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1. Introduction

Let A be a d × d expanding matrix (all its eigenvalues have moduli > 1). It is well known that for any finite set D ⊂ R
d ,

there exists a unique compact set T := T (A, D) such that

T =
⋃
d∈D

A−1(T + d), (1.1)

i.e., AT = ⋃
d∈D(T + d); also T has the expression

T =
{ ∞∑

k=1

A−kdk: dk ∈ D
}

. (1.2)

We call D a digit set and the pair (A, D) a self-affine pair. If #D = |det(A)| is an integer and T has non-void interior,
then T actually tiles R

d in the following sense [3]: there exists a discrete set J ⊆ R
d which satisfies (i) T + J = R

d and
(ii) (T o + u) ∩ (T o + v) = ∅ for all distinct u, v ∈ J . We call such T a self-affine tile.

The class of self-affine tiles has very rich analytic and number theoretic properties. It has attracted a lot of attention in
fractal geometry, wavelet theory and number theory, and there is a wealth of literature on this topic (see e.g., [3,13–15,7,
18,1,10,6]). On the other hand, the topological property such as the connectedness, the disk-likeness and the structure of
the components (when disconnected) of the self-affine tiles is still not well established. Various results can be found in
Bandt and Gelbrich [4], Bandt and Wang [5], Gröchenig and Haas [7], Hacon et al. [8] and Akiyama and Thuswaldner [1].
Recently Kirat and one of the authors initiated a more systematic study for the tiles that are generated by consecutive
collinear digit sets [11], a direct analog of the one-dimensional case. It was found that the connectedness depends solely on
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the characteristic polynomial of the expanding matrix, and by using that one can establish the connectedness of such tiles
up to dimension 4 [12,2]. The higher dimensional case is still unsolved [9]. Along this line, the disk-likeness of such tiles in
R

2 has also been characterized [16].
In an attempt to consider the tiles that are arisen from the more general digit sets, we try another class of simple cases:

the matrix A is lower triangular and the digit set is arranged into a rectangular form. It is interesting to find that the
resulting tiles can be disconnected even for the very simple matrices. This will be a good pilot case for the more general
self-affine tiles. Among the other results, we prove

Theorem 1.1. Let p, q be integers with |p|, |q| � 2 and let a ∈ R. Let

A =
[

p 0

−a q

]
, D =

{[
i
j

]
: 0 � i � |p| − 1, 0 � j � |q| − 1

}
. (1.3)

Then T is a self-affine tile, and it is connected if and only if | a
q(q−sgn(p))

| � 1. (Here sgn(p) denotes the sign of p.)
Moreover T is disk-like if and only if the above � is replaced by <.

If the tile T is disconnected, then we have a precise count on the connected components.

Theorem 1.2. Let T be the self-affine tile as in Theorem 1.1. Suppose |q|m−1 < | a
q(q−sgn(p))

| � |q|m. Then T has |p|m connected com-
ponents.

The proof of the theorems is based on the radix expansion of elements of T : the expression of (1.2) is reduced to (as
a special case of (2.5))

T =
{[

p(i)
ar(i)

]
+

[
0

q(j)

]
: 0 � in < p, 0 � jn < q

}
(1.4)

where p(i) = ∑
n

in
pn , q(j) = ∑

n
jn
qn , and the term r(i) comes from the sub-diagonal entry. It follows that the range of the

x-coordinate of T is the interval [0,1]. The tile T is bounded by two vertical segments at x = 0 and x = 1 with length 1, the
upper and lower sides are serrated edges. For those x with two representations, say, x = p(i) = p(i′) with i 
= i′ , the x-cross
section of T is the union of two intervals of length 1 with the lower end points at ar(i) and ar(i′) respectively. For small |a|,
the tile is connected since any two such intervals intersect. By increasing |a|, these pairs of intervals shift up or down so
that they change from intersecting to non-intersecting. This makes the tile changes from connected to disconnected, and the
number of connected components increases. The precise classification in the theorems is established through some careful
calculation of radix expansions of ar(i) + q(j) of the y-coordinate.

For an illustration of the two theorems, we let

A =
[

2 0

−a 2

]
and D =

{[
i
j

]
: i, j ∈ {0,1}

}
.

The four pictures are the graphs of the tiles T for a = 1, 2, 3, 5 respectively (see Fig. 1), they have width 1, and the two
vertical sides at the ends have length 1 (note that the vertical scales in the pictures have been adjusted). The tile is a union
of four affine copies (see (1.1)), the black region is one of the affine copy A−1T .

