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Abstract. Let (X,T ) be a topological dynamical system. We define the measure-
theoretical lower and upper entropies hµ(T ), hµ(T ) for any µ ∈ M(X), where
M(X) denotes the collection of all Borel probability measures on X. For any
non-empty compact subset K of X, we show that

hBtop(T,K) = sup{hµ(T ) : µ ∈M(X), µ(K) = 1},

hPtop(T,K) = sup{hµ(T ) : µ ∈M(X), µ(K) = 1},
where hBtop(T,K) denotes Bowen’s topological entropy of K, and hPtop(T,K) the
packing topological entropy of K. Furthermore, when htop(T ) < ∞, the first
equality remains valid when K is replaced by any analytic subset of X. The
second equality always extends to any analytic subset of X.

1. Introduction

Throughout this paper, by a topological dynamical system (TDS) (X,T ) we mean

a compact metric space X together with a continuous self-map T : X → X. Let

M(X) , M(X,T ), and E(X,T ) denote respectively the sets of all Borel probability

measures, T -invariant Borel probability measures, and T -invariant ergodic Borel

probability measures on X. By a measure theoretical dynamical system (m.t.d.s.)

we mean (Y, C, ν, T ), where Y is a set, C is a σ-algebra over Y , ν is a probability

measure on C and T is a measure preserving transformation. A probability measure

µ ∈ M(X,T ) induces a m.t.d.s. (X,BX , µ, T ) or just (X,µ, T ), where BX is the

σ-algebra of Borel subsets of X.

In 1958 Kolmogorov [17] associated to any m.t.d.s. (Y, C, ν, T ) an isomorphic

invariant, namely the measure-theoretical entropy hν(T ). Later on in 1965, Adler,

Konheim and McAndrew [1] introduced for any TDS (X,T ) an analogous notion

of topological entropy htop(T ), as an invariant of topological conjugacy. There is a

basic relation between topological entropy and measure-theoretic entropy: if (X,T )

is a TDS, then htop(T ) = sup{hµ(T ) : µ ∈ M(X,T )}. This variational principle
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was proved by Goodman [12], and plays a fundamental role in ergodic theory and

dynamical systems (cf. [24, 26]).

In 1973, Bowen [4] introduced the topological entropy hBtop(T, Z) for any set Z in

a TDS (X,T ) in a way resembling Hausdorff dimension, which we call Bowen’s topo-

logical entropy (see Sect. 2 for the definition). In particular, hBtop(T,X) = htop(T ).

Bowen’s topological entropy plays a key role in topological dynamics and dimension

theory [24].

A question arises naturally whether there is certain variational relation between

Bowen’s topological entropy and measure-theoretic entropy for arbitrary non-invariant

compact set, or Borel set in general. However, when K ⊆ X is T -invariant but not

compact, or K is compact but not T -invariant, it may happen that hBtop(T,K) > 0

but µ(K) = 0 for any µ ∈ M(X,T ) (see Example 1.5). Hence we don’t expect to

have such variational principle on the class M(X,T ). For our purpose, we need to

define the measure-theoretic entropy for elements in M(X).

Fix a compatible metric d on X. For any n ∈ N, the n-th Bowen metric dn on X

is defined by

(1.1) dn(x, y) = max
{
d
(
T k(x), T k(y)

)
: k = 0, . . . , n− 1

}
.

For every ε > 0 we denote by Bn(x, ε), Bn(x, ε) the open (resp. closed) ball of radius

ε in the metric dn around x, i.e.,

(1.2) Bn(x, ε) = {y ∈ X : dn(x, y) < ε}, Bn(x, ε) = {y ∈ X : dn(x, y) ≤ ε}.

Following the idea of Brin and Katok [6], we give the following.

Definition 1.1. Let µ ∈M(X). The measure-theoretical lower and upper entropies

of µ are defined respectively by

hµ(T ) =

∫
hµ(T, x) dµ(x), hµ(T ) =

∫
hµ(T, x) dµ(x),

where

hµ(T, x) = lim
ε→0

lim inf
n→+∞

− 1

n
log µ(Bn(x, ε)),

hµ(T, x) = lim
ε→0

lim sup
n→+∞

− 1

n
log µ(Bn(x, ε)).

Brin and Katok [6] proved that for any µ ∈ M(X,T ), hµ(T, x) = hµ(T, x) for

µ-a.e x ∈ X, and
∫
hµ(T, x) dµ(x) = hµ(T ). Hence for µ ∈M(X,T ),

hµ(T ) = hµ(T ) = hµ(T ).

To formulate our results, we need to introduce an additional notion. A set in

a metric space is said to be analytic if it is a continuous image of the set N of
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infinite sequences of natural numbers (with its product topology). It is known

that in a Polish space, the analytic subsets are closed under countable unions and

intersections, and any Borel set is analytic (cf. Federer [11, 2.2.10]).

The main results of this paper are the following two theorems.

Theorem 1.2. Let (X,T ) be a TDS.

(i) If K ⊆ X is non-empty and compact, then

hBtop(T,K) = sup{hµ(T ) : µ ∈M(X), µ(K) = 1}.

(ii) Assume that htop(T ) <∞. If Z ⊆ X is analytic, then

(1.3) hBtop(T, Z) = sup{hBtop(T,K) : K ⊆ Z is compact }.

Theorem 1.3. Let (X,T ) be a TDS.

(i) If K ⊆ X is non-empty and compact, then

hPtop(T,K) = sup{hµ(T ) : µ ∈M(X), µ(K) = 1},

where hPtop(T,K) denotes the packing topological entropy of K (see Sect. 2

for the definition).

(ii) If Z ⊆ X is analytic, then

(1.4) hPtop(T, Z) = sup{hPtop(T,K) : K ⊆ Z is compact }.

The above two theorems establish the variational principles for Bowen and packing

topological entropies of arbitrary Borel sets in a dual manner. They provide as a

kind of extension of the classical variational principle for topological entropy of

compact invariant sets. In the reminder of this section, we give two examples which

motivated this paper.

Example 1.4. Let (X,T ) denote the one-sided full shift over a finite alphabet

{1, 2, . . . , `}, where ` is an integer ≥ 2. Endow X with the metric d(x, y) = e−n

for x = (xj)
∞
j=1 and y = (yj)

∞
j=1, where n is the largest integer such that xj = yj

(1 ≤ j ≤ n). It is easy to check by definition that for any E ⊆ X,

hBtop(T,E) = dimH E, hPtop(T,E) = dimP E,

where dimH E, dimP E denote respectively the Hausdorff dimension and the packing

dimension of E in the ultra-metric space (X, d) (cf. [23]). It is a well known fact

in geometric measure theory (cf. [23]) that, for any analytic set Z ⊆ X with

dimH Z > 0, and any 0 ≤ s < dimH Z, 0 ≤ t < dimP Z, there exist compact sets

K1, K2 ⊂ Z such that

0 < Hs(K1) <∞, 0 < P t(K2) <∞,
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where Hs, Ps denote respectively the s-dimensional Hausdorff measure and packing

measure, and hence dimH K1 = s, dimP K2 = t. Furthermore, for Hs-a.e x ∈ K1,

and P t-a.e y ∈ K2,

lim inf
r→0

logHs(K1 ∩Br(x))

log r
= s, lim sup

r→0

logP t(K2 ∩Br(x))

log r
= t,

where Br(x) denotes the open ball centered at x of radius r. This can derive Theo-

rems 1.2-1.3 in the full shift case with some additional density arguments as in [23,

p.99, Exercises 6-7].

Example 1.5. Again let (X,T ) denote the one-sided full shift over a finite alphabet

{1, 2, . . . , `}. Define ϕ : X → R as

ϕ(x) =

{
1 if x1 = 1
0 otherwise

for x = (xi)
∞
i=1 ∈ X. Let E denote the set of “non-typical points” associated with

the Birkhoff average of ϕ, i.e.,

E =

{
x ∈ X : lim inf

n→∞

1

n

n−1∑
i=0

ϕ(T ix) 6= lim sup
n→∞

1

n

n−1∑
i=0

ϕ(T ix)

}
.

It is easy to see that E is T -invariant and Borel. By the Birkhoff ergodic theorem,

µ(E) = 0 for any µ ∈ M(X,T ). However hBtop(T,E) = htop(T ) = log ` (cf. [2]).

Furthermore, as we mention in Example 1.4 that for any 0 ≤ s < log `, there exists

a compact set K ⊂ E such that hBtop(T,K) = dimH K = s.

