¥ and R? are replaced by &D, U and H , respectively). This completes the proof
of the theorem. O

4. A FINAL REMARK

We remark that Question 1.1 is closely related to the following question raised by
Elekes, Keleti and Mathé.

Question 4.1 ([ Question 9.3]). Let E C R? be a self-similar set generated by an
IFS W = {¢;}}1, satzsfymg the SSC and let f be a similitude such that f(E) C E.
Does this imply that f(F) is a relative open set in E (or in other words f(E) is a
finite union of elementary pieces of F)?

Here an elementary piece of £ means a set of the form ¢, o--- o1, (F), where
J1y-yJm € {1,..., M}. To our best knowledge, so far Question 4.1 still remains
open. We remark that an affirmative answer to Question 4.1 would yield a negative

answer to Question 1.1. To see this, suppose that FE is the attractor of an IFS
9



U = {9, j]‘il of similitudes satisfying the SSC, and that the answer to Question 4.1
is affirmative. Notice that the collection of elementary pieces of E (with respect to
the IF'S W) has the following net structure: for any two given elementary pieces F;
and Fs, one has either Ey N Ey =), or Ey C Es, or B} D FEy. Hence if f(E) C E
for a similitude f, then f(F) is a finite union of disjoint elementary pieces of FE. As
a consequence, if f; and fy are two similitudes mapping E into itself, then either
fi(E)N fo(E) =0, or f1(E)N f2(E) contains an elementary piece of E which implies
that H*(f1(E) N fa(E)) > 0, where s denotes the Hausdorff dimension of E. Now if
® = {¢;} Y, is another generating IFS (of similitudes) of F satisfying the OSC, then
HE(0i(E) N ¢;(E)) = 0 for all i # j (see [10]) which forces that ¢;(E) N ¢;(E) =0
for all ¢ # j, that is, ® satisfies the SSC. Therefore there is no generating IFS (of
similitudes) of F which satisfies the OSC but not the SSC.
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