It follows from Theorem 1.1 that T is connected for the cases a = 1 and a = 2, and by Theorem 1.2, T has two components
when a = 3, and four components when a = 5. Indeed by inspecting the graph for a = 3, it is clear that each of the four
affine copies A−1T + d, d ∈ D is disconnected, but the union of the two on top of each other makes up a connected
component. For a = 5, we use a similar observation for T = ⋃

A−2(T + Aα + β), α,β ∈ D (apply (1.1) one more time), each
connected component is the union of four of these sub-tiles on tops of each other.

We remark that the above tile has its own interest on the periodicity of the tiling set J . It was studied by Lagarias and

Wang in [13]: let A =
[

2 0
−a 2

]
and D =

{[
0
0

]
,
[

0
3

]
,
[

1
0

]
,
[

1
3

]}
, then all self-replicating tilings J of T are non-periodic, on the

other hand T admits a non-self-replicating tiling that is a lattice (J = Z ⊕ 3Z).
For the organization of the paper, we prove the connectedness of the aforementioned tiles in Section 2 (Theorem 2.1)

and the disk-likeness in Section 3 (Theorem 3.1). Actually we can put the digit sets in a slightly more general setting (as
in (2.1)) without causing much difficulty. The proof of Theorem 1.2 is given in Section 4. In Section 5 we give some remarks
concerning the more general situations.

2. The connectedness

The digit sets in Theorem 1.1 can actually be put into a more general form:

D =
{[

i
j

]
+

[
0
b

]
: 0 � i � |p| − 1, 0 � j � |q| − 1

}
. (2.1)
i
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Fig. 1. T and A−1 T (the black region) for a = 1, 2, 3, 5.

That is, we allow each column of digits move up and down according to the bi ’s. The necessary and sufficient condition for
the connectedness can be adjusted as follows (likewise for the disk-likeness in the next section).

Theorem 2.1. Let A be as in (1.3) and D has the form as in (2.1). Then T is a connected self-affine tile if and only if∣∣∣∣bi+1 − bi

q
+ sgn(p)(b0 − b|p|−1) − a

q(q − sgn(p))

∣∣∣∣ � 1, 0 � i < |p| − 1. (2.2)

Remark. We claim that it suffices to prove the theorem for p,q > 0. Indeed note that T (A, D) = T (A2, AD + D). Here

A2 =
[

p2 0

−(p + q)a q2

]
and

AD + D =
{[

pr + �

(−ar + qbr + b�) + (qj + k)

]
: 0 � r, � � |p| − 1, 0 � j, k � |q| − 1

}
.

If p > 0 and q < 0, we let D̃ = AD + D + (0,q2 + q)t and consider T (A2, D̃). It is a translation of T (A, D). By a change of
variable on the second coordinate (replace the above j by (|q| − j) and the k by (|q| − k)), we have

D̃ =
{[

i
b′

i + j

]
: 0 � i � p2 − 1, 0 � j � q2 − 1

}
where

b′
i = −ar + qbr + b� with i = pr + �, 0 � r, � < p.

Hence D̃ has the expression as in (2.1). Furthermore it follows from a direct observation that, for i = pr + �,
b′

i+1−b′
i

q2 +
(b′

0−b′
p2−1

)−(p+q)a

q2(q2−1)
is equal to (

b�+1−b�

q + b0−bp−1−a
q(q−1)

) 1
q if � < p − 1 and to br+1−br

q + b0−b|p|−1−a
q(q−1)

if � = p − 1. Hence condition

(2.2) in the theorem for (A2, D̃) is equivalent to that for (A, D).
For the case p < 0, if q > 0, we use D̃ = AD + D + (p2 + p,0)t ; if q < 0 we use D̃ = AD + D + (p2 + p,q2 + q)t . By

applying the same argument as the above, D̃ has the expression as in (2.1) with

b′
i = a(p + 1 + r) + qb−p−1−r + b� with i = |p|r + �, 0 � r, � < |p|,

and condition (2.2) in the theorem for (A2, D̃) is also equivalent to that for (A, D).
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In view of the expression for A2 above, we can actually assume that p,q > 0 in the proof. In this case the sgn(p) in (2.2)
is just 1.