In our proofs of Theorems 1.2-1.3, we use and extend some ideas and techniques in

geometric measure theory and topological dynamical systems. We remark that the

assumption hBtop(T ) < ∞ in Theorem 1.2(ii) can be weaken somehow (see Remark

3.15). However it remains open whether this assumption can be removed.

The paper is organized as follows. In Sect. 2 we give the definitions and some

basic properties of several topological entropies of subsets in a TDS: upper capacity

topological entropy, Bowen’s topological entropy, the packing topological entropy.

In Sect. 3.3, we prove Theorem 1.2. In Sect. 4, we prove Theorem 1.3.

2. Topological entropies of subsets

In this section, we give the definitions and some basic properties of several topo-

logical entropies of subsets in a TDS: upper capacity topological entropy, Bowen’s

topological entropy and packing topological entropy.

Let (X, d) be a compact metric space and T : X → X a continuous transforma-

tion. Let dn and Bn(x, ε) be defined as in (1.1)-(1.2).
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2.1. Upper capacity topological entropy. Let Z ⊆ X be a non-empty set. For

ε > 0, a set E ⊂ Z is called a (n, ε)-separated set of Z if x, y ∈ E, x 6= y implies

dn(x, y) > ε; E ⊆ X is called (n, ε)-spanning set of Z, if for any x ∈ Z, there

exists y ∈ E with dn(x, y) ≤ ε. Let rn(Z, ε) denote the largest cardinality of (n, ε)-

separated sets for Z, and r̃n(Z, ε) the smallest cardinality of (n, ε)-separated sets of

Z. The upper capacity topological entropy of T restricted on Z, or simply, the upper

capacity topological entropy of Z is defined as

hUCtop (T, Z) = lim
ε→0

lim sup
n→∞

1

n
log rn(Z, ε) = lim

ε→0
lim sup
n→∞

1

n
log r̃n(Z, ε).

We remark that the second equality holds for each Z ⊆ X (cf. [26, P. 169]).

The quantity hUCtop (T, Z) is the straightforward generalization of the Adler-Konheim-

McAndrew definition [1] of the topological entropy to arbitrary subsets.

2.2. Bowen’s topological entropy. Suppose that U is a finite open cover of X.

Denote diam(U) := max{diam(U) : U ∈ U}. For n ≥ 1 we denote by Wn(U) the

collection of strings U = U1 . . . Un with Ui ∈ U . For U ∈ Wn(U) we call the integer

m(U) = n the length of U and define

X(U) = U1 ∩ T−1U2 ∩ . . . ∩ T−(n−1)Un

=
{
x ∈ X : T j−1x ∈ Uj for j = 1, . . . , n

}
.

Let Z ⊆ X. We say that Λ ⊂
⋃
n≥1Wn(U) covers Z if

⋃
U∈ΛX(U) ⊃ Z. For s ∈ R,

define

Ms
N(U , Z) = inf

Λ

∑
U∈Λ

e−sm(U),

where the infimum is taken over all Λ ⊂
⋃
j≥NWj(U) that cover Z. ClearlyMs

N(U , ·)
is a finite outer measure on X, and

(2.1) Ms
N(U , Z) = inf{Ms

N(U , G) : G ⊃ Z, G is open}.

Note thatMs
N(U , Z) increases asN increases. DefineMs(U , Z) = limN→∞Ms

N(U , Z)

and

hBtop(T,U , Z) = inf{s : Ms(U , Z) = 0} = sup{s : Ms(U , Z) = +∞}.

Set

(2.2) hBtop(T, Z) = sup
U
hBtop(T,U , Z),

where U runs over finite open covers of Z. We call hBtop(T, Z) the Bowen’s topological

entropy of T restricted to Z or, simply, the topological entropy of Z. This quantity

was first introduced by Bowen in [4]. It is known (see, i.e. [24, Theorem 11.1]) that

(2.3) sup
U
hBtop(T,U , Z) = lim

diam(U)→0
hBtop(T,U , Z).
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Bowen’s topological entropy of subsets can be defined in an alternative way. For

Z ⊆ X, s ≥ 0, N ∈ N and ε > 0, define

Ms
N,ε(Z) = inf

∑
i

exp(−sni),

where the infimum is taken over all finite or countable families {Bni(xi, ε)} such that

xi ∈ X, ni ≥ N and
⋃
iBni(xi, ε) ⊇ Z. The quantity Ms

N,ε(Z) does not decrease as

N increases and ε decreases, hence the following limits exist:

Ms
ε(Z) = lim

N→∞
Ms

N,ε(Z), Ms(Z) = lim
ε→0
Ms

ε(Z).

Bowen’s topological entropy hBtop(T, Z) can be equivalently defined as a critical value

of the parameter s, where Ms(Z) jumps from ∞ to 0, i.e.

Ms(Z) =

 0, s > hBtop(T, Z),

∞, s < hBtop(T, Z).

For details, see [24, Page 74].

2.3. Packing topological entropy. Let Z ⊆ X. For s ≥ 0, N ∈ N and ε > 0,

define

P s
N,ε(Z) = sup

∑
i

exp(−sni),

where the supermum is taken over all finite or countable pairwise disjoint families

{Bni(xi, ε)} such that xi ∈ Z, ni ≥ N for all i, where

Bn(x, ε) := {y ∈ X : dn(x, y) ≤ ε}.

The quantity P s
N,ε(Z) does not decrease as N, ε decrease, hence the following limits

exist:

P s
ε (Z) = lim

N→∞
P s
N,ε(Z).

Define

Psε (Z) = inf

{
∞∑
i=1

P s
ε (Zi) :

∞⋃
i=1

Zi ⊇ Z

}
.

Clearly, Psε satisfies the following property: if Z ⊆
⋃∞
i=1 Zi, then Psε (Z) ≤

∑∞
i=1Psε (Zi).

There exists a critical value of the parameter s, which we will denote by hPtop(T, Z, ε),

where Psε (Z) jumps from ∞ to 0, i.e.

Psε (Z) =

 0, s > hPtop(T, Z, ε),

∞, s < hPtop(T, Z, ε).

Note that hPtop(T, Z, ε) increases when ε decreases. We call

hPtop(T, Z) := lim
ε→0

hPtop(T, Z, ε)
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the packing topological entropy of T restricted to Z or, simply, the packing topological

entropy of Z, when there is no confusion about T . This quantity is defined in way

which resembles the packing dimension. We remark that an equivalent definition of

packing topological entropy was given earlier in [15].

2.4. Some basic properties.

Proposition 2.1. (i) For Z ⊆ Z ′,

hUCtop (T, Z) ≤ hUCtop (T, Z ′), hBtop(T, Z) ≤ hBtop(T, Z ′), hPtop(T, Z) ≤ hPtop(T, Z ′).

(ii) For Z ⊆
⋃∞
i=1 Zi, s ≥ 0 and ε > 0, we have

Ms
ε(Z) ≤

∞∑
i=1

Ms
ε(Zi), h

B
top(T, Z) ≤ sup

i≥1
hBtop(T, Zi), h

P
top(T, Z) ≤ sup

i≥1
hPtop(T, Zi).

(iii) For any Z ⊆ X, hBtop(T, Z) ≤ hPtop(T, Z) ≤ hUCtop (T, Z).

(iv) Furthermore, if Z is T -invariant and compact, then

hBtop(T, Z) = hPtop(T, Z) = hUCtop (T, Z).

Proof. (i) and (ii) follow directly from the definitions of topological entropies. To

see (iii), let Z ⊆ X and assume 0 < s < hBtop(T, Z). For any n ∈ N and ε > 0, let

R = Rn(Z, ε) be the largest number so that there is a disjoint family {Bn(xi, ε)}Ri=1

with xi ∈ Z. Then it is easy to see that for any δ > 0,
R⋃
i=1

Bn(xi, 2ε+ δ) ⊇ Z,

which implies that Ms
n,2ε+δ(Z) ≤ Re−ns ≤ P s

n,ε(Z) for any s ≥ 0, and hence

Ms
2ε+δ(Z) ≤ P s

ε (Z). By (ii), Ms
2ε+δ(Z) ≤ Psε (Z). Since 0 < s < hBtop(T, Z),

we have Ms(Z) = ∞ and thus Ms
2ε+δ(Z) ≥ 1 when ε and δ are small enough.