In the sequel, unless otherwise stated we assume without loss of generality that the self-affine pair (A, D) is such that:
A is as in (1.3) with p,q � 2, and D has the form as in (2.1). We have

A−1 =
[

p−1 0

(pq)−1a q−1

]
and A−n =

[
p−n 0

rna q−n

]
, n � 1 (2.3)

where

rn =
{

(p−n − q−n)/(q − p), if p 
= q,

n/pn+1, if p = q.
(2.4)

It is easy to see that rn = (pnq)−1 + rn−1q−1, n � 1 (assume r0 = 0). Let I1 denote the set of i = i1i2 · · · with in ∈ D1 =
{1, . . . , p − 1}, and I2 denote the set of j = j1 j2 · · · with jn ∈ D2 = {1, . . . ,q − 1}. Then it follows from (1.2), (2.1) and (2.3)
that

T =
{[

p(i)
ar(i) + b(i)

]
+

[
0

q(j)

]
: 0 � in < p, 0 � jn < q

}
(2.5)

where

p(i) =
∑

n

in

pn
, r(i) =

∑
n

rnin, b(i) =
∑

n

bin

qn
and q(j) =

∑
n

jn

qn
.

It follows that the range of the x-coordinate of T is the interval [0,1]. For each x = p(i) such that the representation is
unique, the vertical cross section of T is the interval of length 1 with an end point at ar(i) + b(i); for the other points that
have two representations, the vertical cross section of T is the union of two intervals of length 1.

Proposition 2.2. For the self-affine pair (A, D), T is a tile with Lebesgue measure 1. Moreover for any sequence {cn}n∈Z in R, let
J = {(n, cn + m)t : n,m ∈ Z}, then J is a tiling set for T in R

2 .

Proof. Let D1 = {0,1, . . . , p − 1}, D2 = {0,1, . . . ,q − 1}. For any (x, y)t ∈ R
2, since T (p, D1) = [0,1], we can find � ∈ Z

such that x − � ∈ [0,1]. Let i ∈ I1 be such that x − � = p(i). Let y0 = ar(i) + b(i). Since T (q, D2) = [0,1] also, there is
k ∈ Z such that y − (y0 + c� + k) ∈ T (q, D2). This implies that y − (y0 + c� + k) = q(j) for some j ∈ I2. It follows that
(x, y)t ∈ T + (�, c� + k)t (by (2.5)). Hence J + T = R

2.
Note that both T (p, D1) and T (q, D2) are the unit interval [0,1]. We have for almost all x ∈ R, the above � and i are

unique. If we fix such x, then for almost all y ∈ R, the above k and y0 are unique. Therefore, for almost all (x, y)t ∈ R
2, the

above � and k are unique. Hence the family {T + t, t ∈ J } are measure disjoint sets. Therefore T + J tile R
2. That T has

Lebesgue measure 1 follows from the fact [13] that Z
2 is a tiling set (taking cn = 0 in the above). �

Geometrically, the tile T has the two sides on the vertical line x = 0 and x = 1 (by (2.5)). Proposition 2.2 implies that the
tiling can be slid vertically. In order to prove the connectedness, we need the following elementary fact (see, for example,
[11, Theorem 4.3]):

Lemma 2.3. Let {ψ j(x)}N
j=1 be a family of contractions on R

n and let K be its attractor. Then K is connected if and only if, for any
i 
= j ∈ {1,2, . . . , N}, there exists a sequence i = j1, j2, . . . , jn = j of indices in {1,2, . . . , N} so that ψ jk (K ) ∩ ψ jk+1 (K ) 
= ∅ for all
1 � k < n.

For the affine pair (A, D), we let

Si, j

([
x
y

])
= A−1

([
x
y

]
+

[
i

bi + j

])
,

where 0 � i < p, 0 � j < |q|. Then {Si, j}i, j is the iterated function system (IFS) that generates T . In view of (2.3) and (2.5),
the elements of Si, j(T ) are of the form[

p(ii)
ar(ii) + b(ii)

]
+

[
0

q( jj)

]
(2.6)

where i = i1i2 · · · ∈ I1 and j = j1 j2 · · · ∈ I2.

Lemma 2.4. Let (A, D) be the self-affine pair as above. Then Si, j(T ) ∩ Si, j+1(T ) contains an interior point of T .
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Proof. Let ei , i = 1,2 be the two unit vectors of R
2. To prove the lemma, it suffices to show that T ∩ (T + e2) contains a

point of (T ∪ (T + e2))
o .

Observe that for any i ∈ I1 and j ∈ I2, p(i),q(j) ∈ [0,1] (as p,q > 0). We fix an 0 < x0 < 1 so that there is a unique
i ∈ I1 such that x0 = p(i). Let

y0 = ar(i) + b(i) + 1. (2.7)

In view of (2.5), we have (x0, y0)
t ∈ T ∩ (T + e2).