Hence Psε (Z) ≥ 1 and hPtop(T, Z, ε) ≥ s when ε is small. Therefore hPtop(T, Z) =

limε→0 h
P
top(T, Z, ε) ≥ s. This implies that hBtop(T, Z) ≤ hPtop(T, Z).

Next we show that hPtop(T, Z) ≤ hUCtop (T, Z). Our argument is modified slightly

from the proof of [10, Lemma 3.7]. Assume that hPtop(T, Z) > 0; otherwise there is

nothing left to prove. Choose 0 < t < s < hPtop(T, Z). Then there exists δ > 0 such

that for 0 < ε < δ, hPtop(T, Z, ε) > s and thus P s
ε (Z) ≥ Psε (Z) = ∞. Thus for any

N , there exists a countable pairwise disjoint families {Bni(xi, ε)} such that xi ∈ Z,

ni ≥ N for all i, and 1 <
∑

i e
−nis. For each k, let mk be the number of i so that

ni = k. Then we have

1 <
∞∑
k=N

mke
−ks.
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There must be some k ≥ N with mk > ekt(1 − et−s), otherwise the above sum

is at most
∑∞

k=1 e
kt−ks(1 − et−s) < 1. Let rk(Z, ε) denote the largest cardinal-

ity of (k, ε)-separated sets for Z. Then rk(Z, ε) ≥ mk > ekt(1 − et−s). Hence

lim sup
n→∞

1
n

log rn(Z, ε) ≥ t. Letting ε → 0, we obtain hUCtop (T, Z) ≥ t. This is true for

any 0 < t < hPtop(T, Z) so hUCtop (T, Z) ≥ hPtop(T, Z).

When Z ⊆ X is T -invariant and compact, Bowen [4] proved that hBtop(T, Z) =

hUCtop (T, Z); this together with (iii) yields (iv). �

3. Variational principle for Bowen’s topological entropy of subsets

3.1. Weighted topological entropy. For any function f : X → [0,∞), N ∈ N
and ε > 0, define

(3.1) Ws
N,ε(f) = inf

∑
i

ci exp(−sni),

where the infimum is taken over all finite or countable families {(Bni(xi, ε), ci)} such

that 0 < ci <∞, xi ∈ X, ni ≥ N and∑
i

ciχBi ≥ f,

where Bi := Bni(xi, ε), and χA denotes the characteristic function of A, i.e, χA(x) =

1 if x ∈ A and 0 if x ∈ X\A.

For Z ⊆ X and f = χZ we set Ws
N,ε(Z) =Ws

N,ε(χZ). The quantity Ws
N,ε(Z) does

not decrease as N increases and ε decreases, hence the following limits exist:

Ws
ε (Z) = lim

N→∞
Ws

N,ε(Z), Ws(Z) = lim
ε→0
Ws

ε (Z).

We remark that Ws is defined in a way which resembles the weighted Hausdorff

measure in geometric measure theory (cf. [11, 23]). Clearly, there exists a critical

value of the parameter s, which we will denote by hWB
top (T, Z), where Ws(Z) jumps

from ∞ to 0, i.e.

Ws(Z) =

{
0, s > hWB

top (T, Z),
∞, s < hWB

top (T, Z).

We call hWB
top (T, Z) the weighted Bowen’s topological entropy of T restricted to Z or,

simply, the weighted Bowen’s topological entropy of Z.

3.2. Equivalence of hBtop and hWB
top . The following properties aboutMs (cf. Sect.

2.2) and Ws can be verifies directly from the definitions.

Proposition 3.1. (i) For any s ≥ 0, N ∈ N and ε > 0, both Ms
N,ε and Ws

N,ε

are outer measures on X.

(ii) For any s ≥ 0, both Ms and Ws are metric outer measures on X.
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We remark thatMs andWs depend not only s but also the TDS (X,T ). However,

Ms andWs are purely topological and independent of the special choice of the metric

d.

The main result of this subsection is the following.

Proposition 3.2. Let Z ⊆ X. Then for any s ≥ 0 and ε, δ > 0, we have

Ms+δ
N,6ε(Z) ≤ Ws

N,ε(Z) ≤Ms
N,ε(Z),

when N is large enough. As a result,Ms+δ(Z) ≤ Ws(Z) ≤Ms(Z) and hBtop(T, Z) =

hWB
top (T, Z).

To prove Proposition 3.2, we need the following lemma.

Lemma 3.3 ([23], Theorem 2.1). Let (X, d) be a compact metric space and B =

{B(xi, ri)}i∈I be a family of closed (or open) balls in X. Then there exists a finite

or countable subfamily B′ = {B(xi, ri)}i∈I′ of pairwise disjoint balls in B such that⋃
B∈B

B ⊆
⋃
i∈I′

B(xi, 5ri).

Proof of Proposition 3.2. Let Z ⊆ X, s ≥ 0, ε, δ > 0. Taking f = χZ and ci ≡ 1

in the definition (3.1), we see that Ws
N,ε(Z) ≤ Ms

N,ε(Z) for each N ∈ N. In the

following, we prove that Ms+δ
N,6ε(Z) ≤ Ws

N,ε(Z) when N is large enough.

Assume that N ≥ 2 such that n2e−nδ ≤ 1 for n ≥ N . Let {(Bni(xi, ε), ci)}i∈I be

a family so that I ⊆ N, xi ∈ X, 0 < ci <∞, ni ≥ N and

(3.2)
∑
i

ciχBi ≥ χZ ,

where Bi := Bni(xi, ε). We show below that

(3.3) Ms+δ
N,6ε(Z) ≤

∑
i∈I

cie
−nis,

which implies Ms+δ
N,6ε(Z) ≤ Ws

N,ε(Z).

Denote In := {i ∈ I : ni = n} and In,k = {i ∈ In : i ≤ k} for n ≥ N and k ∈ N.

Write for brevity Bi := Bni(xi, ε) and 5Bi := Bni(xi, 5ε) for i ∈ I. Obviously we

may assume Bi 6= Bj for i 6= j. For t > 0, set

Zn,t =
{
x ∈ Z :

∑
i∈In

ciχBi(x) > t
}

and

Zn,k,t =
{
x ∈ Z :

∑
i∈In,k

ciχBi(x) > t
}
.

We divide the proof of (3.3) into the following three steps.
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Step 1. For each n ≥ N , k ∈ N and t > 0, there exists a finite set Jn,k,t ⊆ In,k
such that the balls Bi (i ∈ Jn,k,t) are pairwise disjoint, Zn,k,t ⊆

⋃
i∈Jn,k,t 5Bi and

#(Jn,k,t)e−ns ≤
1

t

∑
i∈In,k

cie
−ns.

To prove the above result, we adopt the method of Federer [11, 2.10.24] used in the

study of weighted Hausdorff measures (see also Mattila [23, Lemma 8.16]). Since

In,k is finite, by approximating the ci’s from above, we may assume that each ci
is a positive rational, and then multiplying with a common denominator we may

assume that each ci is a positive integer. Let m be the least integer with m ≥ t.

Denote B = {Bi, i ∈ In,k} and define u : B → Z by u(Bi) = ci. We define by

induction integer-valued functions v0, v1, . . . , vm on B and sub-families B1, . . . ,Bm of

B starting with v0 = u. Using Lemma 3.3 (in which we take the metric dn instead

of d) we find a pairwise disjoint subfamily B1 of B such that
⋃
B∈B B ⊆

⋃
B∈B1

5B,

and hence Zn,k,t ⊆
⋃
B∈B1

5B. Then by repeatedly using Lemma 3.3, we can define

inductively for j = 1, . . . ,m, disjoint subfamilies Bj of B such that

Bj ⊆ {B ∈ B : vj−1(B) ≥ 1}, Zn,k,t ⊆
⋃
B∈Bj

5B

and the functions vj such that

vj(B) =

{
vj−1(B)− 1 for B ∈ Bj,
vj−1(B) for B ∈ B\Bj.

This is possible since for j < m, Zn,k,t ⊆
{
x :
∑

B∈B: B3x vj(B) ≥ m − j
}

, whence

every x ∈ Zn,k,t belongs to some ball B ∈ B with vj(B) ≥ 1. Thus
m∑
j=1

#(Bj)e−ns =
m∑
j=1

∑
B∈Bj

(vj−1(B)− vj(B))e−ns

≤
∑
B∈B

m∑
j=1

(vj−1(B)− vj(B))e−ns ≤
∑
B∈B

u(B)e−ns =
∑
i∈In,k

cie
−ns.