Next we show that (x0, y0)
t is in the interior of (T ∪ (T + e2)). By Proposition 2.2, Z

2 is a tiling set of T . Since x0 is an
interior point of [0,1], by (2.5), (x0, y0)

t ∈ T + (n,m)t only if n = 0. For (x0, y0)
t ∈ T + (0,m)t , y0 must be the form

y0 = ar(i) + b(i) + q(j) + m

for some j (note that i is uniquely determined). Combining (2.7) and (2.5), we have q(j) + m = 1 and m must equal 0 or 1
(as 0 � q(j) � 1). It follows that (x0, y0) /∈ T + me2 for any m /∈ {0,1}, therefore (x0, y0) must be in (T ∪ (T + e2))

o . �
Lemma 2.5. With the self-affine pair (A, D) as the above, let Gi = ⋃q−1

j=0 Si, j(T ), i = 0,1, . . . , p − 1. Then Gi(T )∩ G�(T ) 
= ∅ implies
|i − �| � 1.

Proof. By (2.6), Gi has the following form

Gi =
{[

p(ii)
ar(ii) + b(ii)

]
+

[
0

q(j)

]
: i ∈ I1, j ∈ I2

}
. (2.8)

From the expression of the first coordinate, Gi is the part of T between the vertical lines x = i/p and x = (i + 1)/p. The
lemma follows. �
Lemma 2.6. For the above Gi , i = 0, . . . , p − 2, we have Gi(T ) ∩ Gi+1(T ) is a line segment if and only if∣∣∣∣bi+1 − bi

q
+ (b0 − bp−1) − a

q(q − 1)

∣∣∣∣ < 1,

and is a single point if equality holds.

Proof. From the proof of Lemma 2.5, we see that the intersection Si, j(T )∩ Si+1,k(T ) has a unique first coordinate (i + 1)/p.
By (2.8), all digits in i are p − 1. This implies that the second coordinate of an element of Gi is of the form (use (2.8))

yi = a

(
i

pq
+ (p − 1)

∞∑
n=2

rn

)
+

(
bi

q
+

+∞∑
n=2

bp−1

qn

)
+ q(j)

where j = j1 j2 · · · ∈ I2. By using (2.4), it is direct to show that

∞∑
n=2

rn = p + q − 1

pq(p − 1)(q − 1)
.

Also note that {q(j): j ∈ I2} = [0,1], the above yi ’s form a unit interval

I1 = [α,α + 1] :=
(

(i + 1)a

pq
+ bi

q

)
+ bp−1 + a

q(q − 1)
+ [0,1].

Similarly, the second coordinate of elements in Gi+1 (the first coordinate is (i + 1)/p) has the form

yi+1 =
(

(i + 1)a

pq
+ bi+1

q

)
+ b0

q(q − 1)
+ q(j), (2.9)

which determines the unit interval

I2 = [β,β + 1] :=
(

(i + 1)a

pq
+ bi+1

q

)
+ b0

q(q − 1)
+ [0,1].

It follows that if Gi ∩ Gi+1 
= ∅, then the first coordinate of the intersection is (i + 1)/p, and the second coordinate is I1 ∩ I2.
Note that [α,α + 1] ∩ [β,β + 1] is an empty set when |α − β| > 1; a single point when |α − β| = 1 and an interval when

|α − β| < 1. The proposition follows by observing that α − β = bi−bi+1 + bp−1−b0+a
. �
q q(q−1)
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Proof of Theorem 2.1. Let T = ⋃
i Gi be as in Lemma 2.5. Assume that T is connected, then for any i, Gi must intersect

some G� , � 
= i. The necessity follows from Lemmas 2.5 and 2.6.
To prove the sufficiency, we have from Lemma 2.4,

Si, j(T ) ∩ Si, j+1(T ) 
= ∅, 0 � j < q − 1. (2.10)

On the other hand, by Lemma 2.6 and the definition of Gi , we have for each 0 � i < p − 1, there exist 0 � ji , ki < q such
that

Si, ji (T ) ∩ Si+1,ki (T ) 
= ∅. (2.11)

We use (2.10) and (2.11) to select a sequence {ψi}N
i=1 from {Si j }i, j in the following order (a zigzag path): S0,0, S0,1, . . . ,

S0,|q|−1, S0,|q|−2, . . . , S0, j0 , S1,k0 , . . . , S1,|q|−1, S1,|q|−2, . . . , S1,0, S1,1, . . . , S1, j1 , S2,k1 , . . . , S2,|q|−1, S2,|q|−2, S2,|q|−2, . . . , S2, j2 ,

. . . , S p−1,|q|−1, where, ji and ki are given by (2.11). Then each Si, j appears at least once in the sequence {ψi}N
i=1 and

ψi(T ) ∩ ψi+1(T ) 
= ∅ ∀1 � j < N.