Choose j0 ∈ {1, . . . ,m} so that #(Bj0) is the smallest. Then

#(Bj0)e−ns ≤
1

m

∑
i∈In,k

cie
−ns ≤ 1

t

∑
i∈In,k

cie
−ns.

Hence Jn,k,t = {i ∈ I : Bi ∈ Bj0} is desired.

Step 2. For each n ≥ N and t > 0, we have

(3.4) Ms+δ
N,6ε(Zn,t) ≤

1

n2t

∑
i∈In

cie
−ns.

To see this, assume Zn,t 6= ∅; otherwise this is nothing to prove. Since Zn,k,t ↑ Zn,t,
Zn,k,t 6= ∅ when k is large enough. Let Jn,k,t be the sets constructed in Step 1. Then
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Jn,k,t 6= ∅ when k is large enough. Define En,k,t = {xi : i ∈ Jn,k,t}. Note that

the family of all non-empty compact subsets of X is compact with respect to the

Hausdorff distance (cf. Federer [11, 2.10.21]). It follows that there is a subsequence

(kj) of natural numbers and a non-empty compact set En,t ⊂ X such that En,kj ,t
converges to En,t in the Hausdorff distance as j →∞. Since any two points in En,k,t
have a distance (with respect to dn) not less than ε, so do the points in En,t. Thus

En,t is a finite set, moreover, #(En,kj ,t) = #(En,t) when j is large enough. Hence⋃
x∈En,t

Bn(x, 5.5ε) ⊇
⋃

x∈En,kj,t

Bn(x, 5ε) =
⋃

i∈Jn,kj,t

5Bi ⊇ Zn,kj ,t

when j is large enough, and thus
⋃
x∈En,t Bn(x, 6ε) ⊇ Zn,t. By the way, since

#(En,kj ,t) = #(En,t) when j is large enough, we have #(En,t)e
−ns ≤ 1

t

∑
i∈In cie

−ns.

This forces

Ms+δ
N,6ε(Zn,t) ≤ #(En,t)e

−n(s+δ) ≤ 1

enδt

∑
i∈In

cie
−ns ≤ 1

n2t

∑
i∈In

cie
−ns.

Step 3. For any t ∈ (0, 1), we have Ms+δ
N,6ε(Z) ≤ 1

t

∑
i∈I cie

−nis. As a result, (3.3)

holds.

To see this, fix t ∈ (0, 1). Note that
∑∞

n=N n
−2 < 1. It follows that Z ⊆

⋃∞
n=N Zn,n−2t

from (3.2). Hence by Proposition 3.1(i) and (3.4), we have

Ms+δ
N,6ε(Z) ≤

∞∑
n=N

Ms+δ
N,6ε(Zn,n−2t) ≤

∞∑
n=N

1

t

∑
i∈In

cie
−ns =

1

t

∑
i∈I

cie
−nis,

which finishes the proof of the proposition. �

3.3. A dynamical Frostman’s lemma and the proof of Theorem 1.2 (i). To

prove Theorem 1.2(i), we need the following dynamical Frostman’s lemma, which

is an analogue of the classical Frostman’s lemma in in compact metric space. Our

proof is adapt from Howroyd’s elegant argument (cf. [13, Theorem 2], [23, Theorem

8.17]).

Lemma 3.4. Let K be a non-empty compact subset of X. Let s ≥ 0, N ∈ N and

ε > 0. Suppose that c :=Ws
N,ε(K) > 0. Then there is a Borel probability measure µ

on X such that µ(K) = 1 and

µ(Bn(x, ε)) ≤ 1

c
e−ns, ∀ x ∈ X, n ≥ N.

Proof. Clearly c < ∞. We define a function p on the space C(X) of continuous

real-valued functions on X by

p(f) = (1/c)Ws
N,ε(χK · f),

where Ws
N,ε is defined as in (3.1).
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Let 1 ∈ C(X) denote the constant function 1(x) ≡ 1. It is easy to verify that

(1) p(f + g) ≤ p(f) + p(g) for any f, g ∈ C(X).

(2) p(tf) = tp(f) for any t ≥ 0 and f ∈ C(X).

(3) p(1) = 1, 0 ≤ p(f) ≤ ‖f‖∞ for any f ∈ C(X), and p(g) = 0 for g ∈ C(X)

with g ≤ 0.

By the Hahn-Banach theorem, we can extend the linear functional t 7→ tp(1), t ∈ R,

from the subspace of the constant functions to a linear functional L : C(X) → R
satisfying

L(1) = p(1) = 1 and − p(−f) ≤ L(f) ≤ p(f) for any f ∈ C(X).

If f ∈ C(X) with f ≥ 0, then p(−f) = 0 and so L(f) ≥ 0. Hence combining the fact

L(1) = 1, we can use the Riesz representation theorem to find a Borel probability

measure µ on X such that L(f) =
∫
fdµ for f ∈ C(X).

Now we show that µ(K) = 1. To see this, for any compact set E ⊆ X\K,

by the Uryson lemma there is f ∈ C(X) such that 0 ≤ f ≤ 1, f(x) = 1 for

x ∈ E and f(x) = 0 for x ∈ K. Then f · χK ≡ 0 and thus p(f) = 0. Hence

µ(E) ≤ L(f) ≤ p(f) = 0. This shows µ(X\K) = 0, i.e. µ(K) = 1.

In the end, we show that µ(Bn(x, ε)) ≤ (1/c)e−ns for any x ∈ X and n ≥ N . To see

this, for any compact set E ⊂ Bn(x, ε), by the Uryson lemma, there exists f ∈ C(X)

such that 0 ≤ f ≤ 1, f(y) = 1 for y ∈ E and f(y) = 0 for y ∈ X\Bn(x, ε). Then

µ(E) ≤ L(f) ≤ p(f). Since f ·χK ≤ χBn(x,ε) and n ≥ N , we haveWs
N,ε(χK ·f) ≤ e−ns

and thus p(f) ≤ 1
c
e−sn. Therefore µ(E) ≤ 1

c
e−ns. It follows that

µ(Bn(x, ε)) = sup{µ(E) : E is a compact subset of Bn(x, ε)} ≤ 1

c
e−sn.

�

Remark 3.5. There is a related known result (see, e.g. [22, 25]) that, for any Borel

set E ⊂ X and any Borel probability measure µ on E, if hµ(T, x) ≤ s for all x ∈ E,

then hBtop(T,E) ≤ s; conversely if hµ(T, x) ≥ s for all x ∈ E, then hBtop(T,E) ≥ s,

where hµ(T, x) is defined as in Sect. 1.

Now we are ready to prove Theorem 1.2(i).

Proof of Theorem 1.2(i). We first show that hBtop(T,K) ≥ hµ(T ) for any µ ∈M(X)

with µ(K) = 1. Let µ be a given such measure. Write

hµ(T, x, ε) = lim inf
n→∞

− 1

n
log µ(Bn(x, ε))
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for x ∈ X,n ∈ N and ε > 0. Clearly hµ(T, x, ε) is nonnegative and increases as ε

decreases. Hence by the monotone convergence theorem,

lim
ε→0

∫
hµ(T, x, ε)dµ =

∫
hµ(T, x)dµ = hµ(T ).

Thus to show hBtop(T,K) ≥ hµ(T ), it is sufficient to show hBtop(T,K) ≥
∫
hµ(T, x, ε)dµ

for each ε > 0.

Fix ε > 0 and ` ∈ N. Denote u` = min{`,
∫
hµ(T, x, ε)dµ(x) − 1

`
}. Then there

exist a Borel set A` ⊂ X with µ(A`) > 0 and N ∈ N such that

(3.5) µ(Bn(x, ε)) ≤ e−nu` , ∀ x ∈ A`, n ≥ N.

Now let {Bni(xi, ε/2)} be a countable or finite family so that xi ∈ X, ni ≥ N and⋃
iBni(xi, ε/2) ⊃ K∩A`. We may assume that for each i, Bni(xi, ε/2)∩(K∩A`) 6= ∅,

and choose yi ∈ Bni(xi, ε/2) ∩ (K ∩ A`). Then by (3.5),∑
i

e−niu` ≥
∑
i

µ(Bni(yi, ε)) ≥
∑
i

µ(Bni(xi, ε/2))

≥ µ(K ∩ A`) = µ(A`) > 0.

It follows that Mu`(K) ≥ Mu`
N,ε/2(K) ≥ Mu`

N,ε/2(K ∩ A`) ≥ µ(A`). Therefore

hBtop(T,K) ≥ u`. Letting ` → ∞, we have the desired inequality hBtop(T,K) ≥∫
hµ(T, x, ε)dµ. Hence hBtop(T,K) ≥ hµ(T ).

We next show that hBtop(T,K) ≤ sup{hµ(T ) : µ ∈ M(X), µ(K) = 1}. We can

assume that hBtop(T,K) > 0, otherwise we have nothing to prove. By Proposition

3.2, hBWtop (T,K) = hBtop(T,K). Let 0 < s < hBtop(T,K). Then there exist ε > 0 and

N ∈ N such that c := Ws
N,ε(K) > 0. By Proposition 3.4, there exists µ ∈ M(X)

with µ(K) = 1 such that µ(Bn(x, ε)) ≤ 1
c
e−sn for any x ∈ X and n ≥ N . Clearly

hµ(T, x) ≥ hµ(T, x, ε) ≥ s for each x ∈ X and hence hµ(T ) ≥
∫
hµ(T, x)dµ(x) ≥ s.

This finishes the proof of Theorem 1.2(i). �

3.4. The proof of Theorem 1.2(ii). To prove Theorem 1.2(ii), we first prove the

following.

Theorem 3.6. Let (X,T ) be a TDS. Assume that X is zero-dimensional, i.e., for

any δ > 0, X has a closed-open partition with diameter less than δ. Then for any

analytic set Z ⊂ X,

htop(T, Z) = sup{htop(T,K) : K ⊂ Z, K is compact}.

The following proposition is needed for the proof of Theorem 3.6.

Proposition 3.7. Assume U is a closed-open partition of X. Let N ∈ N. Then
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(i) If Ei ↑ E, i.e., Ei+1 ⊇ Ei and
⋃
iEi = E, then

Ms
N(U , E) = lim

i→∞
Ms

N(U , Ei).

(ii) Assume Z ⊂ X is analytic. Then

Ms
N(U , Z) = sup{Ms

N(U , K) : K ⊂ Z, K is compact}.

Proof. We first show that (i) implies (ii). Assume that (i) holds. Let Z be analytic,

i.e., there exists a continuous surjective map φ : N → Z. Let Γn1,n2,...,np be

the set of (m1,m2, . . .) ∈ N such that m1 ≤ n1, m2 ≤ n2, . . ., mp ≤ np and

let Zn1,...,np be the image of Γn1,...,np under φ. Let (εp) be a sequence of positive

numbers. Due to (i), we can pick a sequence (np) of positive integers recursively so

that Ms
N(U , Zn1) ≥Ms

N(U , Z)− ε1 and

Ms
N(U , Zn1,...,np) ≥Ms

N(U , Zn1,...,np−1)− εp, p = 2, 3, . . .

Hence Ms
N(U , Zn1,...,np) ≥Ms

N(U , Z)−
∑∞

i=1 εi for any p ∈ N. Let

K =
∞⋂
p=1

Zn1,...,np .

Since φ is continuous, we can show that
⋂∞
p=1 Zn1,...,np =

⋂∞
p=1 Zn1,...,np by applying

Cantor’s diagonal argument. Hence K is a compact subset of Z. If Λ ⊂
⋃
j≥NWj(U)

is a cover of K (of course it is an open cover), then it is a cover of Zn1,...,np when p

is large enough, which implies∑
U∈Λ

e−sm(U) ≥ lim
p→∞
Ms

N(U , Zn1,...,np) ≥Ms
N(U , Z)−

∞∑
i=1

εi.

Hence Ms
N(U , K) ≥ Ms

N(U , Z) −
∑∞

i=1 εi. Since
∑∞

i=1 εi can be chosen arbitrarily

small, we prove (ii).

Now we turn to prove (i). Our argument is modified from the classical proof of

the “increasing sets lemma” for Hausdorff outer measures (cf. [7, Sect. II] and [9,

Lemma 5.3]). Note that any two non-empty elements in Wn(U) are disjoint, and

each element in Wn+1(U) is a subset of some element in Wn(U). We call this the

net property of (Wn(U)).

Let Ei ↑ E be given. Let (δi) be a sequence of positive numbers to be specified

later and for each i, choose a covering Λi ⊂
⋃
j≥NWj(U) of Ei such that

(3.6)
∑
U∈Λi

e−sm(U) ≤M s
N(U , Ei) + δi.

By the net property of (Wn(U)), we may assume that for each i, the elements in Λi

are disjoint.
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For any x ∈ E, choose Ux ∈
⋃∞
i=1 Λi containing x such that m(Ux) is the smallest.

By the net property of (Wn(U)), the collection {Ux : x ∈ E} consists of countable

many disjoint elements. Relabel these elements by Ui’s. Clearly E ⊂
⋃
i Ui.

We now choose an integer k. Use A1 to denote the collection of those Ui’s that

are taken from Λ1. They cover a certain subset Q1 of Ek. The same subset is covered

by a certain sub-collection of Λk, denoted as Λk,1. Since Λk,1 also covers the smaller

set Q1 ∩ E1, by (3.6),

(3.7)
∑

U∈A1

e−sm(U) ≤
∑

U∈Λk,1

e−sm(U) + δ1.

To see this, assume that (3.7) is false. Then by (3.6),∑
U∈(Λ1\A1)∪Λk,1

e−sm(U) < M s
N(U , E1),

which contradicts the fact that (Λ1\A1) ∪ Λk,1 ⊂
⋃
j≥NWj(U) is an open cover of

E1. Next we use A2 to denote the collection of those Ui’s that are taken from Λ2

but not from Λ1. Define Λk,2 similarly. As above, we find

(3.8)
∑

U∈A2

e−sm(U) ≤
∑

U∈Λk,2

e−sm(U) + δ2.

We repeat the argument until all coverings Λn, n ≤ k, have been considered. Note

that
⋃

U∈Λk,i
U ⊆

⋃
U∈Ai U for i ≤ k. For different i, i′ ≤ k, the elements in Λk,i

are disjoint from those in Λk,i′ . The k inequalities (3.7), (3.8), . . . , are added which

yields ∑
U∈

⋃k
n=1An

e−sm(U) ≤
∑

U∈
⋃k
n=1 Λk,n

e−sm(U) +
k∑

n=1

δn ≤Ms
N(U , Ek) +

k∑
n=1

δn + δk.

Letting k →∞, we have∑
i

e−sm(Ui) ≤ lim
k→∞
Ms

N(U , Ek) +
∞∑
n=1

δn.

Since
∑∞

n=1 δn can be chosen arbitrarily small we have

Ms
N(U , E) ≤ lim

k→∞
Ms

N(U , Ek).

Since the opposite inequality is trivial we have proved (i). �

Proof of Theorem 3.6. Let Z be an analytic subset of X with hBtop(T, Z) > 0. Let

0 < s < hBtop(T, Z). By (2.2), there exists a closed-open partition U so that

hBtop(T,U , Z) > s and thus Ms(U , Z) =∞. Hence Ms
N(U , Z) > 0 for some N ∈ N.

By Proposition 3.7, we can find a compact set K ⊂ Z such thatMs
N(U , K) > 0. It

implies hBtop(T,K) ≥ hBtop(T,U , K) ≥ s. �
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Before we prove Theorem 1.2(ii), we still need some notation and additional results

in topological dynamical systems.

Let us define the natural extension (X̃, T̃ ) of a TDS (X,T ) with a metric d and

a surjective map T where X̃ = {(x1, x2, · · · ) : T (xi+1) = xi, xi ∈ X, i ∈ N} is a

subspace of the product space XN = Π∞i=1X endowed with the compatible metric dT
as

dT ((x1, x2, · · · ), (y1, y2, · · · )) =
∞∑
i=1

d(xi, yi)

2i
,

T̃ : X̃ → X̃ is the shift homeomorphism with T̃ (x1, x2, · · · ) = (T (x1), x1, x2, · · · ),
and πi : X̃ → X is the projection to the i-th coordinate. Clearly, πi : (X̃, T̃ ) →
(X,T ) is a factor map.

Lemma 3.8. Let (X,T ) be a TDS with a metric d and a surjective map T , (X̃, T̃ )

be the natural extension of (X,T ) and π1 : X̃ → X be the projection to the first

coordinate. Then supx∈X h
UC
top (T̃ , π−1

1 (x)) = 0.

Proof. Fix x ∈ X. For any ε > 0, take N ∈ N large enough such that
∑∞

i=N
diam(X)

2i
<

ε.