This implies that T is connected by using Lemma 2.3, and the sufficiency is proven. �
3. The disk-likeness

We prove the following theorem on the disk-likeness of T :

Theorem 3.1. Let (A, D) be as in Theorem 2.1. Then the self-affine tile T is disk-like if and only if∣∣∣∣bi+1 − bi

q
+ sgn(p)(b0 − b|p|−1) − a

q(q − sgn(p))

∣∣∣∣ < 1 (3.1)

for all i = 0,1, . . . , |p| − 2.

We adopt the same notations and assume p,q � 2 as in the last section. We need a lemma for the proof of the suffi-
ciency.

Lemma 3.2. Suppose inequality (3.1) holds, then for each 0 � i < p − 1, there are ji , ki such that Si, ji (T ) ∩ Si+1,ki (T ) contains an
interior point of Si, ji (T ) ∪ Si+1,ki (T ).

Proof. In view of Lemma 2.6 and the assumption, there exist ji and ki such that the intersection Si, ji (T ) ∩ Si+1,ki (T )

contains a vertical non-degenerated line segment. Let ẑ = Si, ji (z̃) be the mid-point of the line segment. By the definition of
Si, j , we see that

Si, ji (T ) = A−1
(

T +
[

i

bi + ji

])
,

Si+1,ki (T ) = A−1
(

T +
[

i

bi + ji

]
+

[
1

c

])
,

where c = bi+1 −bi +ki − ji . Hence T ∩(T +(1, c)t) is a vertical line segment with positive length and z̃ is its mid-point. Note
that the left side and the right side of T are vertical line segments with length 1, it is easy to show that z̃ ∈ T + (�, c + k)

if and only if (�, c + k) equals (0,0) or (1, c). By Proposition 2.2, we see that z̃ is an interior point of T ∪ (T + (1, c))t . This
means that ẑ is a point of (Si, ji (T ) ∪ Si+1,ki (T ))o . �
Corollary 3.3. Under the assumption (3.1), T o is connected.

Proof. Let ψi be the maps defined as in the proof of Theorem 2.1 (where ji and ki are chosen as in Lemma 3.2).
Then ψi(T ) ∩ ψi+1(T ) contains at least one interior point of T . As T = ⋃

i ψi(T ), we conclude that T o is connected by
Lemma 2.3. �
Proof of Theorem 3.1. Since T is a self-affine tile (Proposition 2.2), so the iterated function system {Sij: 0 � i < p, 0 � j < q}
satisfies the open set condition. Assuming condition (3.1), then Corollary 3.3 implies that T o is connected, which yields the
disk-likeness of T by a theorem of Luo et al. [17].

For the necessity suppose T is disk-like, then both T and T o are connected and Theorem 2.1 ensures that | bi+1−bi
qt +

(b0−bp−1)−a | � 1 for i = 0, . . . , p − 2. If the equality holds for some i, then the second part of Lemma 2.6 implies that
q(q−1)
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Gi ∩ Gi+1 contains only one point. On the other hand, Lemma 2.5 implies that Gi ∩ G j = ∅ for |i − j| � 2. Since T = ⋃p−1
j=0 G j ,

T can be divided into two parts
⋃i

j=0 Gi and
⋃p−1

j=i+1 Gi with only one common point, this point must be at the boundary
of T . Therefore T o is not connected. This contradicts the connectedness of T o , and the necessity follows. �
4. The disconnected case

In this section, we assume the self-affine pair (A, D) is as in (1.3) and prove Theorem 1.2. By the same reason as before,
we need only prove the case where p,q � 2. Therefore the condition on A is reduced to qm−1 < | a

q(q−1)
| � qm .

Proof of Theorem 1.2. Similar to the Gi in Lemma 2.4, we define, for any finite sequence i = i1i2 · · · im , 0 � in < p,

G i =
q−1⋃
j1=0

· · ·
q−1⋃
jm=0

Si1, j1 ◦ Si2, j2 ◦ · · · ◦ Sim, jm(T ).