Let EN ⊆ π−1
1 (x) be a finite (N, ε)-spanning set of π−1

1 (x). Next we are to show

that EN is also a (n, ε)-spanning set of π−1
1 (x) for n > N .

Fix n ∈ N with n > N . For any ỹ ∈ π−1
1 (x), since EN is a (N, ε)-spanning set

of π−1
1 (x) there exist x̃ ∈ EN such that dT (T̃ ix̃, T̃ iỹ) < ε for i = 0, 1, · · · , N − 1.

Now for k ∈ {N,N + 1, · · · , n − 1}, we have πj(T̃
kx̃) = πj(T̃

kỹ)) = T k−j+1(x) for

j = 1, · · · , k, k + 1. Thus

dT (T̃ kx̃, T̃ kỹ) =
∞∑
j=1

d(πj(T̃
kx̃), πj(T̃

kx̃))

2j
=

∞∑
j=k+2

d(πj(T̃
kx̃), πj(T̃

kx̃))

2j

≤
∞∑

j=k+2

diam(X)

2j
≤

∞∑
j=N

diam(X)

2j
< ε.

This implies (dT )n(x̃, ỹ) < ε. Hence EN is also a (n, ε)-spanning set of π−1
1 (x) for

n > N . Let r̃n(π−1(x), ε) denote the smallest cardinality of (n, ε)-spanning sets of

π−1(x). Then r̃n(π−1(x), ε) ≤ #(EN). Hence

hUCtop (T̃ , π−1
1 (x)) = lim

ε→0
lim sup
n→∞

1

n
log r̃n(π−1(x), ε) ≤ lim

ε→0
lim sup
n→∞

1

n
log #(EN) = 0.

This ends the proof of the lemma. �

In the following part we will lift general TDSs having finite topological entropy

to zero dimensional TDSs by the so called principal extensions.
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Definition 3.9. [18] An extension π : (Z,R) → (X,T ) between two TDSs is a

principal extension if hν(R) = hν◦π−1(T ) for every ν ∈M(Z,R).

The following general result is needed in our proof of Theorem 1.2(ii).

Proposition 3.10 (Proposition 7.8 in [5]). Every invertible TDS (X,T ) with htop(T ) <

∞ has a zero dimensional principal extension (Z,R) with R being invertible.

Let π : (Y, S) → (X,T ) be a factor map between two TDSs. Bowen proved that

htop(S) ≤ htop(T ) + supx∈X h
UC
top (S, π−1(x)) (cf. [3, Theorem 17]). In fact, Bowen’s

proof is also valid for the following result (see, i.e. Theorem 7.3 in [14] for a detailed

proof).

Theorem 3.11. Let π : (X,T )→ (Y, S) be a factor map between two TDSs. Then

for any E ⊆ X one has

(3.9) hBtop(S, π(E)) ≤ hBtop(T,E) ≤ hBtop(S, π(E)) + sup
y∈Y

hUCtop (T, π−1(y)).

We also need the following variational principle of conditional entropies.

Proposition 3.12. Let π : (X,T ) → (Y, S) be a factor map between two TDSs.

Then we have

(3.10) sup
y∈Y

hUCtop (T, π−1(y)) = sup
µ∈M(X,T )

(hµ(T )− hµ◦π−1(S)).

Proof. It is the direct combination of [8, Theorem 3] and [19, Theorem 2.1]. �

Lemma 3.13. Let (X,T ) be a TDS with htop(T ) < ∞. Then there exists a factor

map π : (H,Γ)→ (X,T ) such that (H,Γ) is zero dimensional and

sup
x∈X

hUCtop (Γ, π−1(x)) = 0.

Proof. First, we take D = { 1
n
}n∈N ∪ {0} and let Z = X × D. Define R : Z → Z

satisfying R(x, 1
n+1

) = (x, 1
n
), n ∈ N; R(x, 1) = (Tx, 1) and R(x, 0) = (x, 0) for

x ∈ X. Then (Z,R) is a TDS and R is surjective. If we identity (x, 1) with x for

each x ∈ X, then X can be viewed as a closed subset of Z and R|X = T . It is also

clear that htop(R) = htop(T ) <∞.

Let (Z̃, R̃) be the natural extension of (Z,R) and π1 : Z̃ → Z be the projection

to the first coordinate. Then

sup
z∈Z

hUCtop (R̃, π−1
1 (z)) = 0(3.11)
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by Lemma 3.8, and, so htop(R̃) = htop(R) < ∞. Since R̃ is homeomorphism on Z̃,

by Lemma 3.10, there exists a factor map ψ : (W,G)→ (Z̃, R̃) such that (W,G) is

a zero-dimensional TDS and ψ is principal extension.

Since htop(R̃) <∞ and ψ is principal extension, we have the following variational

principle of condition entropy

sup
z̃∈Z̃

hUCtop (G,ψ−1(z̃)) = sup
θ∈M(W,G)

(hθ(G)− hθ◦ψ−1(R̃)) = 0.(3.12)

The first equality in (3.12) follows from (3.10).

Let H = ψ−1(π−1
1 X), Γ = G|H and π = π1 ◦ ψ|H . Then (H,Γ) be a zero-

dimensional TDS and π : (H,Γ) → (X,T ) be a factor map. Applying Proposition

3.12 to the factor map π : (H,Γ)→ (X,T ), we obtain

sup
x∈X

hUCtop (Γ, π−1(x)) = sup
µ∈M(H,Γ)

(hµ(Γ)− hµ◦π−1(T ))

≤ sup
µ∈M(W,G)

(hµ(Γ)− hµ◦π−1(T ))

= sup
µ∈M(W,G)

(hµ(Γ)− hµ◦ψ−1(T ) + hµ◦ψ−1(T )− hµ◦π−1(T ))

≤ sup
µ∈M(W,G)

(hµ(Γ)− hµ◦ψ−1(T )) + sup
ν∈(Z̃,R̃)

(hν(R̃)− hν◦π−1
1

(R))

= sup
z̃∈Z̃

hUCtop (G,ψ−1(z̃)) + sup
z∈Z

hUCtop (R̃, π−1
1 (z))

= 0 ( by (3.12), (3.11)).

This shows supx∈X h
UC
top (Γ, π−1(x)) = 0. �

Proof of Theorem 1.2(ii). By Lemma 3.13, there exists a factor map π : (Y, S) →
(X,T ) such that (Y, S) is zero dimensional and supx∈X h

UC
top (S, π−1(x)) = 0. By

Theorem 3.11, we have that for any F ⊂ Y ,

(3.13) hBtop(S, F ) = hBtop(T, π(F )).

Let Z be an analytic subset of X. Then π−1(Z) is also an analytic set of Y (cf.

Federer [11, 2.2.10]). By (3.13) and Theorem 3.6,

hBtop(T, Z) = hBtop(S, π−1(Z)) = sup{hBtop(S,E) : E ⊆ π−1(Z), E is compact}
= sup{hBtop(T, π(E)) : E ⊆ π−1(Z), E is compact}
≤ sup{hBtop(T,K) : K ⊆ Z, K is compact}.

The reverse inequality is trivial, so

hBtop(T, Z) = sup{hBtop(T,K) : K ⊆ Z, K is compact}.

This finishes the proof. �
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Remark 3.14. For an invertible TDS (X,T ), Lindenstrauss and Weiss [21] intro-

duced the mean dimension mdim(X,T ) (an idea suggested by Gromov). It is well

known that for an invertible TDS (X,T ), if htop(T ) < ∞ or the topological di-

mension of X is finite, then mdim(X,T ) = 0 (see [21, Definition 2.6 and Theorem

4.2]).

In general, one can show that for an invertible TDS (X,T ), if mdim(X,T ) = 0

then (X,T ) has a zero dimensional principal extension (Z,R) with R being invert-

ible. Indeed, let (Y, S) be an irrational rotation on the circle. Then (X × Y, T × S)

admits a nonperiodic minimal factor (Y, S) and mdim(X × Y, T × S) = 0. Hence

(X × Y, T × S) has the so called small boundary property [20, Theorem 6.2], which

implies the existence of a basis of the topology consisting of sets whose boundaries

have measure zero for every invariant measure. With these results it is easy to con-

struct a refining sequence of small-boundary partitions for (X × Y, T × S), where

the partitions have small boundaries if their boundaries have measure zero for all

µ ∈ M(X × Y, T × S). Then by a standard construction (see p. 152-153 in [5]),

which associates to this sequence a zero dimensional principal extension (Z,R) of

(X×Y, T×S) with R being invertible. Finally note that (X×Y, T×S) is a principal

extension of (X,T ), we know that (Z,R) is also a zero dimensional principal exten-

sion of (X,T ) since the composition of two principal extensions is still a principal

extension.

Remark 3.15. By Remark 3.14, we may strengthen Theorem 1.2(ii) as follows: Let

(X,T ) be a TDS with mdim(X,T ) = 0. Then for any analytic set Z ⊆ X,

hBtop(T, Z) = sup{hBtop(T,K) : K ⊆ Z, K is compact}.

4. Variational principle for the packing topological entropy

In this section we prove Theorem 1.3. We first give a lemma.

Lemma 4.1. Let Z ⊂ X and s, ε > 0. Assume P s
ε (Z) = ∞. Then for any given

finite interval (a, b) ⊂ R with a ≥ 0 and any N ∈ N, there exists a finite disjoint

collection {Bni(xi, ε)} such that xi ∈ Z, ni ≥ N and
∑

i e
−nis ∈ (a, b).

Proof. Take N1 > N large enough such that e−N1s < b − a. Since P s
ε (Z) = ∞, we

have P s
N1,ε

(Z) = ∞. Thus there is a finite disjoint collection {Bni(xi, ε)} such that

xi ∈ Z, ni ≥ N1 and
∑

i e
−nis > b. Since e−nis < b − a, by discarding elements in

this collection one by one until we can have
∑′

i e
−nis ∈ (a, b). �

Proof of Theorem 1.3. We divide the proof into two parts:
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Part 1. hPtop(T, Z) ≥ sup{hµ(T ) : µ ∈ M(X), µ(Z) = 1} for any Borel set

Z ⊆ X.

To see this, let µ ∈ M(X) with µ(Z) = 1 for some Borel set Z ⊆ X. We need

to show that hPtop(T, Z) ≥ hµ(T ). For this purpose we may assume hµ(T ) > 0;

otherwise we have nothing to prove. Let 0 < s < hµ(T ). Then there exist ε, δ > 0,

and a Borel set A ⊂ Z with µ(A) > 0 such that

hµ(T, x, ε) > s+ δ, ∀ x ∈ A,

where hµ(T, x, ε) := lim supn→∞− 1
n

log µ(Bn(x, ε)).

Next we show that Psε/5(Z) =∞, which implies that hPtop(T, Z) ≥ hPtop(T, Z, ε/5) ≥
s. To achieve this, it suffices to show that P s

ε/5(E) = ∞ for any Borel E ⊂ A with

µ(E) > 0. Fix such a set E. Define

En = {x ∈ E : µ(Bn(x, ε)) < e−n(s+δ)}, n ∈ N.

Since E ⊂ A, we have
⋃∞
n=N En = E for each N ∈ N. Fix N ∈ N. Then

µ(
⋃∞
n=N En) = µ(E), and hence there exists n ≥ N such that

µ(En) ≥ 1

n(n+ 1)
µ(E).

Fix such n and consider the family {Bn(x, ε/5) : x ∈ En}. By Lemma 3.3 (in which

we use dn instead of d), there exists a finite pairwise disjoint family {Bn(xi, ε/5)}
with xi ∈ En such that ⋃

i

Bn(xi, ε) ⊃
⋃
x∈En

Bn(x, ε/5) ⊃ En.

Hence

P s
N,ε/5(E) ≥ P s

N,ε/5(En) ≥
∑
i

e−ns ≥ enδ
∑
i

e−n(s+δ)

≥ enδ
∑
i

µ(Bn(xi, ε)) ≥ enδµ(En) ≥ enδ

n(n+ 1)
µ(E).

Since enδ

n(n+1)
→∞ as n→∞, letting N →∞ we obtain that P s

ε/5(E) =∞.

Part 2. Let Z ⊆ X be analytic with hPtop(T, Z) > 0. For any 0 < s < hPtop(T, Z),

there exists a compact set K ⊆ Z and µ ∈M(K) such that hµ(T ) ≥ s.

Since Z is analytic, there exists a continuous surjective map φ : N → Z. Let

Γn1,n2,...,np be the set of (m1,m2, . . .) ∈ N such that m1 ≤ n1, m2 ≤ n2, . . ., mp ≤ np
and let Zn1,...,np be the image of Γn1,...,np under φ.

Take ε > 0 small enough so that 0 < s < hPtop(T, Z, ε). Take t ∈ (s, hPtop(T, Z, ε)).

We are going to construct inductively a sequence of finite sets (Ki)
∞
i=1 and a sequence

of finite measures (µi)
∞
i=1 so that Ki ⊂ Z and µi is supported on Ki for each i.
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Together with these two sequences, we construct also a sequence of integers (ni), a

sequence of positive numbers (γi) and a sequence of integer-valued functions (mi :

Ki → N). The method of our construction is inspired somehow by the work of Joyce

and Preiss [16] on packing measures.

The construction is divided into several small steps:

Step 1. Construct K1 and µ1, as well as m1(·), n1 and γ1.

Note that P tε(Z) =∞. Let

H =
⋃
{G ⊂ X : G is open, P tε(Z ∩G) = 0}.

Then P tε(Z ∩H) = 0 by the separability of X. Let Z ′ = Z\H = Z ∩ (X\H). For

any open set G ⊂ X, either Z ′ ∩ G = ∅, or P tε(Z ′ ∩ G) > 0. To see this, assume

P tε(Z ′ ∩G) = 0 for an open set G; then P tε(Z ∩G) ≤ P tε(G ∩ Z ′) + P tε(Z ∩H) = 0,

implying G ⊂ H and hence Z ′ ∩G = ∅.

Note that P tε(Z ′) = P tε(Z) =∞ (because P tε(Z) ≤ P tε(Z ′)+P tε(Z∩H) = P tε(Z ′)).
It follows Psε (Z ′) =∞. By Lemma 4.1, we can find a finite set K1 ⊂ Z ′, an integer-

valued function m1(x) on K1 such that the collection {Bm1(x)(x, ε)}x∈K1 is disjoint

and ∑
x∈K1

e−m1(x)s ∈ (1, 2).

Define µ1 =
∑

x∈K1
e−m1(x)sδx, where δx denotes the Dirac measure at x. Take a

small γ1 > 0 such that for any function z : K1 → X with d(x, z(x)) ≤ γ1, we have

for each x ∈ K1,

(4.1)
(
B(z(x), γ1)∪Bm1(x)(z(x), ε)

)
∩
( ⋃
y∈K1\{x}

B(z(y), γ1)∪Bm1(y)(z(y), ε)
)

= ∅.

Here and afterwards, B(x, ε) denotes the closed ball {y ∈ X : d(x, y) ≤ ε)}. Since

K1 ⊂ Z ′, P tε(Z ∩B(x, γ1/4)) ≥ P tε(Z ′ ∩B(x, γ1/4)) > 0 for each x ∈ K1. Therefore

we can pick a large n1 ∈ N so that Zn1 ⊃ K1 and P tε(Zn1 ∩B(x, γ1/4)) > 0 for each

x ∈ K1.

Step 2. Construct K2 and µ2, as well as m2(·), n2 and γ2.

By (4.1), the family of balls {B(x, γ1)}x∈K1 , are pairwise disjoint. For each x ∈ K1,

since P tε(Zn1 ∩B(x, γ1/4)) > 0, we can construct as Step 1, a finite set

E2(x) ⊂ Zn1 ∩B(x, γ1/4)

and an integer-valued function

m2 : E2(x)→ N ∩ [max{m1(y) : y ∈ K1},∞)

such that



22 DE-JUN FENG AND WEN HUANG

(2-a) P tε(Zn1 ∩G) > 0 for each open set G with G ∩ E2(x) 6= ∅;
(2-b) The elements in {Bm2(y)(y, ε)}y∈E2(x) are disjoint, and

µ1({x}) <
∑

y∈E2(x)

e−m2(y)s < (1 + 2−2)µ1({x}).

To see it, we fix x ∈ K1. Denote F = Zn1 ∩B(x, γ1/4). Let

Hx :=
⋃
{G ⊂ X : G is open P tε(F ∩G) = 0}.

Set F ′ = F\Hx. Then as in Step 1, we can show that P tε(F ′) = P tε(F ) > 0 and

furthermore, P tε(F ′ ∩ G) > 0 for any open set G with G ∩ F ′ 6= ∅. Note that

Psε (F ′) = ∞ (since s < t), by Lemma 4.1, we can find a finite set E2(x) ⊂ F ′

and a map m2 : E2(x) → N ∩ [max{m1(y) : y ∈ K1},∞) so that (2-b) holds.