Then

T =
⋃

0�i j<p

Gi1i2···im . (4.1)

Note that each point in G i has first coordinate in the interval [p(i), p(i) + 1/pm] where p(i) = ∑m
n=1 in/pn; G i is the part of

T between the vertical lines x = p(i) and x = p(i) + 1/pm . By (1.2), it is direct to show that G i has the following form

G i =
{

m∑
n=1

A−n
[

in

vn

]
+

∞∑
n=m+1

A−n
[

un

vn

]
: 0 � un < p, 0 � vn < q

}
. (4.2)

Note that
∑∞

n=1 A−n(0, vn)t = ∑∞
n=m+1 A−n(0,qm vn)t . We can rewrite

G i =
[

p(i)
0

]
+ A−m P

(
T
(

P−1 A P , D
))

with P =
[

1 0

0 qm

]
.

By applying Theorem 1.1 to T (P−1 A P , D), we see that G i is connected if and only if | aq−m

q(q−1)
| � 1. This implies that G i is

connected.
Next we replace the above m by k � m, then from the assumption, 1 < |aq−k/(q − 1)|. We show that if 0 � � � p − 1,

� 
= ik , then Gi1···ik ∩ Gi1···ik−1� = ∅. For k runs through 1 to m, we see that Gi1···im are connected components and there is
a total pm of them, as stated in the theorem.

Suppose otherwise there exist k � m and ik < � such that Gi1···ik ∩ Gi1···ik−1� = ∅. Then (2.3) and (4.2) imply that there
exist 0 � un , sn < p and 0 � vn , tn < q such that (the first coordinate)

p−kik +
∞∑

n=k+1

p−nun = p−k� +
∞∑

n=k+1

p−nsn, (4.3)

and (the second coordinate)

k∑
n=1

arnin +
∞∑

n=k+1

arnun +
∞∑

n=1

q−n vn =
k−1∑
n=1

arnin + ark� +
∞∑

n=k+1

arnsn +
∞∑

n=1

q−ntn. (4.4)

Then (4.3) implies that � = ik + 1 and un = p − 1, sn = 0 for all n > k. Hence (4.4) becomes

∞∑
n=k+1

arn(p − 1) +
∞∑

n=1

q−n vn = ark +
∞∑

n=1

q−ntn.

Since both
∑∞

n=1 q−ntn and
∑∞

n=1 q−n vn belong to [0,1], we have∣∣∣∣∣
∞∑

n=k+1

arn(p − 1) − ark

∣∣∣∣∣ � 1.
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On the other hand by (2.4) and a direct calculation,

∞∑
n=k+1

arn(p − 1) − ark = aq−k

q − 1
.

Hence | aq−k

q−1 | � 1, a contradiction. Therefore, Gi1···ik ∩ Gi1···ik−1� = ∅ as claimed. �
The above proof and Theorem 1.1 (the disk-likeness part) also yield the following conclusion.

Corollary 4.1. Let (A, D) be as in Theorem 1.1. Suppose |q|m−1 < | a
q(q−sgn(p))

| < |q|m for some m > 0, then T is a tile and consists of

pm disjoint disk-like components.

5. Remarks

We remark that Theorem 1.2 can also be proved for the more general digit set in (2.1), the proof is similar but the
expression of the condition in the theorem is more complicated.

In regard to the example in the introduction with A =
[

2 0
−a 2

]
, the b0, b1 do not affect the connectedness and disk-

likeness of T , as the conditions in (2.2) and (3.1) are reduced to |a/2| � 1 and |a/2| < 1 respectively. Moreover, if p = q
(� 2) and bi = c + bi, i = 0, . . . , p − 1, for some constants c and b, then these bi do not affect the connectedness and
disk-likeness of T . This observation does not hold if p 
= q.

Let A be as in (1.3), we consider D = {(di, e j)
t : 1 � i � �, 1 � j � k} with k� = |pq| as any other product form digit set.

If � < |p|, then the set {x ∈ R: (x, y)t ∈ T for some y ∈ R} has one-dimensional Lebesgue measure zero, so T cannot be a
tile. For the same reason if a = 0, then T cannot be a tile when k < |q|. On the other hand if a 
= 0 and k < |q|, then T
can still be a tile. For example, let a = 1 in the lower triangular matrix A, let D = {(i,0): 0 � i < |pq|} (i.e., k = 1 and D is
a consecutive collinear digit set), then T is a connected self-affine tile [11]. For the lower triangular matrix A, we do not
know a general condition on D to ensure that T is a tile or a connected tile.
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