Observe that if a open set G satisfies G ∩ E2(x) 6= ∅, then G ∩ F ′ 6= ∅, and hence

P tε(Zn1 ∩G) ≥ P tε(F ′ ∩G) > 0. Thus (2-a) holds.

Since the family {B(x, γ1)}x∈K1 is disjoint, E2(x)∩E2(x′) = ∅ for different x, x′ ∈
K1. Define K2 =

⋃
x∈K1

E2(x) and

µ2 =
∑
y∈K2

e−m2(y)sδy.

By (4.1) and (2-b), the elements in {Bm2(y)(y, ε)}y∈K2 are pairwise disjoint. Hence we

can take 0 < γ2 < γ1/4 such that for any function z : K2 → X with d(x, z(x)) < γ2

for x ∈ K2, we have

(4.2)
(
B(z(x), γ2)∪Bm2(x)(z(x), ε)

)
∩
( ⋃
y∈K2\{x}

B(z(y), γ2)∪Bm2(y)(z(y), ε)
)

= ∅

for each x ∈ K2. Choose a large n2 ∈ N such that Zn1,n2 ⊃ K2 and P tε(Zn1,n2 ∩
B(x, γ2/4)) > 0 for each x ∈ K2.

Step 3. Assume that Ki, µi, mi(·), ni and γi have been constructed for i = 1, . . . , p.

In particular, assume that for any function z : Kp → X with d(x, z(x)) < γp for

x ∈ Kp, we have

(4.3)
(
B(z(x), γp)∪Bmp(x)(z(x), ε)

)
∩
( ⋃
y∈Kp\{x}

B(z(y), γp)∪Bmp(y)(z(y), ε)
)

= ∅

for each x ∈ Kp; and Zn1,...,np ⊃ Kp and P tε(Zn1,...,np ∩ B(x, γp/4)) > 0 for each

x ∈ Kp. We construct below each term of them for i = p + 1 in a way similar to

Step 2.

Note that the elements in {B(x, γp)}x∈Kp are pairwise disjoint. For each x ∈ Kp,

since P tε(Zn1,...,np ∩B(x, γp/4)) > 0, we can construct as Step 2, a finite set

Ep+1(x) ⊂ Zn1,...,np ∩B(x, γp/4)
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and an integer-valued function

mp+1 : Ep+1(x)→ N ∩ [max{mp(y) : y ∈ Kp},∞)

such that

(3-a) P tε(Zn1,...,np ∩G) > 0 for each open set G with G ∩ Ep+1(x) 6= ∅; and

(3-b) {Bmp+1(y)(y, ε)}y∈Ep+1(x) are disjoint and satisfy

µp({x}) <
∑

y∈Ep+1(x)

e−mp+1(y)s < (1 + 2−p−1)µp({x}).

Clearly Ep+1(x)∩Ep+1(x′) = ∅ for different x, x′ ∈ Kp. DefineKp+1 =
⋃
x∈Kp Ep+1(x)

and

µp+1 =
∑

y∈Kp+1

e−mp+1(y)sδy.

By (4.3) and (3-b), {Bmp+1(y)(y, ε)}y∈Kp+1 are disjoint. Hence we can take 0 < γp+1 <

γp/4 such that for any function z : Kp+1 → X with d(x, z(x)) < γp+1, we have for

each x ∈ Kp+1,

(4.4)(
B(z(x), γp+1)∪Bmp+1(x)(z(x), ε)

)
∩
( ⋃
y∈Kp+1\{x}

B(z(y), γp+1)∪Bmp+1(y)(z(y), ε)
)

= ∅.

Choose a large np+1 ∈ N such that Zn1,...,np+1 ⊃ Kp+1 and

P tε(Zn1,...,np+1 ∩B(x, γp+1/4)) > 0

for each x ∈ Kp+1.

As in the above steps, we can construct by induction the sequences (Ki), (µi),

(mi(·)), (ni) and (γi). We summarize some of their basic properties as follows:

(a) For each i, the family Fi := {B(x, γi) : x ∈ Ki} is disjoint. Each element in

Fi+1 is a subset of B(x, γi/2) for some x ∈ Ki.

(b) For each x ∈ Ki and z ∈ B(x, γi),

Bmi(x)(z, ε) ∩
⋃

y∈Ki\{x}

B(y, γi) = ∅ and

µi(B(x, γi)) = e−mi(x)s ≤
∑

y∈Ei+1(x)

e−mi+1(y)s ≤ (1 + 2−i−1)µi(B(x, γi)),

where Ei+1(x) = B(x, γi) ∩Ki+1.

The second part in (b) implies,

µi(Fi) ≤ µi+1(Fi) =
∑

F∈Fi+1: F⊂Fi

µi+1(F ) ≤ (1 + 2−i−1)µi(Fi), Fi ∈ Fi
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Using the above inequalities repeatedly, we have for any j > i,

(4.5) µi(Fi) ≤ µj(Fi) ≤
j∏

n=i+1

(1 + 2−n)µi(Fi) ≤ Cµi(Fi), ∀Fi ∈ Fi,

where C :=
∏∞

n=1(1 + 2−n) <∞.

Let µ̃ be a limit point of (µi) in the weak-star topology. Let

K =
∞⋂
n=1

⋃
i≥n

Ki.

Then µ is supported on K. Furthermore

K =
∞⋂
n=1

⋃
i≥n

Ki ⊂
∞⋂
p=1

Zn1,...,np .

However by the continuity of φ, we can show that
⋂∞
p=1 Zn1,...,np =

⋂∞
p=1 Zn1,...,np by

applying Cantor’s diagonal argument. Hence K is a compact subset of Z.

On the other hand, by (4.5),

e−mi(x)s = µi(B(x, γi)) ≤ µ̃(B(x, γi)) ≤ Cµi(B(x, γi)) = Ce−mi(x)s, ∀x ∈ Ki.

In particular, 1 ≤
∑

x∈K1
µ1(B(x, γ1)) ≤ µ̃(K) ≤

∑
x∈K1

Cµ1(B(x, γ1)) ≤ 2C. Note

thatK ⊂
⋃
x∈Ki B(x, γi/2). By the first part of (b), for each x ∈ Ki and z ∈ B(x, γi),

µ̃(Bmi(x)(z, ε)) ≤ µ̃(B(x, γi/2)) ≤ Ce−mi(x)s.

For each z ∈ K and i ∈ N , z ∈ B(x, γi/2) for some x ∈ Ki. Hence

µ̃(Bmi(x)(z, ε)) ≤ Ce−mi(x)s.

Define µ = µ̃/µ̃(K). Then µ ∈M(K), and for each z ∈ K, there exists a sequence

ki ↑ ∞ such that µ(Bki(z, ε)) ≤ Ce−kis/µ̃(K). It follows that hµ(T ) ≥ s. �

5. Main notation and conventions

For the reader’s convenience, we summarize in Table 1 the main notation and

typographical conventions used in this paper.
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Table 1. Main notation and conventions

(X,T ) A topological dynamical system (Sect. 1)
M(X) Set of all Borel probability measures on X
M(X,T ), E(X,T ) Set of T -invariant (resp. ergodic) Borel probability measures on X
dn n-th Bowen’s metric (cf. (1.1))
B(x, ε), B(x, ε) Open (resp. closed) ball in (X, d) centered at x of radius ε
Bn(X, ε), Bn(x, ε) Open (resp. closed) ball in (X, dn) centered at x of radius ε
hµ(T ), hµ(T ) Measure-theoretic upper (resp. lower) entropy of T with respect to

µ ∈M(X) (Sect. 1)
hUCtop (T,Z) Upper capacity topological entropy of Z (Sect. 2)
hBtop(T,Z) Bowen’s topological entropy of of Z (Sect. 2)
hPtop(T,Z) Packing topological entropy of Z (Sect. 2)
htop(T ) Topological entropy of T (Sect. 2)
Ms

N,ε(Z), Ms
ε(Z), Ms(Z) (Sect. 2)

Ws
N,ε(Z), Ws

ε (Z), Ws(Z) (Sect. 2)
P sN,ε(Z), P sε (Z), Psε (Z) (Sect. 2)
Ms

N (U , Z), Ms(U , Z) (Sect. 2)
hBtop(T,U , Z) (Sect. 2)
N the set of infinite sequences of natural numbers endowed with prod-

uct topology.
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